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   Abstract  

Genome-wide association studies (GWAS) indicate neuropsychiatric disorders to be 

highly polygenic. Polygenicity refers to the additive influence of multiple genes on variation 

in a disorder. GWAS have identified many single-nucleotide polymorphisms (SNPs) across 

the genome associated with neuropsychiatric disorders, each explaining a very small part of 

individual variance within a trait. This complicates the understanding of the genetic 

architecture and biological mechanisms underlying these disorders. Previous studies have 

successfully used common genetic variants associated psychiatric disorders to generate 

Polygenic Risk scores (PRS). PRSs estimate the aggregate genetic liability of an individual 

for a particular disorder or trait based on a genome-wide association study (GWAS) of said 

trait. Here, we present a novel bottom-up approach to polygenic scoring that starts at the 

brain, rather than at behavior or clinical diagnosis. We used GWAS of structural brain 

imaging derived phenotypes (IDPs) from the UK Biobank as a basis to generate polygenic 

imaging derived scores (PIDS). As a proof-of-concept of its application, we applied PIDS to 

quantify differences in the genetic influence on brain structure between persons with ADHD 

and unaffected controls. 94 IDPs were selected using the subcortical segmentation atlas and 

the Desikan-Killiany cortical atlas from FreeSurfer. In the polygenic model training stage, 72 

out 94 PIDS were associated with their respective IDP in an independent sample. Global 

measures such as cerebellum white matter, cerebellum cortex and cerebral white matter 

ranked amongst the highest in variance explained ranging between 3% and 5.7%. Our results 

indicate that a majority of GWAS of structural neuroimaging traits are becoming sufficiently 

powered to enable reliable and meaningful use of polygenic scoring applications that 

accurately reflect the underlying polygenic architecture well. Larger discovery GWAS will 

further improve upon this. Conversely, our associations with ADHD were relatively weak. 

Larger target samples are required to establish robust links of PIDS with behavioral or clinical 

traits like ADHD. With this novel approach to polygenic risk scoring we provide a new tool 

for other researchers to build on in the field of psychiatric genetics.  



 

Introduction 

 

Genome-wide association studies (GWAS) indicate neuropsychiatric disorders to be 

highly polygenic (Watanabe et al., 2019). Polygenicity refers to the additive influence of 

multiple genes on variation in a disorder. GWAS have identified many single-nucleotide 

polymorphisms (SNPs) across the genome associated with neuropsychiatric disorders, 

explaining a very small part of individual variance within a trait (Selzam et al., 2019; Liu et 

al., 2021) . This complicates the understanding of the genetic architecture and biological 

mechanisms underlying these disorders. Genes are likely expressed in mediating brain 

development and information processing rather than influencing behavior directly 

(Weinberger, 2011).  We will explore the use of imaging derived phenotypes (IDPs) to 

examine brain-based intermediate phenotypes, also known as endophenotypes. IDPs consist 

of structural measures of brain anatomy including tissue and structure volumes. We will use 

IDPs to assess the genetic architecture of neurological and psychiatric disorders and explain 

individual variation.         

 Human brain structure and function vary greatly between individuals. This variation 

can be measured non-invasively using magnetic resonance imaging (MRI) (Krain & 

Castellanos, 2006). The effects of neurological and psychiatric disorders such as 

Schizophrenia, Bipolar disorder, Autism and ADHD can be studied through MRI (Bonvicini 

et al., 2016; Romme et al., 2017; Yang et al., 2020). Understanding the genetic determinants 

of robust MRI markers could help identify biological pathways relevant to brain development 

and various diseases. Human brain structure traits possess attractive properties for genetic 

study (Matoba et al., 2020). Moreover, the study of human brain structure traits as broad 

endophenotypes for neuropsychiatric disorders could help in the identification of biological 

mechanisms and pathways that mediate individual differences in complex behaviors and 

vulnerability to disease (Bigos & Weinberger, 2010).       

 Given GWAS results, the count of risk alleles present in an individual person can be 

weighted by their effect size and summed into polygenic risk scores (PRSs). PRS is then used 

to quantify genetic liability for that individual. Mapping individual genetic liability can help 

understand the genetic architecture of the studied trait. Previously, studies have used 

hypothesis-driven approaches to investigating genetic associations with psychiatric disorders. 

A single PRS per neuropsychiatric disorder can fall short in describing variation for everyone 



due to biological heterogeneity. The genetic variation at the basis of risk factors may vary 

between individuals. With the availability of large data resources such as UK Biobank we can 

perform a hypothesis-free study. Here, we present a novel bottom-up approach to polygenic 

scoring that starts at the brain, rather than at behavior or clinical diagnosis. We used GWAS 

of structural brain IDPs from the UK Biobank as a basis to generate a set of polygenic 

imaging derived scores (PIDS) to better grasp the genetic variation between individuals. 

 ADHD will be used as a proof of concept for testing the potential utility of PIDS to 

clinical research. We chose ADHD because it is highly heritable with an average reported 

heritability of 76% (Bonvicini et al., 2016). Genetic factors have been broadly linked to the 

susceptibility to develop ADHD and some susceptibility genes have been identified 

(Demontis et al., 2022; Ronald et al., 2021). Differences in brain structure have been reported 

in cases with ADHD compared with controls (Krain & Castellanos, 2006). Alterations found 

in prefrontal gray matter, occipital gray matter, and inferior fronto-occipital fasciculus white 

matter were found not only in ADHD patients, but also in their unaffected siblings relative to 

controls (Bralten et al., 2016). Moreover, reductions in total cerebral volume, the prefrontal 

cortex, the basal ganglia (striatum), the dorsal anterior cingulate cortex, the corpus callosum 

and the cerebellum are also associated with ADHD (Poissant & Joyal, 2008; Curatolo et al., 

2010).     

