The transition zone in Hirschsprung’s bowel contains abnormal hybrid ganglia with characteristics of extrinsic nerves.

Megan Smith¹,*, Sumita Chhabra¹,² *, Rajeev Shukla³, Simon Kenny², Sarah Almond², David Edgar¹, Bettina Wilm¹

¹ Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
² Department of Paediatric Surgery, Alder Hey Children’s Hospital, Liverpool, UK
³ Department of Histopathology, Alder Hey Children’s Hospital, Liverpool, UK

(*) both authors contributed equally to this work

Corresponding author:
b.wilm@liverpool.ac.uk

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Abstract

The aganglionic bowel in short segment Hirschsprung’s disease is characterised both by the absence of enteric ganglia and the presence of extrinsic thickened nerve bundles (TNBs). The relationship between the TNBs and the loss of enteric ganglia is unknown. Previous studies have described decreasing numbers of ganglia with increasing density of TNBs within the transition zone (TZ) between ganglionic and aganglionic gut, and there is some evidence of spatial contact between them in this region. To determine the cellular interactions involved, we have analysed the expression of perineurial markers of TNBs and enteric ganglionic markers for both neural cells and their ensheathing telocytes across four cranio-caudal segments of the TZ. We show that in the TZ, enteric ganglia are abnormal, being surrounded by perineurium cells characteristic of TNBs. Furthermore, short processes of ganglionic neurons extend caudally towards the aganglionic region, where telocytes in the TNB are located between the perineurium and nerve fibres into which they project telopodes. Thus, ENS ganglia within the TZ have abnormal structural characteristics, the cellular relationships of which are shared by the TNBs. These findings will help towards elucidation of the cellular mechanisms involved in the aetiology of Hirschsprung’s disease.

Key words: 3-10 key words

Hirschsprung’s disease, enteric nervous system, ganglia, transition zone, extrinsic nerves, telocytes, p75, CD34

Introduction

Hirschsprung’s disease (HSCR) is a gut motility disorder which occurs in 1 in 5000 births and is four-fold more prevalent in males than females [1-3]. It is characterised by the absence of enteric nervous system (ENS) ganglia due to the failure of ENS progenitor cells to entirely colonise and/or differentiate within the bowel during prenatal development [1]. Short segment HSCR (SS-HSCR) is the most common presentation of HSCR, with 80% of HSCR cases having aganglionosis restricted to the rectosigmoid colon. Less frequently, greater lengths of
the bowel can be affected, with up to 10% of cases being total colonic HSCR and 1% being total intestinal HSCR.

The aganglionic region of SS-HSCR bowel contains abnormal thickened extrinsic nerves consisting of axons from pelvic ganglia and glial cells [4]. While hypertrophic nerve fibres typically have diameters larger than 40µm [5], nerves with diameters up to 150µm have been described in HSCR [6,7]. However, it is unknown why these thickened nerve bundles (TNBs) form in SS-HSCR [8,9], and whether the lack of ENS in the distal bowel of SS-HSCR is a cause, a consequence, or is unrelated to the presence of TNBs.

Extrinsic nerves are ensheathed by a perineurium, the cells of which express glucose transporter 1 (GLUT1) [10]. The TNBs observed in SS-HSCR have been shown to be surrounded by a GLUT1-positive perineurium; these perineurial cells also express the low affinity nerve growth factor receptor (p75) [6,11,12]. In contrast, although the nerve fibres within the TNBs are also positive for p75 which is characteristic of the non-neuronal cells of the ENS derived from the neural crest [13], they do not express GLUT1. Thus, GLUT1 is not expressed by cells of the ENS in the healthy bowel [6,10,14], and only very small extrinsic nerves with a GLUT1-positive perineurium are found in the most distal rectum of the healthy bowel [16].

