Association between Bisphosphonate use and COVID-19 related outcomes: a retrospective cohort study

Jeffrey Thompson ${ }^{1 *}$, Yidi Wang ${ }^{2 *}$, Tobias Dreischulte ${ }^{3}$, Olga Barreiro ${ }^{2}$, Rodrigo J. Gonzalez², Pavel Hanč ${ }^{2}$, Colette Matysiak ${ }^{2}$, Harold R. Neely ${ }^{2}$, Marietta Rottenkolber ${ }^{3}$, Tom Haskell ${ }^{1}$, Stefan Endres ${ }^{4,5}$, and Ulrich H. von Andrian ${ }^{2,6, \$}$
\section*{Author Information}
${ }^{1}$ Cerner Enviza, 51 Valley Stream Pkwy, Malvern, PA 19355
${ }^{2}$ Dept. of Immunology, Harvard Medical School, Boston, MA 02115
${ }^{3}$ Institute of General Practice and Family Medicine, University Hospital of Ludwig-Maximilians-University Munich, Pettenkoferstr. 10, 80336 Munich, Germany
${ }^{4}$ Center of Integrated Protein Science Munich and Division of Clinical Pharmacology, University Hospital, LMU Munich, Germany
${ }^{5}$ Einheit für Klinische Pharmakologie (EKLiP), Helmholtz Zentrum München, German
Research Center for Environmental Health, Neuherberg, Germany
${ }^{6}$ The Ragon Institute of MGH, MIT and Harvard, Cambridge, MA
* Equal contribution
\$ Send correspondence to:
Ulrich H. von Andrian, M.D.
Dept. of Immunology
Harvard Medical School
Boston, MA 02115, USA
Ph: +617-432-6827
Fax: +617-432-6828
Email: uva@hms.harvard.edu

Abstract

Background: Although there are several efficacious vaccines against COVID-19, vaccination rates in many regions around the world remain insufficient to prevent continued high disease burden and emergence of viral variants. Repurposing of existing therapeutics that prevent or mitigate severe COVID-19 could help to address these challenges. The objective of this study was to determine whether prior use of bisphosphonates is associated with reduced incidence and/or severity of COVID-19.

\section*{Methods:}

A retrospective cohort study utilizing payer-complete health insurance claims data from $8,239,790$ patients with continuous medical and prescription insurance from 1-1-2019 to 6-30-2020 was performed. The primary exposure of interest was use of any bisphosphonate from 1-1-2019 to 2-29-2020. Outcomes of interest included: (a) testing for SARS-CoV-2 infection; (b) COVID-19 diagnosis; and (c) hospitalization with COVID-19 diagnosis between 3-1-2020 and 6-30-2020.

\section*{Results:}

7,906,603 patients for whom continuous medical and prescription insurance information was available were selected. 450,366 bisphosphonate users were identified and 1:1 propensity score-matched to bisphosphonate non-users by age, gender, insurance type, primary-careprovider visit in 2019, and comorbidity burden. Bisphosphonate users had lower odds ratios (OR) of testing for SARS-CoV-2 infection (OR=0.22; 95\%CI:0.21-0.23; p<0.001), COVID-19 diagnosis (OR=0.23; 95\%CI:0.22-0.24; p<0.001), and COVID-19-related hospitalization ($\mathrm{OR}=0.26$; $95 \% \mathrm{Cl}: 0.24-0.29 ; \mathrm{p}<0.001$). Sensitivity analyses yielded results consistent with the primary analysis. Bisphosphonate-use was also associated with decreased odds of acute bronchitis ($\mathrm{OR}=0.23$; 95\%CI:0.22-0.23; $\mathrm{p}<0.001$) or pneumonia ($\mathrm{OR}=0.32$; 95\%CI:0.31-0.34; $\mathrm{p}<0.001$) in 2019, suggesting that bisphosphonates may protect against respiratory infections by a variety of pathogens, including but not limited to SARS-CoV-2.

\section*{Conclusions:}

Prior bisphosphonate-use was associated with dramatically reduced odds of SARS-CoV-2 testing, COVID-19 diagnosis, and COVID-19-related hospitalizations. Prospective clinical trials will be required to establish a causal role for bisphosphonate-use in COVID-19-related outcomes.