In the present study we use a genomic approach to evaluate the genetic link between 

brain structure and disease risk. We will use PIDS to explore the relationship between ADHD 

and the brain, in a brain-driven fashion. The aim of this polygenic score was not to predict 

risk for individual patients but explore the construct and face validity of polygenic imaging 

derived scores. This new approach could improve our understanding of factors involved in 

neuropsychiatric traits.  

 

 

    

 

 

 

 



    Methods  

Data   

Discovery Sample 

Summary statistics were obtained from the UK Biobank, a long-term epidemiological 

study of 500,000 volunteers from across the United Kingdom between the age of 40 and 69. 

The dataset used for this project contains 3929 IDPs using 39,691 participants and QC 

measures available from UKB ranging over six distinct MRI modalities. (Smith et al., 2021). 

For this project we focused on the structural image modality. After removal of individuals as 

part of genetic processing a sample of 33,224 individuals remained (n = 33,224, 17,411 

genetic females). The ages in the sample were as follows: females mean age = 63.7±7.4 years 

(min = 45.1, max = 81.8); males mean age = 65.0±7.6 years (min 46.1, max 81.8). Additional 

information on the data can be found in the original paper by Smith et al., 2021. The UK 

Biobank has approval from the Northwest Multi-centre Research Ethics Committee (MREC). 

Neuroimaging traits / IDPs  

Freesurfer V6.0.0 (https://surfer.nmr.mghm.harvard.edu) was used to define both 

cortical and subcortical structures. The definition of cortical structures, referred to as 

parcellation, is performed by mapping atlas regions of the brain onto an individual’s cortical 

surface model (Destrieux et al., 2010). The Desikan-Killiany atlas was used for automated 

parcellation (aparc) of the cortical structures (Desikan et al., 2006).  

For this project we were interested in broad structural differences of the brain between 

ADHD patients and controls. All gray matter tissue, global white matter and cerebrospinal 

fluid labels from Freesurfer were included in this project. These labels are part of the 

‘regional and tissue volume category’ for 18 subcortical volumes from the subcortical 

segmentation atlas and 29 cortical volumes from the Desikan-Killiany atlas were included, 

bilaterally, resulting in 94 IDP’s (Table 1. Supplementary materials). Confounds were 

removed from the data including 40 population genetic principal components supplied by 

UKB and with a greatly expanded new set of confounds including age, head size, sex, head 

motion, scanner table position, imaging center and scan date-related slow drifts. More details 

for the imaging and genetics processing and cohorts can be found in the online methods of the 

original paper by Smith et al., 2021.  

 



Target Samples  

The NeuroIMAGE study is a follow-up of the Dutch part of the International 

Multicenter ADHD Genetics (IMAGE) project (Müller et al., 2011). NeuroIMAGE sample is 

a longitudinal cohort of ADHD patients, their unaffected siblings, and controls. The original 

365 ADHD families and 148 control IMAGE families, consisting of 506 participants with an 

ADHD diagnosis, 350 unaffected siblings, and 283 healthy controls (Kuntsi et al., 2006). In 

combination with new participants the NeuroIMAGE study consisted of 1,069 children (751 

from ADHD families; 318 from control families) and 848 parents (582 from ADHD families, 

266 from controls). The NeuroIMAGE dataset consists of 3 repeated measures ‘waves’, 

collected between 2003 and 2012. A slight adaptation of the Parental Account of Childhood 

Symptoms (PACS) clinical interview and the Conners Parent and teacher rating scales were 

used in wave 1 to more objectively asses children’s symptoms (Taylor, 1986; Conners, 

1997,1998; Müller et al., 2011). In the immediate follow-up wave 2 & 3, Conners’ Adult 

ADHD Rating Scale (CARS R-L), Conners’ Parent Rating Scale (CPRS R:L), and Conners 

Wells’ Adolescent Self-Report scale: Short Form (CASS:S) (Conners et al., 1998; Conners et 

al., 1998; Parker & Sitarenios, 1999). MRI measurements were recorded for each child older 

than 7 years without contradiction for an MRI measurement (e.g., implanted metal and 

medical devices) and willingness. Freesurfer V6.0.0 (https://surfer.nmr.mghm.harvard.edu) 

was used to define both cortical and subcortical structures. The 94 IDP summary statistics 

from UKB were matched by volumetric measurements for the same cortical and sub-cortical 

brain regions. Participating children completed a session in a magnetic resonance imaging 

(MRI) scanner. Data was collected at the Radboud University Medical Centre, Donders 

Centre for Cognitive Neuroimaging or VU University Amsterdam and VU University 

Medical Centre. At both sites similar 1.5 T scanners were used (Siemens SONATA and 

Siemens AVANTO; Siemens, Erlangen Germany), both using 8-channel Phase Array Head 

Coils. The NeuroIMAGE study was approved by the regional ethics committee (Centrale 

Commissie Mensgebonden Onderzoek).  

NeuroIMAGE  

To determine ADHD diagnosis at the time of participation in NeuroIMAGE, a 

diagnostic algorithm was used combining the diagnostic interview (K-SADS) with the 

Conners rating scales as described previously in von Rhein et al (2015). Following the 

diagnostic algorithm of clinical interview and ADHD, participants were categorized as either 

diagnosed with ADHD, Unaffected, and ADHD Subthreshold. To be diagnosed with ADHD, 



participants were required to have ≥ 6 hyperactive/impulsive and/or inattentive symptoms, 

met the DSM-IV criteria for pervasiveness and impairment and showed an age of onset before 

12. To be considered unaffected, participants were required to have a T < 63 on each subscale 

of the Conners questionnaires and ≤ 3 symptoms derived from the combined symptom counts 

of the K-SADS and CTRS-R: L/CAARS-S:L. Participants who did not meet the requirements 

for either ADHD or unaffected status received the ADHD-subthreshold classification. Criteria 

were adapted for adults (≥ 18 years) resulting in a diagnosis after a symptom count of ≥ 5. 

