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Abstract8

We construct a polygenic health index as a weighted sum of polygenic risk scores for 209

major disease conditions, including, e.g., coronary artery disease, type 1 and 2 diabetes,10

schizophrenia, etc. Individual weights are determined by population-level estimates of im-11

pact on life expectancy. We validate this index in odds ratios and selection experiments12

using unrelated individuals and siblings (pairs and trios) from the UK Biobank. Individ-13

uals with higher index scores have decreased disease risk across almost all 20 diseases (no14

significant risk increases), and longer calculated life expectancy. When estimated Dis-15

ability Adjusted Life Years (DALYs) are used as the performance metric, the gain from16

selection among 10 individuals (highest index score vs average) is found to be roughly 417

DALYs. We find no statistical evidence for antagonistic trade-offs in risk reduction across18

these diseases. Correlations between genetic disease risks are found to be mostly posi-19

tive and generally mild. These results have important implications for public health and20

also for fundamental issues such as pleiotropy and genetic architecture of human disease21

conditions.22

1 Introduction23

Interest in polygenic risk scores (PRS) and the ability to estimate disease risks from geno-24

types has increased steadily over the past decade. A polygenic risk score maps an individual25

genotype to a score that reflects genetic risk for a particular disease; most PRS depend on hun-26

dreds or thousands of individual loci in the genome. As biobank data sets have grown larger,27

so have the performances and applicability of PRS. There are now a multitude of predictors28

that can assign estimated disease risks with an accuracy that has reached clinical utility. Dis-29

ease conditions as diverse as coronary artery disease, breast cancer, and schizophrenia can be30

predicted with a useful accuracy from genetic information alone [1–21]. Typically, PRS are31

trained on and applied to a single disease but with many such risk predictions available it is32

natural to ask whether they could be combined into a general health index — a single number33

to describe the overall health of an individual. This question has already been explored in34

[22], where the authors created a composite PRS using a cox-hazard model, utilizing diseased35
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participants of the UK Biobank (UKB). This composite PRS was found to predict longevity.36

The impact on longevity and individual disease burdens from individual variants has also37

been studied, using the Finish databank FinnGen [23].38

In this paper, we construct a general health index by combining PRS for 20 diseases (Table39

1), choosing the individual disease weights in an attempt to minimize the number of life years40

lost due to illness. We evaluate whether such a single number is a useful reflection of an41

individual’s various disease risks and their combined effect on estimated life years. If true,42

it could be a valuable tool for clinicians and patients to assess combined risks and genetic43

health predisposition. For a wide range of reasons, interpreting clinical risk based on genetic44

data can be difficult for both patients [24–29] and clinicians [30–32]. Combining PRS into a45

single metric can greatly simplify the process of evaluating genetic risk reports.46

Another prominent application of a general health index is to inform embryo selection47

in IVF cycles (in vitro fertilization). Embryos are routinely biopsied for aneuploidy and48

monogenetic disease tests. For cycles resulting in more than one euploid embryo (without49

any of the monogenetic disease variants), clinicians and prospective parents typically select50

which embryo to implant based on visually assigned embryo grades. With the advent of51

preimplantation polygenetic testing, a general health index could additionally be used to52

guide this choice and reduce the overall disease risk for the baby.53

A priori, it is not given that such a health index would be useful. A common preliminary54

objection is that an index or single PRS, while reducing the disease for one disease, could55

inadvertently increase the risk for another [33, 34]. However, it has long been known that56

many diseases in reality tend to come together [35–46]. This could, at least for some broad57

categories of diseases, allow for useful indices. The specific concern raised for polygenic health58

indices has been the possibility of antagonistic pleiotropy, i.e., that a single gene may affect59

more than one disease risk simultaneously and in such a way that it decreases one disease60

risk while increasing another. If such pleiotropy were very common, there would not be much61

point of a genetically based health index.62

In this paper, we examine both the underlying phenotypic comorbidities and genetic63

pleiotropy. The 20 studied diseases frequently occur together, sometimes with strong pos-64

itive phenotypic correlation, while the genetic pleiotropy is usually small and slightly positive,65