ENS submucosal and myenteric ganglia in healthy intestine do not have a perineurium, but instead are ensheathed by a layer of interstitial cells called telocytes which form a cellular network [17], together with telopodes that project into the ganglia [18]. The key marker expressed by telocytes bounding ENS ganglia is CD34, a transmembrane phosphoglycoprotein also expressed in haematopoietic stem cells, while GLUT1 or p75 are absent in these cells [19]. The role of telocytes in the gut is not fully understood, but it has been proposed that they provide mechanical stability, regulate extracellular matrix organisation [17,20] and may be mesenchymal precursors of interstitial cells of Cajal (ICCs) during cell turnover [18,21]. Interestingly, extrinsic nerves are surrounded by telocytes in the endo- and perineurium [22]. Despite the potentially important functions of telocytes in the cellular organisation of the ENS, it is unknown how telocytes are arranged in the aganglionic region of HSCR.
The transition zone (TZ) between the normal ganglionic and the aganglionic regions of the bowel in SS-HSCR is characterised by a gradual loss of ganglia cranio-caudally from the ganglionic bowel, and conversely by increasing numbers of TNB caudo-cranially [10]. Thus, there is a segment within the TZ where both TNB and ENS ganglia co-exist. The extent of the TZ can vary between children with SS-HSCR with an inverse relationship between extent of aganglionosis and the length of the TZ, whereby in patients with shorter aganglionic region the TZ has a longer length [10,23]. Additionally, smaller GLUT1-positive nerve fibres (with a diameter < 40µm) are found throughout the TZ [10]. Taken together, these observations prompt the question whether there may be direct cellular contacts and interactions between ENS ganglia and extrinsic nerves within the TZ. The characterization of these interactions may help in the elucidation of the relationship between ENS and TNB relevant to the pathology of HSCR.

The histopathological characteristics applied in clinical practice to distinguish between the TZ and the normally innervated ganglionic region [24], include partial circumferential aganglionosis, hypertrophic submucosal nerves and myenteric hypoganglionosis [10], as determined by GLUT1, calretinin, haemotoxylin and eosin, and acetylcholinesterase staining. In HSCR bowel, the loss of ganglia cranio-caudally is accompanied by a loss of the expression of the ENS-specific neuronal marker calretinin [25] and of the pan-neuronal marker Hu [10]. However, a detailed analysis of the co-existence of the ENS ganglia and TNBs within the TZ is still missing. Further, it is unclear how the loss of ENS ganglia and an increase in TNB affects the telocytes and perineurial cells. To elucidate interactions between the intrinsic and extrinsic innervation within the TZ we performed immunostaining for key markers at four levels in the pull-through resected colon of children with SS-HSCR. Our analysis details the morphological and cellular relationships between ENS ganglia and the appearance of TNBs along the TZ. We also describe the distribution of telocytes in SS-HSCR, from ganglionic bowel through the TZ and in the TNBs of the aganglionic region.

Materials and Methods

Patient material:
This study was carried out under the Ethical approval obtained from the UK North West 3 Research Ethics Committee (Ref:10/H1002/77). Human colon tissue was collected from 4 children with short-segment Hirschsprung’s disease (2 male, 2 female) undergoing a pull-through procedure and were aged between 1-5 months at time of surgery. A series of 4 full thickness samples were taken from segments identified as I-IV, starting from the ganglionic region and through to the aganglionic region of the rectosigmoid pull-through resected specimen (Supplementary Figure 1). The pull-through resected bowel was divided into 4 segments. The regions were determined based on the appearance and morphology of the rectosigmoid pull-through resected tissue as well as the histopathology results of intraoperative biopsies.

Tissue processing and immunofluorescence:
The full thickness tissue specimens were fixed in 4% (w/v) paraformaldehyde for 4 hours before being placed in 30% (w/v) sucrose for cryoprotection and embedded in Shandon Cryomatrix. The specimens were then cryosectioned at 7µm and stored at -20°C.