Adults were considered unaffected with an ADHD symptom count of ≤ 2. Table 1 

summarizes the NeuroIMAGE sample according to clinical trajectory of persistence, partial 

remission, and full remission. Inclusion criteria for participants was a full diagnosis of ADHD 

at least once previously in NeuroIMAGE and having supplied quality-control passing DNA.  

Target sample update DELTA   

A subset of 60 NeuroIMAGE participants were reexamined in an additional MRI 

follow-up study, Determinants of Long-Term Trajectories of ADHD (DELTA), about five 

years after the third NeuroIMAGE wave. Participants were only included in DELTA if they 

had a full diagnosis of ADHD at least once previously in NeuroIMAGE and had contributed 

DNA which passed QC. The Diagnostic interview voor ADHD bij volwassenen (DIVA) 

interview was used to assess diagnosis of ADHD considering all participants were aged 18 or 

above (Kooij & Francken, 2010). DIVA is based on the DSM-IV criteria and is a follow up to 

earlier semi-structured interviews for ADHD in adults. Individuals were classified as 

“affected” if they had 6 or more symptoms for hyperactivity and/or inattention and clinically 

significant self-reported impairment in at least 2 domains. Individuals were labeled as 

“unaffected” with fewer than 3 symptoms for inattention and hyperactivity or “Subthreshold” 

if they fit neither category. Details concerning demographics and clinical information can be 

found in table 1. Individuals were categorized to be either (I) persistent, (II) partially in 

remittance or (III) fully remitted.  

 Persistence vs Remittance  

To define this longitudinal categorical status of participants, only the first and last 

measurement were considered in the NeuroIMAGE study. Individuals with a full diagnosis of 

ADHD at the first or second wave and at their last measurement were considered persisting. 

Individuals with a full diagnosis of ADHD at the first and/or second wave and were 

unaffected at the last available measurement were considered fully remitted. Individuals with 



a full diagnosis at the first or second wave and subthreshold ADHD or unaffected at the last 

measurement were considered (at least) in partial remission. Individuals only affected at the 

last measurement were considered ‘late onset’ and excluded (N=48). Details on the diagnostic 

tools, imaging and genetics processing and cohorts can be found in the original paper by van 

Rhein et al., 2015.  

Genotyping and quality control  

DNA was extracted from whole blood or saliva. Genotyping was done using the Illumine 

PsyChip, in two batches (N=192 and N=798). Plink 1.9 was used to merge the batches 

((https://www.cog-genomics.org/plink/1.9/) (Purcell, 2007; Yang et al., 2015). During quality 

control, mismatching SNPs between batches, sex chromosomes, insertions, deletions, other 

non-SNP variation; and ambiguous SNPs were excluded. RICOPILI pipeline was used to 

further process the data (https://sites.google.com/a/broadinstitute.org/ricopili). SNP exclusion 

criteria were set at call rate < 0 .05, Hardy-Weinberg equilibrium P,10-6, and minor allele 

frequency <0.01. Moreover, SNPs with a missing-rate difference > 0.01between batches were 

also excluded. Exclusion criteria for individuals were call rate < 0.05, identity by descent with 

another participant (quasi-random exclusion for each pair, with priority to more complete 

phenotyping data), inconsistent sex between self-report and GWAS data. 18 individuals were 

excluded in RICOPILI after principal component analysis (PCA) due to deviation from the 

main sample cluster (defined by 4 principal components, greater than 3 standard deviations). 

No association was found between the principal components and genotyping batch. A batch-

effect of P,0.0008 resulted in the exclusion of 48 SNPs (P-threshold determined based on QQ-

plot diagonal of the genome-wide batch effects). After quality control, 283,843 SNPs and 952 

individuals were included in the re-run of the PCA analysis, required for subsequent analyses. 

Imputation was performed in accordance with the RICOPILI pipeline using minimac3 and 

Phase3 of the European 1000 genomes as reference. The PRS analysis were run with the strict 

best-guess output from RICOPILI (INFO score>0.1, MAF>0.005,2,840,886 SNPs).  

 

 

 

 

 



Table 1. Demographic and clinical information of the NeuroIMAGE cohort per wave  

  NeuroIMAGE DELTA update 

  
Persisten
t 

Partly 
remitted* Remitted Persistent 

Partly 
Remitted* Remitted 

N 297 (36%) 75 (9%) 30 (3.7%) 275 (34%) 101 (12,6%) 42 (5%) 

Age at first assessment (sd) 11.14 (2.83) 11.89 (2.68) 
11.47 
(2.54) 

11.29 
(2.86) 11.52 (2.91) 

11.19 
(2.65) 

Age at last assessment (sd) 17.79 (3.18) 19.07 (3.37) 
19.13 
(3.12) 

17.77 
(3.19) 18.91 (3.52) 

21.34 
(4.26) 

Male/Female 225 / 72 48 / 27 21 / 9 209/ 66 66 / 35 30 / 12 

Nijmegen/Amsterdam 153 / 144 51 / 24 19 / 11 131 / 144 77 / 24 31 / 11 

Symptom reduction: IA 
(sd) 1.27 (2.16) 4.93 (2.3) 6.33 (2.53) 1.25 (2.11) 4.54 (2.51) 6.15 (2.39) 

Symptom reduction: HI 
(sd) 2.68 (2.45) 4.72 (2.41) 5.33 (2.53) 2.57 (2.51) 4.48 (2.55) 5.88 (2.10) 

*Corresponding to the variables in the regression models, Partly Remitted N is "at least" partly remitted: also 
includes fully remitted N 

IA=inattention; HI=Hyperactivity and Impulsivity 

    