\section*{Funding:}

This study was supported by NIH grants, AR068383 and AI155865, a grant from MassCPR (to U.H.v.A.) and a CRI Irvington postdoctoral fellowship, CRI2453 (to P.H.).

INTRODUCTION

Throughout the COVID-19 pandemic, massive global efforts to repurpose existing drugs as potential therapeutic options for COVID-19 have been undertaken. Drug repurposing, whereby a drug already proven to be safe and effective in humans for another approved clinical indication is evaluated for novel clinical use, may allow for faster identification and deployment of therapeutic agents compared to traditional drug discovery pipelines. Using in silico and in vitro analyses, a growing list of drugs have been suggested to be potentially efficacious in treating COVID-19 by either direct or indirect antiviral actions ${ }^{1}$. Another potentially beneficial class of drugs may be agents that boost or modulate anti-viral immune responses to SARS-CoV-2 infection to reduce clinical symptoms and/or mitigate disease progression. Regardless of the mechanism of action, ultimately, randomized prospective clinical studies are needed to test the safety and efficacy of each candidate in treating or preventing COVID-19. Observational studies can help prioritize candidates for prospective clinical testing, by examining associations between the use of a candidate drug and the incidence or severity of disease in users compared to a matched group of non-users. Drugs with strong observational evidence for potential effectiveness against COVID-19 may then be considered for prospective trials ${ }^{1}$.

Here, we have investigated bisphosphonates (BPs), a class of small-molecule drugs that inhibit bone resorption by osteoclasts ${ }^{2}$. BPs are widely prescribed as either oral or intravenous formulations to treat osteoporosis, Paget disease, and malignancy-induced hypercalcemia. Additionally, BPs are used as adjuvant therapy for breast cancer ${ }^{3}$. BPs are subdivided into two classes, nitrogen-containing (amino-BPs) and nitrogen-free BPs (non-amino-BPs) ${ }^{4}$. Both accumulate in bone but have distinct molecular mechanisms by which they kill osteoclasts to prevent bone resorption ${ }^{2}$.

Aside from depleting osteoclasts, clinical and experimental studies indicate that BPs exert a plethora of immunomodulatory effects, providing a rationale for exploring BPs as potential repurposed drug candidates for COVID-19 (ref. ${ }^{5}$). Indeed, amino-BPs regulate the activation, expansion, and/or function of a major subset of human $\gamma \delta \mathrm{T}$ cells ${ }^{6-8}$ as well as neutrophils ${ }^{9}$, monocytes ${ }^{10}$, and macrophages ${ }^{11,12}$; they can modulate the antigen-presentation capacity of dendritic cells ${ }^{13}$; and in animal studies, both amino-BPs and non-amino-BPs exerted potent adjuvant-like activity to boost antibody and T cells responses to viral antigens ${ }^{14}$. Furthermore, observational studies have reported decreased in-hospital mortality for patients in the ICU ${ }^{15}$, and reduced incidence of pneumoniae and pneumonia-related mortality in patients treated with amino-BPs versus controls ${ }^{16}$. These immunological and clinical effects of BPs combine with several other characteristics that make BPs well-suited as repurposed drug candidates in the context of a pandemic: they are globally accessible as generics, affordable, straightforward to administer, and have known safety profiles in adult ${ }^{17}$ and paediatric populations ${ }^{18,19}$.

In light of these considerations, we have analysed a database of health insurance claims in the U.S. to determine if prior BP-use is associated with a differential incidence and/or severity of COVID-19-related outcomes. Specifically, we assessed the relationship between use of BPs and COVID-19-related hospitalizations and COVID-19 diagnosis, as well as testing for SARS-CoV-2 infection (as a proxy for severe COVID-19 symptoms given the restricted access to testing during the initial surge). Outcomes were measured from March 1, 2020 to
medRxiv preprint doi: https://doi.org/10.1101/2022.06.14.22276397; this version posted June 21, 2022. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY 4.0 International license .