The following primary antibodies were used for immunofluorescence on serial sections (Table 1): Hu, calretinin, GLUT1 and CD34. All antibodies were co-stained with p75. Secondary antibodies used were Alexafluor Goat anti-Mouse IgG1 594 (p75) and Alexafluor Goat anti-Rabbit 488 (all other markers) and counterstained with mounting medium with DAPI (Abcam). Images were taken on a Leica DM2500 upright microscope x40 objective with DFC350FX camera Leica Application Suite software (LAS) Version 4.2, or Zeiss LSM 800 Airyscan laser scanning confocal with x63 oil objective with integrated camera using Zeiss Zen software. All images were then merged and assembled in FIJI (ImageJ).

Table 1: Primary antibodies for immunofluorescence staining

<table>
<thead>
<tr>
<th>Antibody</th>
<th>Description</th>
<th>Location</th>
<th>Host/Details</th>
<th>Dilution</th>
<th>Supplier</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anti-p75 NGF</td>
<td>Enteric neural crest progenitor marker</td>
<td>Cell surface</td>
<td>Mouse IgG1 Monoclonal</td>
<td>1:500</td>
<td>Abcam (ab3125)</td>
</tr>
<tr>
<td>Antibody</td>
<td>Marker</td>
<td>Location</td>
<td>Antibody Type</td>
<td>Dilution</td>
<td>Vendor</td>
</tr>
<tr>
<td>----------</td>
<td>--------</td>
<td>----------</td>
<td>---------------</td>
<td>----------</td>
<td>--------</td>
</tr>
<tr>
<td>Anti-Calretinin</td>
<td>Enteric Neuronal marker (abundant)</td>
<td>Cytoplasm (ganglia)</td>
<td>Rabbit IgG1 Monoclonal</td>
<td>1:50</td>
<td>Abcam (ab702)</td>
</tr>
<tr>
<td>Anti-HuD + HuC</td>
<td>Human neuronal marker</td>
<td>Cell soma/cytoplasm</td>
<td>Rabbit Monoclonal</td>
<td>1:500</td>
<td>Abcam (ab184267)</td>
</tr>
<tr>
<td>Anti-glucose transporter 1 (GLUT1)</td>
<td>Expressed in nerve perineurium</td>
<td>Cell membrane</td>
<td>Rabbit IgG polyclonal</td>
<td>1:100</td>
<td>Abcam (ab15309)</td>
</tr>
<tr>
<td>Anti-CD34</td>
<td>Telocyte marker</td>
<td>Membrane</td>
<td>Recombinant Rabbit monoclonal</td>
<td>1:250</td>
<td>Abcam (ab81289)</td>
</tr>
<tr>
<td>Anti-Tubulin β3 (Tuj)</td>
<td>Neuronal microtubule marker</td>
<td>Cytoskeleton</td>
<td>Mouse IgG2a monoclonal</td>
<td>1:500</td>
<td>Biolegend (801201)</td>
</tr>
</tbody>
</table>

Results

p75 and GLUT1 co-expression in cells surrounding nerve structures in the Transition Zone.

In order to gain insight into the appearance of ENS and extrinsic TNBs across the TZ, we performed immunofluorescence for p75 which is expressed by both cells of the ENS and perineurial cells of the TNB [6,12], and the perineurial marker GLUT1. We detected p75-positive cells within the ganglia in the myenteric and submucosal plexus (Figure 1a, b) in the most proximal, ‘normoganglionic’ segment (segment I). Only weak GLUT1 staining was found in the ganglia in this segment (Fig. 1b). Progressing distally, in segment II we also detected P75-expressing cells throughout the ganglia. In contrast to the ganglia in segment I, strong and distinct GLUT1 expression was seen in a ring-like structure surrounding the submucosal
ganglia (Figure 1c); and a small number of GLUT1-positive cells were also apparent at the periphery of the myenteric ganglia in this segment (Fig. 1d). In segments III and IV, p75-positive neural structures were bounded by a perineurium which strongly stained for both GLUT1 and p75 (Fig. 1e-h). Higher powered confocal microscopy revealed that the cells co-expressing p75 and GLUT1 intimately surrounded the tightly packed neuronal structures in segments III and IV (Figure 2a, b). Due to their size and distinctive p75 staining these could be identified as TNBs.