PIDS calculation  

The PIDS analysis consisted of three different stages. (1) First,  PRSice was run to 

determine optimal P-thresholds and select the model using IDP’s (Choi et al., 2020; Euesden 

et al., 2016). PIDS’s able to successfully predict their respective imaging phenotype were 

optimized. As we sought to validate the genomic signature of the PIDS, establishing a 

significant association between the PIDS and IDP in an independent sample verifies the 

predictive quality of the genetic score.  (2) Secondly, the optimal model for each PIDS was 

used to predict ADHD diagnosis in the same dataset using generalized logistic mixed linear 

models to account for family structure. In addition, an explorative analysis was run to explore 

the consistency of associations between PIDS and ADHD during the different waves of 

NeuroIMAGE. (3) Thirdly, further analyses were performed using PIDs in trend association 

with ADHD diagnosis. General linear mixed effects models were constructed to regress the 

PIDs on persistence/remittance of ADHD symptoms in the NeuroIMAGE and DELTA 

dataset, accounting for family structure. ADHD-relevant PIDS were run on persistence and 

remittance in the longitudinal NeuroIMAGE cohort and consequent follow-up DELTA wave. 

An overview of all different steps performed in this project can be seen in figure 1.  



Step 1: Model training and PIDS selection: The UKB summary statistics were used as the 

‘base data’ PRSice input with standard clumping parameters (P=1, R2 <0.1 and 250kb 

interval) and P-value thresholds (P-value thresholds between P=10ˆ-4 and P=0.5 at P=5*10ˆ-5 

intervals). We chose to run this broad selection of P-thresholds to thoroughly test the 

performance of the PIDS and see if the known polygenic nature of the IDPs was reflected 

across P-thresholds. In the resulting bar plots of variance explained across P-thresholds, we 

expect to see a broad range of multiple P-thresholds to perform well, including higher P-

thresholds, reflecting the polygenicity of the IDPs. P-threshold optimization was based on the 

best high-resolution prediction of each PIDS on their respective IDP counterpart in the 

NeuroIMAGE sample before the update of DELTA. Because our aim was to establish 

whether an association exists between the PIDS and their respective IDP, for the PIDS 

selection, a lenient significance threshold of P,0.05 was chosen for PIDs selection in this 

training phase. 

Step 2: Exploratory associations with ADHD. PIDS that passed the training stage at 

P<0.05 were entered in logistic mixed models run in R 3.6.1, with family as a random factor, 

ADHD diagnosis as dependent variable, PRS and as covariates, genotype batch, site and sex 

and four principal components. Afterwards, an exploratory analysis was performed in which 

the PIDS were regressed on ADHD and ADHD-subthreshold at waves one, two and three to 

ascertain whether any effects of the PIDS were consistent across time. Mixed logistic 

regressions were run for each PIDS found to be in association with ADHD following the 

exploratory analysis. For step 3, PIDS associated with ADHD were regressed on Persistence-

Remittance, Partial, Remittance, and Remittance-Category from the NeuroIMAGE dataset as 

outcome variables. Four regression models were constructed for DIVA DELTA diagnosis 

(DSM5), DELTA diagnosis von Rhein et al. (DSM4), Persistence-Remittance-updated, and 

Partial Remittance-updated from the DELTA dataset (N=60).   

 

Power analysis 

The sample included twin pairs and their siblings, meaning observations weren’t 

independent. Therefore, the effective sample size was calculated to perform the power 

analysis (NE = (N*M) / (1 + ICC*(M-1)) in which N = the number of families, M= the 

number of individuals in a family and ICC = the (average) phenotypic correlation within a 

family. The power analysis itself was performed using the DubridgeLab library 



(https://rdrr.io/github/DudbridgeLab/avengeme/src/R/sampleSizeForGeneScore.R) based on 

the Power and Predictive Accuracy of Polygenic Risk Scores paper (Dudbridge, 2013). The 

PIDS were tested against ADHD to test for a common genetic basis with the Imaging Derived 

Phenotypes.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Figure 1.  

Flowchart of data quality control and analysis  

              

The project consisted of a data preprocessing stage and three stages of analysis. The software used for 
the calculation of the Polygenic Imaging Derived Scores (PIDS) is Prsice2. 

 

 

 

 



Results  

 

Model optimization and calculation of PIDS   

Descriptive information on each PIDS such as variance explained (R2), optimal P-

threshold and SNP number can be found in the supplements (supplementary tables 1, 2 & 3).  

72 out of 94 PIDSs were associated with their respective IDP (p < 0.05) in the target sample.  

The 72 PIDS were separated into 4 subgroups of left hemisphere cortical PIDS (1), right 

hemisphere cortical PIDS (2), left hemisphere Subcortical PIDS (3), and right hemisphere 

Subcortical PIDS (4). The genetic effect size (R2), P-threshold, and heritability (h2) for the 

PIDS in each subgroup are displayed in circosplots (figure 2-5).     

 Amongst PIDS scoring highest in genetic effect size were global measures cerebellum 

white matter, cerebellum cortex, and cerebral white matter, consistently found across 

hemispheres. Amongst the PIDS with the lowest variance explained > 1%, were multiple 

gyral volumes, superior and middle temporal volume, isthmus cingulate gyrus and the global 

measure cortex volume, consistently found across hemispheres (supplementary table 3). The 

Subcortical and Cortical volumes used for the PIDS differ significantly in heritability. 