June 30, 2020, a period that roughly coincided with the first wave of COVID-19 in the U.S. and predated the advent of potential outcome modifiers, such as vaccines or other effective treatment options.

METHODS

Study Design

A retrospective cohort study was performed using health insurance claims data from January 1, 2019 to June 30, 2020 (study period) in order to assess the relationship between use of BPs and three COVID-19-related outcomes: (a) testing for SARS-CoV-2 infection; (b) COVID-19 diagnosis; and (c) hospitalization with a COVID-19 diagnosis, whereby COVID-19related hospitalization was deemed the primary endpoint and COVID-19 diagnosis and testing were secondary endpoints. Primary and secondary endpoints were assessed during the observation period of March 1, 2020 to June 30, 2020, roughly corresponding to the first nation-wide surge of COVID-19 in the U.S. (Fig. 1A). In the primary analysis, the risk of COVID-19-related outcomes was assessed among BP users compared to a matched sample of BP non-users with similar demographic and clinical characteristics.

Data Source

Data used for this study included closed medical (inpatient and outpatient) and outpatient-pharmacy-dispensed claims between January 1, 2019 and June 30, 2020, from the Komodo Health payer-complete dataset (https://www.komodohealth.com). This dataset is derived from over 150 private insurers in the U.S. and includes patients with commercial, individual, state exchange-purchased, Medicare Advantage, and Medicaid managed-care insurance coverage. The dataset also provides information on insurance eligibility periods. Closed claims within this dataset represent those that had undergone insurance adjudication. In total, the Komodo Health payer-complete dataset includes health insurance claims data from over 140 million individuals in the U.S. from 2015 to 2020.

Cohort Definition

All patients were required to have continuous medical and prescription insurance eligibility during the entire study period. Patients with missing information for age, gender, insurance type, or state/region were excluded.

Exposures of Interest

The primary exposure of interest was the use of any amino- or non-amino BP medication. Exposure to BPs and all other medications of interest were assessed over a 14-month preobservation period preceding the COVID-19 pandemic in the U.S. This long duration was chosen because of the extended bioavailability of BPs, which accumulate in bone where they are retained and slowly released for up to several years ${ }^{20}$. Patients were classified as BP users if they had any claim at any time during the pre-observation period for one of the following: alendronate, alendronic acid, etidronate, ibandronate, ibandronic acid, pamidronate, risedronate, and zoledronic acid (full details in Appendix 1).

Timing of BP Dose

The effect of timing and formulation of BPs on COVID-19-related outcomes was more closely examined by varying the window between BP exposure and outcome measurement. The primary analysis BP user cohort, along with their propensity-score matched (see below for cohort matching) BP non-user cohort, were stratified as follows: two cohorts were used as the reference comparator with known BP-exposure during all or most of the pre-observation and the entire observation period, specifically (i) BP users who took oral alendronic acid (dosed daily or weekly) throughout the pre-observation period (i.e. at least one claim or drug-on-hand

A

B

Figure 1: Study Periods, Cohort Selection, and Analyses of BP use on COVID-19Related Outcomes
A. Schematic overview of the study timeline. B. Schematic flow diagram illustrating the identification of the study population and matched control populations for primary analysis and sensitivity analyses cohorts. BP: bisphosphonate; CA: California; CCI: Charlson comorbidity index; CI: confidence interval; COPD: chronic obstructive pulmonary disease; FL: Florida; IL: Illinois; NY: New York; OR: odds ratio; PCP: primary care physician; PS: propensity score; PSM: propensity score match
in each quarter in 2019 and in Jan/Feb. 2020) that also had a days-supply extending past June 30, 2020, and (ii) users of infusion zoledronic acid (dosed annually) with a claim in Q3 or Q4 2019; two cohorts with BP-exposure only during the pre-observation period, namely (iii) users of alendronic acid occurring during the first six months of 2019 with days-covered ending prior to June 30, 2019 and no other BP claims thereafter, and (iv) users of zoledronic acid in January or February 2019 with no other BP claims during the remainder of the study period; and, two cohorts with short-term BP exposure, specifically new users of (v) alendronic acid or (vi) zoledronic acid in February 2020, with no prior BP claims during the preobservation period.