By combining immunofluorescence staining for the pan-neuronal marker Tuj with p75, we confirmed that the structures in segment III of the TZ, and the extrinsic nerve bundles in aganglionic segment IV, contained nerve fibres and were not ganglia (Supplementary Figure 2). Our analysis also revealed that the ring-like strong expression of p75 throughout segments II-IV was not observed for Tuj.

These observations demonstrate the spatial context of the changes to the ENS along the TZ of SS-HSCR colon by showing that ENS ganglia were lost, and extrinsic nerve bundles appeared which were ensheathed by a perineurium that co-expressed GLUT1 and p75.
Figure 1. p75 and GLUT1 immunofluorescence through the transition zone. Tissue sections from HSCR pullthrough colon were stained with p75 (red) and GLUT1 (green). Images show both the submucosal plexus (a,c,e,g) and the myenteric plexus (b,d,f,h). In segment I (a,b), p75 is expressed throughout the ganglia, but GLUT1 was absent (a’,b’). Ganglia in the myenteric plexus of segment II (d) expressed p75 but not GLUT1, while ganglia in the submucosal plexus of segment II (c) showed p75 expression throughout and also revealed a p75-positive perineurium (arrows). This perineurium was also GLUT1-positive (c’, arrows). In segments III and IV (e-h), nerve bundles displayed both a distinctive p75-positive perineurium (arrows), and p75-positive fibres. In each case, the perineurium was also labelled by GLUT1 (e’-h’). Representative images of results from 4 patients. Scale bar = 20µm, for all images.
Figure 2. Confocal images of the dual staining of the perineurium with p75 and GLUT1 in Hirschsprung’s bowel. Confocal images and magnified views of the nerve bundles in segment III (a) and segment IV (b) highlight co-expression of p75 (red) and GLUT1 (green) in the perineurium. GLUT1 was not found within the nerve fibres in either segment. Images shown in (a, b) are same as those shown in Figure 1e, g. Scale bar for a, b (as shown in b) = 20µm, scale bar for a’, b’ (as shown in b’) = 10µm.
The ENS neuronal marker Calretinin is expressed in hybrid structures in the Transition Zone.

We next asked whether the structures bounded by a perineurial sheath that we observed in segments II-III of the TZ contained characteristics of ENS ganglia, by labelling for the ENS-specific neuronal marker calretinin [15] in combination with p75. The apparently normal ENS ganglia in segment I contained calretinin-positive ENS neurons and were not surrounded by p75-positive cells, as expected (Figure 3a, b). By contrast, in the submucosal plexus of segment II we found calretinin-expressing cells that were surrounded by p75-positive ring-like structures that we had already defined as a perineurium (Figures 1, 2, 3c). Of note, the calretinin-expressing cells in the myenteric plexus in segment II lacked a ring of p75-positive perineurium (Figure 3d). We also observed perineurial structures surrounding calretinin-positive enteric neurons in both the submucosal and myenteric plexus of segment III (Figure 3e, f). However, in segment IV we failed to detect any calretinin-positive cells within the perineurium-bounded TNBs (Figure 3g, h), demonstrating a gradual loss of calretinin-expressing ENS neurons across the region.
Figure 3. *p75* and calretinin immunofluorescence through the transition zone. Tissue sections from the HSCR colon were stained with *p75* (red) and calretinin (green). Images show the submucosal plexus (a,c,e,g) and the myenteric plexus (b,d,f,h). In segment I (a,b), *p75* and calretinin were present throughout ganglia of both plexus. In segment IV (g,h), there is an absence of calretinin expression while *p75*-positive cells were present in the perineurium. Hybrid structures were observed in segments II and III (c-f). In these regions, there were nerve bundle structures containing *p75*-positive perineurium, with calretinin positivity within, which is characteristically absent in the thickened nerves of HSCR. Representative images of results from 4 patients. Scale bar = 50µm, for all images.