Heritability was found to be a good predictor for the genetic effect size of the PIDS (F (1,70) 

= 11.77, p = 0.001) with an R2 of 0.132. Moreover, with the greater heritability found in the 

Subcortical volumes used for the PIDS we would expect the Subcortical PIDS to outperform 

the cortical PIDS. However, this was not the case with no significant differences found 

between Cortical and Subcortical PIDS in genetic effect size, P-threshold, or number of 

independent markers. The PIDS are consistent in their performance across the four different 

subgroups. Interestingly, small correlations (-0.4 < h2 < 0.4) were found for genetic effect 

size, P-threshold, and number of SNPS between hemispheres for both cortical and subcortical 

PIDS. A sizeable correlation (r = 0.77) was found between the cortical hemispheres for 

heritability. 22 PIDS out of the original 94 that were excluded from further analyses after 

stage 1. This exclusion could potentially have influenced the correlation values we observe in 

the analysis.  

Most PIDS (52 out of 72) had an optimal P-threshold between 0.001 and 1, reliably 

reflecting the polygenic nature of IDP’s. However, the 10 PIDSs with the lowest P-thresholds 

ranged between 0.00005 and 0.00000005, conflicting with the expected polygenicity. The 

PRSice generated bar plots further illustrate these findings (supplementary figure 2.1-2.80).  



The PIDS amongst the lowest ranging P-thresholds produce bar plots with inconsistent R-

squared values across different P-thresholds. This may indicate overfitting of these specific 

PIDS.  The bar plots for 28 PIDSs were of note due to consistent performance across most p-

thresholds. Amongst these 28 PIDS were the global measures: cerebellum cortex, cerebellum 

white matter, cerebral white matter, and cortex volume, consistently found across both 

hemispheres.  PIDS with consistent performance across a range of p-thresholds also 

performed optimally with inclusive P-thresholds (0.01-1) (supplementary table and figure’s 

3.1-3.80).   

 

 

 

 

 

 

 

 

 

 

 

 



 

Figure 2.  Circosplot of left hemisphere of the Cortical brain volume PIDS. Figure 2.1 circosplot of 
heritability, Figure 2.2 circosplot of variance explained, and Figure 2.3 circosplot of P-thresholds.  



 

Figure 3. Circosplot of right hemisphere of the Cortical brain volume PIDS. Figure 3.1 circosplot of 
heritability, Figure 3.2 circosplot of variance explained, and Figure 3.3 circosplot of P-thresholds.  

 



 

   

 

Figure 4. Circosplot of left hemisphere of the Subcortical brain volume PIDS. Figure 4.1 circosplot 
of heritability, Figure 4.2 circosplot of variance explained, and Figure 4.3 circosplot of P-thresholds.  



 

 

 

 

Figure 5. Circosplot of right hemisphere of the Subcortical brain volume PIDS. Figure 5.1 
circosplot of heritability, Figure 5.2 circosplot of variance  explained, and Figure 5.3 circosplot of P-
thresholds.  



 

PIDS and ADHD status  

 

In stage two of the project, PIDS were used to predict ADHD diagnosis and 

subthreshold ADHD using linear mixed modeling. Results indicated six out of the 72 PRS to 

be nominally associated with ADHD diagnosis of which none remained after FDR correction 

(table 2) (p ¸0.05). These 6 PIDS were approximately normally distributed (supplementary 

figure 1). To account for the large number of tests across 94 IDP’s, we considered a false-

discovery rate (FDR) of 0.05. After FDR correction for the 72 performed tests, no significant 

association remained. No interaction was found with sex, site, or batch for any of the PIDS.  

The six PIDS were used to predict ADHD persistence using linear regression models. No 

significant relationship was found between any of the six IDP PRS and ADHD persistence 

(all P > 0.4). Nor was any significant relationship found for partial remission or remission 

category. The six PIDS were also used to predict determinants of long-term ADHD (DELTA). 

No significant effects were found for DIVA interview in DELTA diagnosis based on the 

DSM5, diagnosis based on DSM4, updated persistence and updated partial remittance.  

 

 

 

Table 2. The five MRI traits showing promise in predicting ADHD diagnosis.  

Rh = right hemisphere lh = left hemisphere  

 

 

 

 

 

Phenotype P threshold Coefficient Standard error P SNPs FDR corrected P 

rh isthmuscingulate volume 0.0233 0.265 1587.95 0.0459 36501 0.612 
rh postcentral_volume 0.0221 -0.391 1542.76 0.0182 36051 0.512 
Lh_Lateroccipital_volume 0.05 0.255 0.1852 0.0268 69543 0.545 
Lh_posterior_Cingulate_volume 0.01   -2.148 1.0877 0.0483 17681 0.612 
Lh_Ventral_DC 0.001 0.812 0.3712 0.0287 3090 0.524 
Rh_Ventral_DC 0.001 0.949 0.3504 0.0068 3096 0.495 



 

 

Power analysis  

 Polygenic scores were constructed associating IDPS with ADHD based on a panel of 

100,000 independent markers with a discovery sample of 30,000 and an effective target 

sample of 964. Assuming prevalence of 4%, a SNP-h2 of 22% and a genetic covariance of 6% 

we achieve 20% power. Due to the small genetic covariance between the IDPS and ADHD a 

larger sample size is required to achieve acceptable power. However, when increasing both 

target and discovery sample sizes, leaps in power can be achieved. When increasing the 

discovery sample to 50,000 and target sample to 3,000, 0.80 power would be the result (figure 

6). The sample sizes required for this amount of power are an order of magnitude higher than 

currently available but are achievable in future research. The UKB sample is projected to 

increase to a GWAS imaging sample of 100,000 participants. Moreover, with large increases 

in the GWAS discovery sample, larger SNP-h2 closer to the narrow-sense heritability can be 

achieved. This increase in genetic effect size was not considered for the estimated increase in 

power, leaving this estimation to be somewhat conservative.  

 

 

 

 

 

 



 

Figure 6. Powerplot scaling with sample size for the PIDS sample. Starting point of the plot shows the PIDS 
achieved 0.96 power with a discovery sample of ≈ 30.000 and a target sample of ≈ 1000. However, a 
satisfactory 0.80 power can also be achieved with a discovery sample of 30000 and a target sample of 200 
For each sample size the P-threshold is applied that leads to the highest power.  