or negligible. More importantly, we show in practice, using real genetic and health data, that66

the proposed health index can identify individuals at high or low risk for almost all diseases67

simultaneously. We observed individual disease risk reductions even beyond 40% (CAD, heart68

attack, diabetes type II) when selecting the highest index among five individuals, as compared69

to the general population. We further see no statistically significant evidence for inadvertent70

risk increments among any of the 20 diseases.71

These conclusions are drawn from several experiments. We apply the constructed index to72

about 40,000 late-life individuals of European ancestry for whom both genotypes and medical73

history are known, using the UK biobank (UKB). Odds (prevalence) plots are shown for the74

most common diseases but the majority of the results are in form of selection experiments.75

The test data samples are grouped, using different group sizes in different experiments, and76

the sample with the highest health index is selected from each group. The selected individuals77

are then compared to the total test set to see the health differences in the medical history data,78

computing metrics like Relative Risk Reduction (RRR) and estimated gained life years. These79

experiments are repeated and confirmed with a very strong test of the genetic signal: selection80
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Table 1: Disease abbreviations and predictor AUCs. AUCs are listed with the standard
deviations in parentheses, as computed by 30 bootstrap runs (see Supplementary Information).

Abbr. Disease AUC Abbr. Disease AUC Abbr. Disease AUC
AD Alzheimer’s disease .686(.004) HA heart attack .580(.008) Obes obesity .669(.002)
AFib atrial fibrillation .623(.004) HCL hypercholesterolemia .616(.003) PC prostate cancer .64(.02)
ASA asthma .626(.004) HTN hypertension .635(.003) SCZ schizophrenia .67(.03)
BC breast cancer .594(.008) IBD inflammatory

bowel disease
.647(.003) T1D type I diabetes .63(.02)

BCC basal cell carcinoma .62(.01) IS ischemic stroke .541(.002) T2D type II diabetes .616(.004)
CAD coronary artery dis-

ease
.616(.005) MDD major depressive

disorder
.534(.001) TC testicular cancer .61(.04)

Gout gout .65(.01) MM malignant
melanoma

.57(.02)

among pairs (21,539) and trios (969) of genetic siblings. Siblings have both less genetic81

variation and typically share similar family environments, thus constituting an excellent test82

set. Finally, the underlying phenotypic and PRS dependencies are analyzed.83

It is well-established that PRS are more accurate within a population ancestrally homo-84

geneous and similar to the training population — however, generally a positive effect in one85

ancestry will persist in more distant ancestries. Research on this topic is ongoing and of high86

interest [7, 47–50]. The primary motivation for this paper is to investigate whether a com-87

posite genetic health index is reflective of general health in principle and we therefore focused88

on a single ancestry with maximum amount of data.89

All analyses, except where otherwise indicated, are performed on self-reported white sam-90

ples from the full UKB release (2021-04); these are almost exclusively of European ancestry.91

We set aside 39,913 samples as a pure test set, withheld from all training and hyperparame-92

ter tuning1. The PRS are constructed through a previously published LASSO-algorithm [7]93

trained on ∼ 200k-400k samples from the training portion of the same UKB data, except for94

the predictors for AD, IBD, IS, MDD, and SCZ. More details on the predictors can be found95

in the Supplementary Information.96

2 Results97

2.1 Overview of Methods98

Polygenic health index There are many ways to construct a polygenic health index from99

multiple PRS. Here we investigate the performance of a single linear combination of risk100

estimates, attempting to reduce lost life years. Let ld be the estimated reduction in life101

expectancy for an individual having a disease d as compared to the general population, and102

let ρd be the lifetime risk in the general population of getting the disease. For the predicted103

risks rd, we define the health index to be104

I =
∑
d∈D

ld(ρd − rd) , (1)