Using confocal imaging, we analysed the calretinin distribution across the neuronal structures in segments I-III (Figure 4). While entire cells were positive for calretinin in segment I (Figure 4a, b), we found only punctate expression of calretinin within the structures bounded by *p75*-positive perineurium in segments II and III in both myenteric and submucosal plexus (Figure 4c-f).
It is important to note that calretinin as ENS neuronal marker is expressed throughout enteric neurons including both cell bodies and axons [15,26].
Figure 4. Confocal images of the dual staining of the perinerium with p75 and calretinin in Hirschsprung’s bowel. Magnified views of confocal images of the ganglia and hybrid structures found in segment I, segment II and segment III with p75 (red) and calretinin (green). Calretinin was found in cell bodies in segment I, but in the more distal segments remained in punctate pattern, suggesting their presence in cell projections. Scale bar = 10µm, for all images.
Our data suggest that structures were present in segments II and III of the TZ that consisted of ENS neurons and were bounded by a perineurium characteristic of the TNBs. These ‘hybrid’ structures were not found in the most cranial, apparently normoganglionic, segment I, nor in the most caudal aganglionic segment IV. Based on this observation, we suggest that hybrid structures with characteristics of both ENS and extrinsic TNBs were present in a section defined as the TZ, between normoganglionic and aganglionic innervation.

Hu-positive neuronal cell bodies are found in hybrid structures in the upper Transition Zone

In order to determine the extent of the presence of ENS neuronal cells in the hybrid structures in segments II and III of the TZ, we labelled for the neuronal marker Hu in combination with p75 (Figure 5, Supplementary Figure 3), since Hu is only expressed in cell bodies and not the fibres or axons of nerves [10,27]. Our data indicate that hybrid structures in the submucosal plexus of segment II contained Hu-expressing ENS neurons (Figure 5c, Supplementary Figure 3c), while hybrid structures in segment III lacked Hu staining entirely (Figure 5e-h; 6e-h). This suggests that calretinin-positive staining in hybrid structures in segment III (Figure 3, 4) may have detected the axons of ENS neurons that extended distally within extrinsic nerve bundles bounded by a perineurial sheath. Our results also suggest that there was a difference in the cranio-caudal change of ENS ganglia to hybrid structures between myenteric and submucosal plexus in the TZ: hybrid structures appeared in segment II in the submucosal plexus while in the same segment the myenteric plexus displayed typical ENS ganglia.
Figure 5. p75 and Hu immunofluorescence through the transition zone. Tissue sections from HSCR pullthrough colon were stained with p75 (red) and Hu (green). Images show the submucosal plexus (a,c,e,g) and the myenteric plexus (b,d,f,h). In segments I (a,b) and II (c-d), p75- and Hu-expressing cells are present throughout ganglia of both plexus as well as in the submucosal hybrid structure (c) as defined by the p75-positive perineurium. In segments III and IV (e-h), there is an absence of Hu expression. Representative images of results from 4 patients. Scale bar = 50µm, for all images.

Localization of telocytes in ganglia, hybrid structures and TNB within in the Transition Zone