Covariates

As covariates, we considered factors that may influence either the use of BPs or potential modulators of primary or secondary study endpoints. These included: age; gender; insurance type (commercial, dual, Medicaid, Medicare); having had any primary care physician (PCP) visit in 2019; and comorbidity burden. The variable 'PCP visit in 2019' was used to control for prior healthcare-use behaviour and was assigned based on any physician office claim from January 1, 2019 to December 31, 2019 with one of the following provider types: family practice, general practice, geriatric medicine, internal medicine, and preventive medicine. Comorbidity score assignment was calculated following the Charlson Comorbidity Index (CCI) methodology ${ }^{21}$, and was based on diagnosis codes present on any medical claim (inpatient or outpatient) occurring during the pre-observation period. The assigned CCI score was used as the comorbidity covariate for the primary cohort propensity score matching, but to better control for differences in comorbidity burden when assessing outcomes, all regression analyses involving the primary analysis cohort included the following individual comorbidity covariates in lieu of the aggregate CCI score: osteoporosis, cancer, chronic obstructive pulmonary disease (COPD), depression, dyslipidaemia, hypertension, obesity, type 2 diabetes, cardiovascular disease overall, sickle cell anemia, stroke, dementia, HIV/AIDS, chronic kidney disease/end-stage renal disease (CKD/ESRD), and liver disease (Appendix 1).

Cohort Matching

For the primary analysis, BP users were propensity-score (PS) matched to BP non-users via a PS calculated using multiple variables, including age, gender, insurance type, CCI , and any PCP visit in 2019, to yield comparable populations by demographics and clinical characteristics (Fig. 1B). To account for the differential geographic spread of COVID-19 across the U.S. during the observation period, matching was performed within each geographic region separately (Northeast, Midwest, South, West) and then combined. In addition to this within-region stratified match, a cohort build was also performed after restricting to patients from New York (NY) state only, since this state was the site of the largest outbreak in the initial COVID-19 surge in the U.S. All matching algorithms used a greedy-match propensity score technique ${ }^{22}$ to match BP users to non-users with a maximum permitted propensity-score difference of 0.015 .

Definition of Endpoints

Primary and secondary endpoints were assigned using inpatient and outpatient medical claims that occurred during the four-month observation period. The primary endpoint, COVID-19-related hospitalization, was assigned based on the presence of an International

Classification of Diseases, Tenth Revision (ICD-10) code on any inpatient medical service claim indicating test-confirmed 2019 Novel Coronavirus (2019-nCoV) acute respiratory disease, specifically U07.1. The first secondary endpoint, SARS-CoV-2 testing, was assigned using Current Procedural Terminology (CPT) codes indicating a test for active infection, specifically 87635,87636 , and 87637 . The second secondary endpoint, COVID-19-related diagnosis, was assigned based on any medical service claim with the ICD-10 diagnosis code U07.1.

Statistical Analysis

To analyze data, mySQL, Excel, and SAS 9.4 was used on a secure hosted environment provided by Komodo Health. All data used in this study was subject to data restrictions per working agreements with Komodo Health, which dictated that only aggregate results can be exported (no patient-level data), so no deidentified data can be shared.
Unadjusted analyses assessing the association between BP-use and COVID-19-related outcomes were performed for the primary analysis cohort using chi-square tests for categorical variables and calculation of the crude unadjusted odds ratio (OR) in the matched cohort groups overall, when stratified by region and in NY state alone, and when further stratified by age group and gender. Chi-square tests for categorical variables and t-tests for continuous variables were also performed to assess differences in demographic and clinical characteristics of BP users compared to BP non-users both pre-match and post-match to assess the success of the propensity-score match.
Multivariate logistic regression analyses, modelled separately to determine the adjusted OR for each COVID-19-related primary and secondary outcome while adjusting for demographic and clinical characteristics, were performed on the matched primary analysis cohort with all regions combined, when stratified by region, and in NY state alone. The primary exposure of interest was BP-use (yes/no) during the pre-observation period. Additional demographic/clinical characteristics also included as regression model covariates were: age group, gender, region (for all regions-combined analyses), insurance type, PCP visit in 2019, and the following comorbid conditions: osteoporosis, cancer, COPD, depression, dyslipidaemia, hypertension, obesity, type 2 diabetes, cardiovascular disease overall, sickle cell anaemia, stroke, dementia, HIV/AIDS, CKD/ESRD, and liver disease.
All tests were two-tailed, and p-values of less than 0.05 were considered significant. All analyses were performed using SAS 9.4 (Cary, NC).