1See the Supplementary Information for details on the test set.
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for a selected set of diseases D (this paper consistently uses the 20 diseases in Table 1). As105

such, a higher I should correspond to a healthier individual. As a proxy for ground truth106

in our test data set, we also define a case/control-based version, Ic, which instead of the107

risk rd uses the recorded case/control status c.2 We use this quantity as measure of the real108

world outcome value of the index. We note that the majority of our UKB test set is still109

alive (age µ = 70, σ = 7 years) making Ic an imperfect measure of lifetime outcomes and110

skewed towards diseases with early onset. Still, since the mean age is not more than about111

one standard deviation (SD) from the average lifespan and the incomplete data masks cases112

as controls, rather than vice versa, we expect that a health index validated on an Ic using113

complete data (with perfect lifetime medical records and age of death) would have a better114

performance than what is measured in the UKB data.3115

The index parameters ld and ρd were taken from literature studies, using the average116

values if more than one source was used (see Supplementary Information).117

Gaussian risk model The health index definition (1) requires an estimated absolute (life-118

time) risk r for each disease, modeled from the PRS as input. Depending on disease and119

predictor specifics, there are different possible choices for this modeling. A fairly general120

model, which works very well for sufficiently polygenic PRS (i.e., such that the Central Limit121

Theorem can be applied), models the PRS as drawn from a sum of two normal distributions122

with case/control status dependent means (µ1/µ0) and joint variance. The PRS probability123

distribution can then be written as124

ϕ(PRS) = (1− π)N (µ0, σ) + πN (µ1, σ) , (2)

where π is the population prevalence and N is the normal distribution. This leads to the125

Gaussian risk model126

r(PRS) =
1

1 + 1−π
π exp

[
1

2σ2

(
(PRS − µ1)2 − (PRS − µ0)2

)] . (3)

The case and control variances do not need to be equal in principle4 but in practice tend to127

be close in value (see Supplementary Information). We use estimates of µ0, µ1, and σ based128

on the PRS in test set controls and cases.129

Selection experiment from groups of unrelated individuals To evaluate the perfor-130

mance of the health index, we created sets of groups and carried out selection experiments,131

i.e., we grouped together random individuals in the test set into groups of a specific size132

and than picked one individual from each group. In index selection experiments, we selected133

the individual with the highest index value. In PRS selection experiments we selected the134

individual with the lowest PRS (lowest risk) for a specific disease.135

2Since there is a very large overlap between the case definitions we used for CAD and HA, we choose to
exclude HA from the case/control based index Ic. Otherwise HA would practically be double-counted in the
performance evaluation.

3The Supplementary Information contains more characterization of the test data.
4Unequal variances can lead to unrealistic behavior in the tails.
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test set

grouping

selection

Figure 1: The selection experiments. The
test set is scored with the health index I or a
single PRS and is randomly divided into groups
of equal size. The individual with the best
score in each group is selected and the health
status among the selected are then compared
with the general test set. The symbols in equa-
tion (4) refer to indicated subsets.

We created 40k random groups from the samples belonging to the intersection of all
predictor test sets, such that no sample was used in any type of training nor hyperparameter
tuning. Each sample was scored and assigned a raw and a sex-adjusted (see Supplementary
Information) health index, as in equation (1). For each selection outcome, we calculated the
relative risk reduction (RRR) for each individual disease and the index gain as measured
in the case/control-based index Ic, as compared to a completely random selection (i.e., the
general population statistics):

RRR =
πrand − πsel

πrand
; ∆Ic =

1

Ngroup

∑
g∈groups

(
Icgsel − ⟨Ic⟩g

)
∗
= ⟨Ic⟩sel − ⟨Ic⟩ . (4)

Here g sums over all Ngroup groups, Icgsel is the health index for the selected individual in group136

g, and ⟨·⟩ denotes the sample means, i.e., ⟨Ic⟩g is the average health index value in group g,137

⟨Ic⟩sel is the average among all selected individuals, and ⟨Ic⟩ is the average in the total test138

set. The index gain ∆Ic can be viewed either as the average index difference between the139

selected individual and its group average or as the difference between the average selected140

index and the general population average (∗ holds for constant group size). Note here that we141

are using the case/control status based index, Ic, as evaluation metric which does not use any142

genetic information but only individual lifetime5 disease status, together with the population143

based lifespan impact and lifetime risk estimates. The full selection experiment procedure is144

illustrated in Figure 1.145

We repeated all selection experiments 25 times to get a bootstrap estimate of the errors,146

reusing the same samples but grouping them into different groups. Thus, these are under-147

estimates neglecting the additional variance that would come from also using other samples,148

while the group constellations are practically unique.149

For the three sex specific diseases (breast, prostate and testicular cancer), we compared150

only the subsets with the relevant sex of the selected and random sets when calculating the151