While the TNB of SS-HSCR are surrounded by a perineurium, this is absent in normal ENS ganglia [6,15,28]. Instead, ENS ganglia have been reported to be ensheathed by telocytes [18]. To determine the extent to which the hybrid structures in the TZ have a normal telocyte ensheathment despite the presence of an abnormal perineurium, we co-labelled sections across segments I-IV with antibodies for the telocyte marker CD34 and p75 (Figure 6, Suppl
Figure 4). In segments I and II, telocytes were found surrounding normal ENS ganglia as previously reported [18], in a continuous, uninterrupted sheath, extending telopode processes into the interior of the ganglia (Figure 6a, b, Suppl Figure 4). By contrast, in segments II, III and IV, telocytes surrounded the hybrid structures and TNBs in a discontinuous layer, but were also present inside the nerve bundles and TNBs and on the inner side of the p75-positive perineurium (Figure 6e-h, Figure 7). This pattern reflected that of extrinsic nerves as previously reported [22].
Figure 6. p75 and CD34 immunofluorescence staining in the myenteric plexus of Hirschsprung’s bowel. Tissue sections from HSCR colon were stained with p75 (red) and CD34 (green) in the myenteric plexus. CD34 is a marker of telocytes in the gut. In segments I and II, CD34 can be found to make a complete layer around the ganglia. Telopodes also extend into the ganglia in segment I. In segments III and IV, CD34 positive cells are found outside within the p75 positive perineurium, as well as along the nerve fibres. Telocytes are also found throughout the muscle layers. Representative images of results from 4 patients. Yellow boxes indicate field of view shown in Figure 7. Scale bar = 20µm, for all images.
Figure 7. Confocal images of the dual staining of the perineurium with p75 and calretinin in Hirschsprung’s bowel. Magnified views of confocal images of the ganglia and hybrid structures and thickened nerve bundles found in segment I, segment III and segment IV with staining for p75 (red) and CD34 (green). In segment I, a close contact between the ganglion and telocytes is shown. In segment III, and IV, telocytes were found close to the perineurium of the nerve bundles and along the nerve fibres. Representative images of results from 4 patients. Images are magnified fields of view as shown in Figure 6 a”,b”,c”. Scale bar = 10µm, for all images.
Discussion

In order to elucidate cellular relationships between the TNB and ENS, we have focussed on the transition zone between ganglionic and aganglionic regions of the HSCR bowel which has been shown to contain reciprocal gradients of decreasing numbers of ENS ganglia and increasing density of TNB along its cranio-caudal axis [10]. Previous observations have demonstrated that ENS ganglia and TNB co-exist within the TZ [10,24]. However, any direct cellular interaction between ENS ganglia and extrinsic nerves has not previously been shown. Here, we have undertaken a detailed analysis of cellular interactions between ENS ganglia and TNB within the TZ as a necessary step to help establish the mechanisms involved in HSCR.

Our analysis of four cranio-caudal segments along the transition zone of HSCR bowel confirms that the ENS and TNB undergo gradual reciprocal changes from ganglionic to aganglionic zones [10,24]. This gradual loss of the typical ganglia is accompanied by the appearance of hybrid structures which contain cells expressing ENS markers and at the same time are surrounded by GLUT1-positive perineurium characteristic of TNB and other extrinsic nerves. These observations suggest that the perineurium of the abnormal ganglionic hybrid structures may be derived from that of the TNB. However, further experiments are necessary to investigate the alternative possibility that the environment within the postnatal TZ or in the gut during prenatal development induces peripheral cells of ENS ganglia to adopt a perineurial phenotype.

During development, the perineurium of peripheral nerves is formed from specialised Schwann cells [29,30] that surround and ensheath extrinsic nerve fibres in the gut. The perineurium is formed in two main stages: in the first step, mesenchymal cells generate a loose permeable sheath; in a second step, this primitive sheath develops to form a multi-layered structure via desert hedgehog (Dhh) signalling from Schwann cells, present inside the nerve fibres, that then contribute to the perineurium itself [29,30]. Both GLUT1 and p75 have been shown to be expressed in the perineurium [10,15], while only occasional weak staining of GLUT1 has been reported in ganglia [6,15]. While extrinsic nerve fibres have been reported in SS-HSCR biopsies based on the GLUT1 and p75 expression in the perineurium [10], an
analysis of their distribution and arrangement in the transition zone, has not previously been reported. Our analysis shows that a GLUT1- and p75-expressing perineurium appears as a discrete boundary around the ENS neurons of hybrid structures and is detectable in the submucosal plexus at more cranial levels closer to the normoganglionic zone than in the myenteric plexus where they are restricted to more caudal regions closer to the aganglionic gut in HSCR patients.