Sensitivity Analyses

Multiple sensitivity analyses were performed to assess the reliability of the primary analysis results and/or to address potential unmeasured confounding (full details in Appendix 1).
[1] The first sensitivity analysis addressed potential confounding by indication (i.e. the possibility of the indication for BP use rather than BP use itself being responsible for differences in outcomes among BP users and non-users) by restricting the control group to an active comparator cohort of patients who had used non-BP anti-resorptive bone medications during the pre-observation period. Users of non-BP anti-resorptive bone medications, the smaller patient population, were then 1:1 matched to BP users, providing a sample where all patients had used bone health medications during the pre-observation period ("Bone-Rx" cohort) (Fig. 1B). Cohort matching and regression
modelling were performed following the same methodology employed for the primary analysis.
[2] The second sensitivity analysis further addressed potential baseline differences between users of BPs and users of non-BP anti-resorptive bone medications in terms of indication for treatment and risk of SARS-CoV-2 exposure. To homogenise indication for treatment, we restricted the "Bone-Rx" cohort to females aged older than 50 years with an osteoporosis diagnosis (ICD-10: M80.x, M81.x, M82.x), which is the main (but not the only) indication for use of anti-resorptive bone medications. In order to homogenise risk of COVID-19 exposure, we additionally (a) restricted both groups to residents of New York, Illinois, Florida, and California (four states with a high incidence of COVID-19 cases during the observation period, with each representing a geographic region) ${ }^{23}$, and (b) matched within each state by insurance-type strata (i.e. BP non-users matched to BP users with Medicaid coverage residing in New York) to control for differences in socioeconomic characteristics. Non-BP anti-resorptive bone medication users were then matched to BP users by age, PCP visit in 2019, and the following select comorbid conditions that include those thought to impact COVID-19 severity: cancer, COPD, depression, dyslipidaemia, heart failure, hypertension, obesity, and type 2 diabetes ${ }^{24}$. In addition to assessing COVID-19-related outcomes, the matched cohorts that resulted from this analysis, older female patients from New York, Illinois, Florida, or California with a diagnosis of osteoporosis who were users of BP or non-BP anti-resorptive medications ("Osteo-Dx-Rx" cohort), were used for the third and fourth sensitivity analyses (see below).
[3] The third sensitivity analysis evaluated the relationship between BP-use and exploratory negative control outcomes that were not anticipated to be impacted by the pharmacological mechanism of BPs. Separate comparisons were made in the primary cohort, the "Bone-Rx" cohort, and the "Osteo-Dx-Rx" cohort to evaluate the odds of any acute cholecystitis or acute pancreatitis-related inpatient/emergency-room (ER) service, which were chosen since both would present in an acute manner that require emergency intervention. These exploratory outcomes were assessed: (1) during the observation period among the already matched BP user/non-user populations; and (2) during a pre-pandemic period (the second half of 2019) when restricted to BP users in the first half of 2019 and their previously-assigned BP non-user matched pair to mitigate any COVID-19-related impacts on healthcare resource utilization.
[4] The fourth sensitivity analysis assessed the relationship between BP-use and exploratory positive control outcomes (anticipated to be impacted by the immunomodulatory pharmacological mechanism of BPs) occurring in 2019. For this analysis, the primary, "Bone-Rx", and "Osteo-Dx-Rx" cohorts were restricted to BP users who had any BP claim during the first half of 2019 and their previously-assigned BP non-user matched pair to assess the relationship between BP-use and medical services for other respiratory infectious diseases (acute bronchitis, pneumonia).
[5] The fifth sensitivity analysis addressed potential bias due to the 'healthy adherer' effect, whereby users of a preventive drug may have better disease outcomes due to their healthier behaviours rather than due to drug treatment itself ${ }^{25}$. Two strategies were employed to validate the findings from our primary analysis while controlling for the potential impact of healthy adherer effect-associated bias. First, we tested whether effects observed with exposure to BPs were similarly observed with exposure to other preventive drugs, namely statins, antihypertensives, antidiabetics, and antidepressants.