RRR and index gain.152

Genetic sibling selection The selection experiments on unrelated individuals provide good153

metrics for how the health index performs in the general population. A much stronger test is154

to repeat the same experiments using real world siblings, sharing half their genetic material.155

Accurate prediction within siblings is challenged both by this reduced genetic variance and156

by more similar environments; it is thus a rigorous test of genetic prediction performance.157

We repeated the selection experiments for 21,539 pairs and 969 trios of genetic siblings.158

Since the sibling data cannot be re-grouped as in the unrelated selection experiments, we opted159

5see Supplementary Information for details
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Figure 2: The estimated gain from index selection is a clearly positive function of group
size, both using disease weights as defined by population estimates of lost life years or
using disease weights based on disabilty-adjusted life years (DALY). Left: The index gain,
as measured as the average health index difference between selected and random individuals (∆Ic in
eq. (4)), is growing monotonically with group size and with a continued clear positive derivative at
group sizes of 10. Notably, there is a strongly significant gain for all group sizes, even at a group size of
2. The error band is a 95% C.I. as computed by 25 experiments with independent selection groupings.
Right: While still selecting on the same index (1), we evaluated it on a case/control status metric
using DALY-weights, taking quality of life into account. Again, there is a clear and steady gain, with
the gain at a group size at 10 reaching about 4 years. The error band is a 95% C.I. as computed by
25 experiments with independent selection groupings.

to not use bootstrap errors but instead calculate the theoretical 95% confidence interval for the160

prevalence among the selected siblings, based on the Wilson score interval. It was translated161

to the RRR metric through equation (4), keeping the population prevalence πrand fixed. We162

did not estimate the errors for the index gain metric when selecting among genetic siblings.163

2.2 Selection experiment using groups of unrelated individuals164

We report the overall index gain (∆Ic from eq. (4)) from the selection experiments on165

unrelated individuals in Figure 2. It documents a well-established and consistent gain that166

increases with group size, maintaining a positive increment even when selecting among more167

than 10 people. The health index distribution is non-Gaussian with standard deviation (SD)168

of 1.56 estimated life years and with a skewness of −0.49. The difference between the mean169

health index values for the top and bottom 5% of the index I was 5.10 predicted life years.170

The corresponding difference between these groups was 3.49 years when measured with the171

case/control based index Ic (a smaller difference is to be expected due to the incomplete172

case/control data). Despite different methods and disease sets, we note the connection to [22]173

which reported similar values in lost life years per SD and difference between top and bottom174

5% of composite PRS. In Figure 3, the selection experiment result at the group size of five175

is broken down into the RRR and the component-wise index gain for each disease, allowing176

a more fine-grained view of the performance. Strikingly, the RRR graph is overwhelmingly177

positive thus demonstrating compelling evidence that selected individuals with higher health178

index score have lower incidence for almost all diseases at the same time. 15 out of the 20179
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Figure 3: Selecting on health index among 5 randomly grouped individuals reduces si-
multaneously the risk of almost all the studied diseases. Left: The RRR among the selected
individuals as compared to random selection is dominantly positive, ranging from a few risks reduc-
tions statistically consistent with zero up to more than 40%. No disease risk is demonstrably increased.
The case numbers for each disease are printed just above the x-axis and the error bars are 95% C.I. es-
timates from 25 repeated experiments with different selection groupings. Right: The estimated index
gain for each of the index components (diseases), i.e., the disease component breakdown of equation
(4), also shows non-negative gains across the board with most component gains being statistically
significant. The unit on the y-axis is estimated life years (LY), as is the unit of Ic. This index is
primarily driven by CAD, heart attack, hypertension, major depressive disorder, obesity and type II
diabetes, due to their combinations of strong impacts ld and high population prevalence.