In order to understand the relevance of the hybrid structures it is important to revisit the developmental process in which the ENS precursor cells migrate, populate and differentiate within the bowel. In the mouse, it has been shown that vagal neural crest cells colonise the myenteric plexus first and begin to differentiate into neurons before radial migration and projection of ENS precursor cells and Schwann cell precursor cells into the submucosal plexus [31-33]. It has been suggested that in HSCR the development of the ENS is arrested at the stage where migration of vagal neural crest cells and differentiation of ENS precursor cells from the myenteric plexus towards the submucosal is halted [34]. Therefore, the appearance of hybrid structures in the submucosal plexus more cranially when compared to the myenteric, may suggest that the development of the ENS ganglia in the submucosal plexus of had not progressed [31,35,36]. Instead, these incomplete ENS ganglia contribute to the formation of hybrid structures, which may represent the point at which extrinsic nerves have reached the submucosal plexus.

A hybrid-like structure has been previously described in a colon biopsy by Kakita and colleagues [6], where ganglion cell bodies were surrounded by a perineurium. The authors suggested that this observation could serve as a histopathological diagnostic feature of patients with intestinal neuronal dysplasia rather than HSCR [6]. Intestinal neuronal dysplasia is a poorly studied condition [37] which has been reported to present with features similar to HSCR, such as intestinal obstruction and histological structures consisting of ganglion cell bodies with a perineurium [37,38]. It remains to be determined whether the hybrid-like structure in intestinal neuronal dysplasia has a similar developmental origin to hybrid structures in the transition zone of HSCR that we describe here.
A detailed analysis of the four segments of the transition zone using the neuronal markers calretinin, Hu and Tuj provided insight into the extent of intrinsic innervation in the TZ. Staining with calretinin visualised the change from cytoplasmic expression in the ENS neurons in the ganglionic bowel to granular localisation more distally (Segments II and III) before its absence in the aganglionic bowel. These data suggest that calretinin-expressing neuron cell bodies are present in the ENS of the ganglionic bowel, and their axons project caudally and can be seen throughout the TZ, but are lost in the aganglionic segment (IV). We could confirm this interpretation when detecting Hu protein in the sections of the transition zone, since Hu expression was only found in Segments I and II.

It has been shown that in mouse models of HSCR, neurogenesis can occur from Schwan cell precursors (SCPs) [39], a recently described source of enteric neuron progenitors [40]. SCP-derived neurons appear to be most abundant in the TZ [39], where there is a reduction in the presence of vagal neural crest cells. Therefore, the calretinin- and Hu-positive cells that we have detected in the TZ could be interpreted as SCP-derived neurons.

Here, we have shown that telocytes ensheath the ENS ganglia in segments I and II of the TZ, which is in line with their reported arrangement with normal ENS ganglia [18]. We further demonstrate that telocytes persist in the aganglionic region of HSCR gut where they align with and integrate within the perineurium of TNBs, consistent with reports that telocytes are present in the epi- and perineurium of extrinsic nerves [22]. Our observations suggest that telocytes are retained in the lower segments of the TZ where they co-exist by surrounding the perineurium-bounded hybrid structures and being encased within, similar to the arrangement in extrinsic nerves. However, telocyte distribution in segments II and III are consistent with hybrid structures by having a combination of both ganglia-like and extrinsic nerve-like properties. How telocytes undergo the changes in the hybrid structures in the TZ of SS-HSCR bowel remains unclear. Further studies are required to dissect how the presence and function of telocytes in HSCR bowel is regulated.