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

Figure 7. Powerplot scaling with sample size for the clinical ADHD sample. Starting point of the plot shows   
the achieved 0.20 power with a discovery sample of ≈ 30.000 and a target sample of ≈ 1000. A satisfactory 
0.80 power can be achieved with a discovery sample of 50000 and a target sample of 3000. For each sample 
size the P-threshold is applied that leads to the highest power. 



 

Discussion  

 

 This study investigated the relationship between the combined effect of imaging 

derived phenotype associated SNPs and ADHD-related traits by using polygenic imaging 

derived scores or PIDS. Where previous work tended to use clinically derived PRS to predict 

neuroimaging traits, we use IDPs to create PIDS and predict ADHD-related traits. We showed 

PIDS can be successfully derived with the majority robustly reflecting the genetically driven 

inter-individual differences in brain structure. However, in the ADHD sample, the PIDS did 

not describe inter-individual differences in related clinical variables. This lack of performance 

is in part due to insufficient power to detect the small sub portion of genetic variation shared 

between ADHD and the IDPs.         

 The results indicate that the majority of PIDS were predictive of their respective IDP 

in an independent target sample. The polygenic nature of the IDPs was reflected through 

consistent performance of most cortical and sub-cortical PIDS across a wide variety of P-

value thresholds (supplementary figures 2.1-1.80 & 3.1-2.80). PRSice-generated bar plots and 

high-resolution plots reflect most PIDS to be stable predictors of out-of-sample cortical and 

subcortical brain structure despite the large age difference in the base (UKB) and target 

(NeuroIMAGE) datasets. This large degree of predictive PIDS indicates GWAS data such as 

the UKB can be successfully used to predict inter-individual variance. Moreover, the most 

predictive PIDS reached variance explained ranges upwards of 3% - 5.7%. A trend of 

association was found between the right hemisphere postcentral volume, left hemisphere 

thalamus, left hemisphere putamen, and both hemispheres of the isthmus cingulate volume 

PIDS and ADHD. The variance in the ADHD phenotype explained by the PIDS did not reach 

beyond 1%. None of these associations survived FDR correction. No associations were found 

between PIDS and ADHD persistence-remittance variables. In short, we did not find any 

significant association between PIDS and ADHD.       

 The SNP-heritability of cortical volumes being greater than subcortical volumes was 

expected to result in greater performance of the cortical PIDS in genetic effect size, 

significance, and power. Interestingly, no differences were found in genetic effect size, nor 

significance. Moreover, low correlations were found between hemispheres for genetic effect 

size, heritability, and p-thresholds. However, Cortical PIDS did achieve greater power than 

Subcortical PIDS.           



 The results of this project should be interpreted considering some limitations. First, 

The effects sizes for brain structure in association with ADHD are generally very small 

(Hoogman et al al., 2019). Due to the small genetic covariance between ADHD and the PIDS 

our target sample was insufficiently large to meaningfully inter-individual differences in 

related clinical variables. We reached 0.20 power with the current sample of 30,000 

participants in the GWAS dataset and 744 in the target sample. Clinical sample size remains a 

big issue in neuroimaging research. However, we project with an increase to 50.000 

participants in the UKB GWAS and 3000 in the clinical NeuroIMAGE target sample we will 

achieve 0.80 power. Interesting patterns/trends emerged from the analysis, with this increase 

in target and base datasets these should be pursued further.      

 Second, genetic effects on brain measures are inherently correlated (fleary et al, 2021; 

Hofer et al., 2020; Smith et al., 2021). with global measures being the most heritable. We did 

not use global brain measures as covariates in calculating the PIDS. The UKB GWAS has 

already been corrected for total head volume accounting for a degree of the correlation 

between the global brain measures and our PIDS. If we were to remove variation by 

accounting for global brain measures our ability to quantify the SNP-effects associated with 

IDPs would decrease substantially.        

  PIDS may have use for studying psychiatric disorders in the future, as a basis 

for better understanding underlying biology in addition to heterogeneous diagnosis (Whalley 

et al., 2012) The application of PIDS extend beyond single disorders into transdiagnostic 

vulnerability, researching psychiatric disorders starting from the brain. Focusing on imaging 

derived traits rather than syndromes and using the resultant knowledge and statistics as a 

modelling basis for bottom-up clinical research, represents a framework shift for intermediate 

phenotype use in psychiatric genetics. Disorders that are phenotypically dissimilar may still 

share common neural vulnerability (Beauchaine & Constantino, 2017). Hence, we chose to 

start with the definition of this neural vulnerability and asses the genetic component to this 

trait rather than that of a disorder. These transdiagnostic and data-driven applications of 

intermediate phenotypes can be useful if we are to evaluate neural vulnerabilities and their 

interactions with or role in genetic risk at the root of behavior.    

 This project presents a new approach to characterize the genetic underpinnings of 

psychiatric traits by quantifying the common variants involved in relevant brain variation and 

using them to profile individual patients.  GWAS data can be used successfully to explain 

Individual variance. However, this same success has yet to be achieved for variance in 

ADHD. Currently, the implementation PRS is hindered by weaker application to non-



European ancestry and limited translation of percentile loadings to lifetime risk. With 

improved diverse ancestry databases and a combining of environmental and clinical risk 

factors with the PRS, polygenic scores based on imaging derived phenotypes could serve as a 

more objective tool for investigating underlying neurobiology and genetic architecture 

complementary to syndromic classification. Ultimately, PIDS may have potential value when 

included in prediction and classification models. Profiling individuals in terms of genetic 

influences on different areas of the brain could for example be useful when describing 

heterogeneity in etiological factors, prognosis, or treatment response. These findings 

encourage future studies to use PIDS to translate fundamental neuroimaging genetics to the 

field of psychiatry and beyond.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Acknowledgements: 

We are appreciative to UK Biobank for making the data available and to all UK Biobank 

participants who donated their time and made this resource possible. The BIG40 Open Data 

Server is provided by the Wellcome Centre for integrative Neuroimaging, which is supported 

by center funding from the Wellcome Trust (203139/Z/16/Z). Compute resources were 

provided by the Oxford Biomedical Research Computing (BMRC) facility (a joint 

development between Oxford’s Wellcome Centre for Human genetics and Big Data Institute, 

supported by Health Data Research UK and the NIHR Oxford Biomedical Research Centre).  