disease have statistically significant positive RRR, reaching over 40% for the most reduced180

disease risks (CAD, HA, T2D), whereas none is significantly negative or even has a negative181

central value. It is important to note that although the weights ld matter for how the index is182

constructed and thus for whom is selected, they have no direct impact on the RRR metric itself183

— only the actual disease status is measured. As such, the RRR plot is a true measurement184

of the reduced disease incidence. In contrast, the right plot in Figure 3 of the index gain185

∆Ic involves the weights both in selection and in evaluation. Using the weights based on186

estimated lost life years, we get a disease-by-disease breakdown of the index gain. Again,187

there is a statistically significant positive contribution from almost all diseases with obesity,188

type II diabetes, major depressive disorder and CAD as the strongest contributors.189

The average component gains in Figure 3 depend both on the quality of the individual190

PRS, the weights ld and the test set prevalences. For example, the AD predictor has a191

much stronger individual performance than MDD (AUC ∼ .69 vs ∼ .53) while MDD has192

stronger weights than AD in the index (lMDD/lAD ≈ 1.6). The index achieves a RRR of193

about 31% for AD and 12% for MDD, with the individual PRS-performance having a larger194

impact on the RRR metric. Meanwhile, MDD has about 4 times the AD contribution to the195

index gain, largely due to it being about 10 times more prevalent in the test set. Naturally,196

common diseases contribute more to the average index difference than rare ones. Both AD197

and MDD have some strong comorbidities and milder PRS-correlations with other diseases;198

this is discussed further in section 2.4. See also the Supplementary Information for a deeper199

discussion of the test set prevalences and their influence on the quantitative results.200

The RRR and index gain metrics offer complementary information of the potential bene-201
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Figure 4: RRR comparison between selection on index and selecting on individual disease
PRS. The individual disease RRR obtained by index selection contrasted with selection directly on
the individual PRS, using a group size of 5. The case numbers in the test set for each disease are
shown above the x-axis and the error bars are 95% C.I. as computed by 25 independent experiment
runs.

fits: the RRR captures how much the risk can be reduced simultaneously, while the index gain202

translates this into estimates of the corresponding life years gained on average. All selection203

experiments selected on the index in equation (1), using lost life years ld as weights. A com-204

mon alternative for assigning relative importance to diseases is the unit Disability Adjusted205

Life Years (DALY). While still selecting on our index (1), we make contact to the existing206

DALY-literature by evaluating the index gain using a DALY-scale to the right in Figure 2.207

The weights in the evaluating index difference ∆Ic were computed as population level DALY-208

coefficients ld + qd∆yd, where qd is a disability factor between 0 and 1 and ∆y is the number209

of years between average age of onset and average age of death. The individuals selected from210

groups of size 10 had an increase of 4 DALY as compared to randomly selected individuals.211

This magnitude scale comports with previous studies [23].212

The index tries to minimize the risk for several diseases simultaneously. In Figure 4 we213

demonstrate how all the RRR from index selection compare to the RRR when selecting di-214

rectly on the individual disease PRS, i.e., how much the index retains of the maximal risk215

reduction you would achieve if you focused on reducing a single disease. The direct PRS-216

selection tend — as naively expected — to reduce the specific diseases risk more than the217

index, especially for those diseases with very small weights (BCC, IBD). Yet, there are several218

examples where the index actually matches or even surpasses the direct PRS performance,219

most notably HA (probably because the strong/large comorbidity with CAD, HTN and obe-220

sity).221

The PRS-comparison in Figure 4 is a cross-section of the results at a group size of 5. The222

patterns are however consistent across all tested sizes, as seen in Figure 5. The index reduces223

the risk of both T2D and CAD by about 50% at group size 10, consistently matching both224

the individual PRS-performances simultaneously. The consistent difference between PRS and225

index selection are also shown for Alzheimer’s disease and obesity.226

For the most prevalent diseases (ASA, HCL, HTN and obesity), we also provide prevalence-227

per-index quantile plots (odds ratio plots if divided by the general prevalence) in Figure 6; the228