Telocytes have a range of roles including the regulation of GI motility along with ICCs [17] by forming networks that provide mechanical support for connective tissue components in peristalsis and maintain integrity of ganglia by entirely ensheathing them. In this role,
telocytes are thought to be involved in the 3D-organisation of the extracellular matrix that embeds the ENS. Interestingly, in Crohn’s disease and Ulcerative Colitis the numbers of telocytes are reduced [18,41,42], which is accompanied by the excessive production of a disorganised extracellular matrix, leading to fibrotic remodelling of the bowel wall [20] and a discontiguous network of telocytes around enteric ganglia [42], as seen in the TZ and aganglionic bowel. It has been suggested that the disorganisation of telocytes contributes to the colonic dysmotility and derangement of intestinal wall observed in Crohn’s disease and Ulcerative Colitis [41,42], which may also be the case in HSCR. Here, we have observed that the continuous arrangement of the telocytes which surround normal ENS ganglia is disrupted and discontinuous in hybrid structures and extrinsic TNBs. While the arrangement of telocytes in TNBs is comparable to that of peripheral nerves, the loss of a complete sheath of telocytes, as is present around ganglia in normoganglionic tissue, could still impact the organisation and arrangement of the extracellular matrix, or contribute to colonic dysmotility along with the lack of ENS in aganglionic bowel.

Further analyses are required to determine the aetiology of the hybrid structures in the transition zone of HSCR, and the role of telocytes in ENS ganglia and in the perineurium of TNBs.

Acknowledgements
We acknowledge funding for a PhD studentship for MS from the Bowel and Cancer Research Charity (now Bowel Research UK) and the Institute of Integrative, Systems and Molecular Biology (University of Liverpool), for a project grant from the Children’s Research Fund for MS, as well as a Medical Research Council-funded clinical research training fellowship MR/R002/42/1 for SC. We acknowledge use of the Centre for Cell Imaging facilities provided by the Liverpool shared Research Facilities, Faculty of Health and Life Sciences, University of Liverpool.

Conflict of interest statement
The authors have no conflict of interest to report.

Author Contribution statement
MS, SC, BW, DE designed experiments. Tissue collection, immunofluorescence staining and imaging were carried out by MS and SC. Figures were prepared by MS. Manuscript was written by MS, BW, DE and all authors approved manuscript before submission.

Data statement
Data available on request from the authors.

References

7. **Kapur RP.** Submucosal nerve diameter of greater than 40 mum is not a valid diagnostic index of transition zone pull-through. *Journal of pediatric surgery.* 2016; 51: 1585-91.

Supplementary figures

Supplementary Figure 8. Schematic illustrating the tissue resected from pull-through surgery. From the tissue resected, 4 pieces of tissue were collected. A small piece of tissue each was taken from 4 regions, labelled segment I-IV.
Supplementary Figure 9. p75 and Tuj immunofluorescence staining through the transition zone. Tissue sections from the HSCR colon were stained with p75 (red) and Tuj (green). Images show the submucosal plexus (a,c,e,g) and the myenteric plexus (b,d,f,h). In segments I (a,b) and II (c,d), p75 and Tuj were present throughout ganglia of both plexus. In segments III (e,f) and IV (g,h), while the perineurium was only stained with p75 and not Tuj, the Tuj staining was present in a nerve fibre pattern as opposed to the staining throughout the ganglia. Representative images of results from 4 patients. Scale bars = 20µm for all images.
Supplementary Figure 10. Magnified images of the dual staining of ganglia and hybrid with p75 and Hu in Hirschsprung’s bowel. Magnified views of confocal images of the ganglia and hybrid structure found in segments I and II labelled for p75 (red) and Hu (green). Hu was found in cell bodies in both ganglia (a, a’, b’) and within the hybrid structure (b). Scale bar = 20µm for all images.
Supplementary Figure 11. p75 and CD34 immunofluorescence staining in the submucosal plexus of Hirschsprung’s bowel. Tissue sections from HSCR colon were stained with p75 (red) and CD34 (green) in the submucosal plexus. In segment I, CD34-positive telocytes can be found to form a complete layer around the ganglia, and telopodes extend into the ganglia. In segment II, the telocytes layer is disrupted. In segments III and IV, CD34-positive cells are found outside the p75 positive perineurium, as well as along the nerve fibres. Representative images of results from 4 patients. Scale bars = 20µm for all images.