Furthermore, we would like to thank all participants and families who participated in the 

IMAGE, NeuroIMAGE, and DELTA studies. The DELTA project was funded by a 

Radboudumc Hypatia Fellowship (E. S.). NeuroIMAGE was supported by a Dutch Research 

Council (NWO) Large Investment Grant (no. 1750102007010) and NWO Brain & Cognition 

an Integrative Approach Grant (no. 433–09-242 to J.K.B.), and grants from Radboud 

University Medical Center, University Medical Center Groningen and Accare, and VU 

University Amsterdam. B.F. has received educational speaking fees from Medice. J.K.B. has 

been in the past 3 years a consultant to / member of advisory board of / and/or speaker for 

Takeda/Shire, Roche, Medice, Angelini, Janssen, and Servier. He is not an employee of any 

of these companies, and not a stock shareholder of any of these companies. All other authors 

report no biomedical financial interests or potential conflicts of interest.   

 

 

 

 

 

 

 

 

 

 

 



Literature  

Beauchaine, T. P., & Constantino, J. N. (2017). Redefining the endophenotype concept to 
accommodate transdiagnostic vulnerabilities and etiological complexity. 11, 769–780. 

Bigos, K. L., & Weinberger, D. R. (2010). Imaging genetics-days of future past. NeuroImage, 
53(3), 804–809. https://doi.org/10.1016/j.neuroimage.2010.01.035 

Bonvicini, C., Faraone, S. V., & Scassellati, C. (2016). Attention-deficit hyperactivity 
disorder in adults: A systematic review and meta-analysis of genetic, pharmacogenetic 
and biochemical studies. Molecular Psychiatry, 21(7), 872–884. 
https://doi.org/10.1038/mp.2016.74 

Bralten, J., Greven, C. U., Franke, B., Mennes, M., Zwiers, M. P., Rommelse, N. N. J., 
Hartman, C., van der Meer, D., O’Dwyer, L., Oosterlaan, J., Hoekstra, P. J., Heslenfeld, 
D., Arias-Vasquez, A., & Buitelaar, J. K. (2016). Voxel-based morphometry analysis 
reveals frontal brain differences in participants with ADHD and their unaffected siblings. 
Journal of Psychiatry and Neuroscience, 41(4), 272–279. 
https://doi.org/10.1503/jpn.140377 

Choi, S. W., Mak, T. S. H., & O’Reilly, P. F. (2020). Tutorial: a guide to performing 
polygenic risk score analyses. Nature Protocols, 15(9), 2759–2772. 
https://doi.org/10.1038/s41596-020-0353-1 

Choi, S. W., & Reilly, P. F. O. (2019). PRSice-2�: Polygenic Risk Score software for 
biobank-scale data. November 2018, 1–6. https://doi.org/10.1093/gigascience/giz082 

Ck, C., Sitarenios, G., Jd, P., Jn, E., Parent, C., Conners, C. K., Sitarenios, G., Parker, J. D. 
A., & Epstein, J. N. (1998). The Revised Conners ’ Parent Rating Scale ( CPRS-R ): 
Factor Structure , Reliability , and Criterion Validity. April 2014. 
https://doi.org/10.1023/A 

Conners, C. K., Wells, K. C., Parker, J. D. A., Sitarenios, G., John, M., & Powell, J. W. 
(1998). A New Self-Report Scale for Assessment of Adolescent Psychopathology�: A 
New Self-Report Scale for Assessment of Adolescent Psychopathology�: Factor 
Structure , Reliability , Validity , and Diagnostic Sensitivity. January. 
https://doi.org/10.1023/A 

Demontis, D., Walters, G. B., Athanasiadis, G., Walters, R., Gudmundsson, O. O., 
Magnusson, S. H., & Baldursson, G. (2022). Genome-wide analyses of ADHD identify 
27 risk loci , refine the genetic architecture and implicate several cognitive domains. 1–
40. 

Desikan, R. S., Ségonne, F., Fischl, B., Quinn, B. T., Dickerson, B. C., Blacker, D., Buckner, 
R. L., Dale, A. M., Maguire, R. P., Hyman, B. T., Albert, M. S., & Killiany, R. J. (2006). 
An automated labeling system for subdividing the human cerebral cortex on MRI scans 
into gyral based regions of interest. NeuroImage, 31(3), 968–980. 
https://doi.org/10.1016/j.neuroimage.2006.01.021 

Destrieux, C., Fischl, B., Dale, A., & Halgren, E. (2010). Automatic parcellation of human 
cortical gyri and sulci using standard anatomical nomenclature. NeuroImage, 53(1), 1–
15. https://doi.org/10.1016/j.neuroimage.2010.06.010 

Dudbridge, F. (2013). Power and Predictive Accuracy of Polygenic Risk Scores. 9(3). 
https://doi.org/10.1371/journal.pgen.1003348 



Euesden, J., Lewis, C. M., & Reilly, P. F. O. (2016). PRSice�: Polygenic Risk Score 
software. 1–24. 

fleary et al. (2021). 乳鼠心肌提取 HHS Public Access. Physiology & Behavior, 176(3), 139–
148. https://doi.org/10.1126/science.aay6690.The 