less prevalent diseases did not have enough cases for such high resolution. The top 4 percentiles229
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Figure 5: The disease risk reduction from index and PRS selection for different group
sizes. The relative performance between index selection and PRS for individual diseases varies, as seen
in Figure 4. Here shown as functions of the group size, we see the strongest performance step between
having no selection (group size 1) and selecting between between two and also the continued, but less
dramatic, benefits with larger group sizes. Notably, for the chosen examples type II diabetes and CAD,
the full health index consistently perform as well as selecting directly on the specific PRS, showing
no reduced effects on these disease from taking all the other into account. The index performance
for Alzheimer’s disease and obesity, while not achieving the full risk reduction of their corresponding
PRS, retain significant risk reductions for all group sizes. The error bars represent estimated 95% C.I.
as computed by 25 selection experiments using different selection groupings.
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have about half the risk of the bottom 4 percentiles to have either of hypercholesterolemia,230

hypertension, and obesity, while the risk reducing trend for asthma is less dramatic.231

2.3 Genetic sibling pairs and trios232

The primary results for the selection experiment on pairs of siblings is shown in Figure 7,233

broken down into RRR and component index gain for each disease. The same graphs also234

include as reference the results from the selection among unrelated samples at group size235

2. The sibling with the largest health index was selected from each of the 21,539 sibling236

pairs; no bootstrap was carried out. Instead the RRR error bars for the genetic siblings are237

theoretical 95% confidence intervals using the Wilson score interval for the prevalences among238

the selected siblings. They are generally larger than the corresponding error bars for the group239

size 2 bootstrap experiment. The limited data, for the rarest diseases in particular, decrease240

the certainty and result in the large error bars. Yet, we conclude from Figure 7 that even241

in the most challenging task of minimizing the disease risk among only two genetic siblings242

the index provides a simultaneous and verifiable reduction of many diseases, while others243

are left inconclusive in this data set. Among the 20 studied diseases, there is no example244

of verified increased disease risk. Similarly, the estimated index gain is non-negative for all245

disease components and sum up to a significant gain also among pairs of genetic siblings.6246

The index selection experiment result on the 969 trios had to the most part large un-247

certainties due the smallness of the data set and low case counts. Only two disease RRR248

reached statistical significance, according to the theoretical RRR confidence intervals. Hy-249

percholesterolemia and obesity were confirmed with positive RRR, while hypertension and250

type II diabetes bordered to positive significance. No disease was confirmed to have negative251

RRR. The full RRR and index gain plots for trios are to be found in the Supplementary252

Information.253

2.4 Characterization of phenotypic and genetic dependencies254

The simultaneous disease risk reduction demonstrated for the index selection is bounded by255

potential disease dependencies, i.e., if two or more diseases tend to occur together (comor-256

bidity) or are mutually exclusive. A commonly raised concern for PRS, and even more so257

for a composite health index, is the risk of antagonistic pleiotropy, i.e., that the same gene258

simultaneously increases the risk for one disease while decreasing the risk for another. Such a259

situation (or any cause of negatively correlated disease incidence) would impede simultaneous260

risk reduction. We examined this question for the 20 chosen diseases within our test set both261

on a genetic and phenotypic level. The result is presented in Figure 8 through three quantities262

for each pair of diseases: the correlation between the PRS, the ratio between observed and263

expected comorbidity (called the χ2 ratio), and the p-value of a χ2 independence test (see fig-264

ure caption for the details of the quantity visualization). The high information density in the265

plot requires some explanation but allows for quick comparison between all three quantities,266

both for individual pairs and for the disease set as a whole.267

Contrary to the concern about strong impacts of antagonistic pleiotropy, we find that268

the disease incidences typically are pairwise dependent and overwhelmingly occur together.269

The predominantly solid green squares above the diagonal confirm that most of the disease270

6The mean values for BCC and Gout are negative but much smaller in magnitude than the uncertainty.
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Figure 6: Prevalence in health index quantile bins for the most common diseases. We
binned the test set according the health index into 25 equally distributed quantiles and plot the
prevalence within each bin for the most prevalent diseases (allowing enough cases for the bin resolution
to be meaningful). The general population prevalences are plotted as dotted reference lines (dividing
with this number would give odds ratio plots) and the y-axis start at 0 to give a visual representation
of the (odds) scales. For the intermediately risk reduced diseases (according to RRR Figure 3)
hypercholesterolemia, hypertension and obesity, there is a clear and systematic risk relationship across
the entire range of the health index. For asthma, there is only a weak, detectable trend for the center
values consistent with its existing but smaller RRR. The error bars are 95% C.I. estimates obtained
through 100-fold bootstrap calculations of the prevalence within each bin (no re-binning was done).
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Figure 7: Index selection between 22,667 pairs of genetic siblings retain the overall bene-
fits. In both figures, selection experiments among pairs of genetic siblings are compared to selection
among pairs of unrelated individuals. The index performances are qualitatively very similar despite
that siblings share half their genomes and have more similar environments. As expected, we do see
a general performance attenuation among siblings, but also a few exceptions. Left: The RRR for
each disease. The error bars for siblings are theoretical 95% C.I. using Wilson score interval for the
prevalences among the selected siblings. The error bars for the selection among the unrelated pairs
are again estimated 95% C.I. from 25 separate runs. The case numbers are shown above the x-axis.
Right: The component-wise index gain for the selections among pairs of siblings and among pairs
of unrelated individuals. The sibling results are presented without error bars since no theoretic un-
certainty was calculated; statistical significance is therefore not established from this data. The error
bars for the selection among unrelated individuals are 95% C.I. from 25 separate runs.

pairs have comorbitities of statistical significance, in line with longstanding results such as271

coincidence of CAD and hypercholesterolemia. This makes a health index not only possible272

but an almost natural concept. The χ2 ratio, -triangles below the diagonal, demonstrates273

the magnitude of the comorbidities, for example the very strong coincidences of (HA, CAD),274

(SCZ, MDD) and (T2D, T1D), and the moderate (HTN, AFib), (HTN, CAD) and (HCL,275

HA). The PRS correlations ( -triangles) are relatively small in magnitude and in general276

agreement with the phenotypic coincidences. As such, most PRS are relatively uncorrelated.277

Some notable exceptions are (HCL, CAD) and (MM, BCC). Just as the large amount of278

comorbidity facilitates the simultaneous positive RRRs, there are also some explanations279

for the lesser reductions here. The mutually exclusive tendency of (TC, CAD) complicates280

simultaneous risk reduction on a phenotypic level7. This is in accordance with Figure 4, where281

the RRR of TC is much stronger in PRS selection than index selection. The only examples282

of PRS level conflicts are the moderate anti-correlations between (T1D, IBD), (T1D, MDD)283

and (T2D, IBD), and the milder (BCC, ASA) and (IBD, ASA) anti-correlations, despite that284

these disease pairs are independent or have mild comorbidities. The combined index weights285

for ASA, T1D and T2D dwarf the impact of IBD on the index while BCC has no weight and is286

almost independent from everything else but MM (which is also independent from everything287

7We are not aware of any research supporting this finding in other data sets. On the contrary, there
are several examples of either inconclusive results or increased comorbidity of CAD among patients having
undergone chemotherapy in TC treatment [51–53]. With our barely significant finding and small TC statistics,
we view this result as peculiarity of the test set rather than a general epidemiological result.
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Figure 8: Phenotype dependencies and PRS correlation comparisons. This figure visualizes
three different quantities for each pair of disease: the PRS correlation, a comorbidity metric, and a χ2