Hofer, E., Roshchupkin, G. V., Adams, H. H. H., Knol, M. J., Lin, H., Li, S., Zare, H., 
Ahmad, S., Armstrong, N. J., Satizabal, C. L., Bernard, M., Bis, J. C., Gillespie, N. A., 
Luciano, M., Mishra, A., Scholz, M., Teumer, A., Xia, R., Jian, X., … Zhou, J. (2020). 
Genetic correlations and genome-wide associations of cortical structure in general 
population samples of 22,824 adults. Nature Communications, 11(1). 
https://doi.org/10.1038/s41467-020-18367-y 

Krain, A. L., & Castellanos, F. X. (2006). Brain development and ADHD. Clinical 
Psychology Review, 26(4), 433–444. https://doi.org/10.1016/j.cpr.2006.01.005 

Kuntsi, J., Neale, B. M., Chen, W., Faraone, S. V, & Asherson, P. (2006). Behavioral and 
Brain Functions The IMAGE project�: methodological issues for the molecular genetic 
analysis of ADHD. 13, 1–13. https://doi.org/10.1186/1744-9081-2-27 

Liu, S., Smit, D. J. A., Abdellaoui, A., Wingen, G. A. Van, & Verweij, K. J. H. (2021). Brain 
structure and function show distinct relations with genetic. 

Medland, S. E., Shumskaya, E., Jahanshad, N., Zeeuw, P. De, Szekely, E., Sudre, G., Wolfers, 
T., Onnink, A. M. H., Dammers, J. T., Mostert, J. C., Vives-gilabert, Y., Kohls, G., 
Oberwelland, E., Seitz, J., Schulte-rüther, M., Ambrosino, S., Doyle, A. E., Høvik, M. 
F., Dramsdahl, M., … Franke, B. (2017). Subcortical brain volume differences in 
participants with attention deficit hyperactivity disorder in children and adults�: a 
cross-sectional mega-analysis. 4(April), 310–319. https://doi.org/10.1016/S2215-
0366(17)30049-4 

Müller, U. C., Asherson, P., Banaschewski, T., Buitelaar, J. K., Ebstein, R. P., & Eisenberg, J. 
(2011). The impact of study design and diagnostic approach in a large multi-centre 
ADHD study . Part 1�: ADHD symptom patterns The impact of study design and 
diagnostic approach in a large multi-centre ADHD study . Part 1�: ADHD symptom 
patterns. 54(April). 

Parker, J. D. A., & Sitarenios, G. (1999). Self-ratings of ADHD symptoms in adults I�: 
Factor structure and normative data. October. 
https://doi.org/10.1177/108705479900300303 

Romme, I. A. C., de Reus, M. A., Ophoff, R. A., Kahn, R. S., & van den Heuvel, M. P. 
(2017). Connectome Disconnectivity and Cortical Gene Expression in Patients With 
Schizophrenia. Biological Psychiatry, 81(6), 495–502. 
https://doi.org/10.1016/j.biopsych.2016.07.012 

Ronald, A., de Bode, N., & Polderman, T. J. C. (2021). Systematic Review: How the 
Attention-Deficit/Hyperactivity Disorder Polygenic Risk Score Adds to Our 
Understanding of ADHD and Associated Traits. Journal of the American Academy of 
Child and Adolescent Psychiatry. https://doi.org/10.1016/j.jaac.2021.01.019 

Smith, S. M., Douaud, G., Chen, W., Hanayik, T., Alfaro-Almagro, F., Sharp, K., & Elliott, L. 
T. (2021). An expanded set of genome-wide association studies of brain imaging 
phenotypes in UK Biobank. Nature Neuroscience, 24(MaY). 
https://doi.org/10.1038/s41593-021-00826-4 



Watanabe, K., Stringer, S., Frei, O., Umićević Mirkov, M., de Leeuw, C., Polderman, T. J. C., 
van der Sluis, S., Andreassen, O. A., Neale, B. M., & Posthuma, D. (2019). A global 
overview of pleiotropy and genetic architecture in complex traits. Nature Genetics, 
51(9), 1339–1348. https://doi.org/10.1038/s41588-019-0481-0 

Weinberger, R. (2011). NIH Public Access. 79(1), 9–22. 
https://doi.org/10.1016/j.biopsycho.2008.03.015.Neurobiology 

Whalley, H. C., Papmeyer, M., Sprooten, E., Romaniuk, L., Blackwood, D. H., Glahn, D. C., 
Hall, J., Lawrie, S. M., Sussmann, J. E., & McIntosh, A. M. (2012). The influence of 
polygenic risk for bipolar disorder on neural activation assessed using fMRI. 
Translational Psychiatry, 2(June), 1–8. https://doi.org/10.1038/tp.2012.60 

Yang, J., Finucane, H. K., Gusev, A., Ripke, S., Genovese, G., Loh, P., Bhatia, G., Lindstro, 
S., Do, R., Zaitlen, N., Pasaniuc, B., Belbin, G., Kenny, E. E., Schierup, M. H., Purcell, 
S., Chasman, D., Neale, B., & Goddard, M. (2015). Modeling Linkage Disequilibrium 
Increases Accuracy of Polygenic Risk Scores. 576–592. 
https://doi.org/10.1016/j.ajhg.2015.09.001 

Yang, J., Yan, B., Zhao, B., Fan, Y., He, X., Yang, L., Ma, Q., Zheng, J., Wang, W., Bai, L., 
Zhu, F., & Ma, X. (2020). Assessing the Causal Effects of Human Serum Metabolites on 
5 Major Psychiatric Disorders. Schizophrenia Bulletin, 1–10. 
https://doi.org/10.1093/schbul/sbz138 

 

 

 

 

 

 

 

 