independence test p-value. Each tile below the diagonal is split into two halves where = PRS
corr. is the correlation between the two diseases’ PRS, i.e., the genetic correlations as inferred by the
predictors. The other half, = χ2 ratio, is a metric of the actual disease comorbidity: how many
more times is disease coincidence observed compared to what would be expected if the diseases were
completely independent, where a positive (negative) sign indicates higher (lower) comorbid frequency
(this is based on the ratio between the observed and expected case-case cell in a χ2-test contingency
table, hence referred to as the χ2 ratio). The squares, = log(p), above the diagonal indicate the
statistical significance of the dependence: the (signed) logarithm of the p-value in a χ2-test. The sign is
positive (negative) for more (less) frequent coincidence. Both the p-value and the χ2 ratios are masked
for disease pairs without statistically significant (p = .05) dependence. For example, the deep green
square above the diagonal at (CAD, HCL) indicates that the CAD-hypercholesterolemia comorbidity
is highly significant (we can reject phenotype independence at p-value < 10−4). Below the diagonal,
we see for the same disease pair that the lower triangle is gently blue-green, i.e., case coincidence for
CAD-hypercholesterolemia is about 2.3 times more common than random chance. Lastly, the upper
triangle is dark blue meaning that the PRS correlation between CAD and hypercholesterolemia is
among the very strongest, at about 0.22. Overall, we see that most disease pairs have statistically
significant comorbidity with 1-2 times more coincidence than chance, and that their PRS are not, or
slightly positively, correlated. This phenotypic and genetic background not only allows but facilitates
the construction of a useful health index. The most prominent outliers are discussed in the main text.
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else). This contributes to the stronger RRR of PRS selection for ASA, BCC, IBD, and MM288

as compared to index selection.289

3 Discussion290

It is commonly believed that some individuals, in part due to genetic causes, enjoy robust good291

health, while others are sickly and prone to disease. Longevity is said to run in families. With292

modern genomic methods we can test the scientific veracity of these ideas. By combining293

Polygenic Risk Scores (PRS) across the most impactful disease conditions, we can build a294

composite predictor of overall health. The specific implementation studied in this paper used295

lifespan impact of each disease condition as the weighting factor in the index. We could then296

test whether this index predicts individual disease risks, as well as estimated longevity or297

disability adjusted life years.298

Specifically, we validated this index in selection experiments using unrelated individuals299

and sibling pairs and trios from the UK Biobank. Individuals with higher index scores have300

decreased risk of individual diseases across almost all 20 diseases, with no significant risk301

increases, and longer calculated life expectancy. When Disability Adjusted Life Years (DALYs)302

were used as the performance metric, the gain from genetic selection (highest index score vs303

average) among 10 individuals was found to be roughly 4 DALYs, and among 5 individuals304

was found to be 3 DALYs.305

We found no statistical evidence for strong antagonistic trade-offs in risk reduction across306

these diseases. Correlations between disease risks are found to be mostly positive, and gener-307

ally mild. This supports the folk notion of a general factor which characterizes overall health,308

sometimes described as synergistic pleiotropy. These results have important implications for309

public health and also for fundamental biological questions such as genetic architecture of310

human disease conditions.311

The concept of pleiotropy was formulated before the notion of high dimensional spaces of312

genetic variation became familiar. The conventional logic is that, because a single gene can313

affect many different complex traits, it must be the case that different complex traits, such314

as disease risks, are themselves correlated, perhaps antagonistically (e.g., due to balancing315

selection, or for some deeper biochemical reason). This would entail specific trade-offs, hy-316

pothetically: an individual with low diabetes risk might necessarily have higher cancer risk,317

etc. However, results from the modern era of GWAS and machine learning on large data sets318

show that the number of genetic loci which control a specific complex trait is typically in the319

thousands, and that these SNP sets are largely disjoint for different traits or disease risks320

[54]. The fact that most of the variance can be disjoint across different complex traits is a321

manifestation of high dimensionality. In this work we focus on sparse algorithms applied to322

array data which leaves open the possibility that there is are underlying causal loci that could323

still be correlated. However, the relatively small genetic correlations observed here leave this324

as an unlikely scenario.325

In an earlier paper [54], we looked at the extent to which SNPs used in polygenic predictors326

of risk are correlated across pairs of disease conditions. Here we went further and investigated327

pairwise correlations between each of 20 major disease PRS. The results, as summarized in328

Figure 8, can be expressed in words as: most correlations are modest8, and tend to be positive329

8Modest correlation is consistent with mostly but not entirely disjoint variance in the two PRS.
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rather than negative (antagonistic). We also concluded, on a phenotypic level, that the 20330

diseases tend to have positive significant pairwise comorbidity.331

We focused this paper on index performance in a single cohort, and carried out cross-332

cohort analyses in other populations. With increased data availability, these cross-cohort333

analyses will be expanded in scope.334
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