Second, we assessed whether the association between BP-use and COVID-19-related outcomes was maintained among the matched user/non-user populations of these other preventive drugs, i.e. BP users were compared to BP non-users within, for example, the statin user population and separately within the matched statin non-user population.

RESULTS

Study Population

A total of $8,239,790$ patients met the inclusion criterion of continuous medical and prescription insurance eligibility over the full study period, of which 333,107 were excluded due to missing demographic information, resulting in a total eligible sample of 7,906,603 patients (Fig. 1B). Of this full population, 452,051 (5.7\%) and $7,454,552$ (94.3%) patients were classified as BP users and BP non-users, respectively. Within BP users, more than 99% were prescribed an amino-BP, with oral alendronic acid (75.4\%), zoledronic acid infusion (11.5\%), and oral ibandronic acid (8.4\%) as the most prevalent formulations (Table S1).

Prior to propensity-score matching, there were significant differences between BP users and non-users across all demographic and clinical characteristics. BP users were older (age >60: 82.7% versus 27.7%; $p<0.001$), predominantly female (91.0% versus 57.2%; $p<0.001$), with a higher comorbidity burden (mean CCI 0.95 versus $0.60 ; p<0.001$), with a larger proportion of patients residing in the Western U.S. (21.1\% versus 15.4\%; p<0.001), covered by Medicare (43.3% versus 13.7\%; p<0.001), and having visited a PCP in 2019 (63.8% versus 44.7%; p<0.001). Propensity-score matching yielded 450,366 BP users and 450,366 BP non-users with no significant differences across all characteristics used in matching (Table 1).
Differences did exist, however, in the distribution of individual comorbid condition indicators that were used as covariates in the regression analysis, with the BP non-user cohort having a higher proportion of patients with COPD (10.2\% versus 8.5%; $p<0.001$), cardiovascular disease (25.1% versus 18.7\%; $p<0.001$), dyslipidemia (36.9% versus $34.6 \% ; p<0.001$), hypertension (46.4% versus 38.8%; $p<0.001$), obesity (10.3% versus 6.7%; $p<0.001$), and type 2 diabetes (22.9% versus 18.2%; p<0.001). Over 98% of all BP user/non-user matches for the primary analysis cohort were completed with differences in matched propensity scores <0.000001 (overall mean difference of 0.000004, max difference of 0.0147).
Similar profiles in pre-match versus post-match characteristics were seen when patients were stratified by region or restricted to NY-state (Tables S2A-E). Demographic distributions, including differences between BP user versus BP non-user characteristics pre- and postmatching for all sensitivity analysis cohorts are detailed in Appendix 2.

BP use and COVID-19-Related Outcomes

Among the full matched cohort, BP users had significantly lower rates and unadjusted (crude) odds of testing (1.2\% vs. 5.1%; OR=0.22; 95\%CI:0.21-0.22; p<0.001), diagnosis (0.7\% vs. 2.9%; OR=0.22; 95\%Cl:0.21-0.23; p<0.001), and hospitalization (0.2\% vs. 0.7%; OR=0.24; $95 \% \mathrm{Cl}: 0.22-0.26 ; \mathrm{p}<0.001$) as compared to BP non-users (Fig. 2). Consistent findings were seen when sub-stratifying the full matched cohort by age, gender, age*gender, within grouped regions, by individual region, and in NY-state alone (Tables S3A-F).
Multivariate regression analyses yielded similar results for all outcomes while additionally controlling for patient demographic and comorbidity characteristics. In the full matched cohort, BP users had lower adjusted odds of testing (OR=0.22; 95\%CI:0.21-0.23; p<0.001),
medRxiv preprint doi: https://doi.org/10.1101/2022.06.14.22276397; this version posted June 21, 2022. The copyright holder for this preprint
diagnosis ($\mathrm{OR}=0.23$; 95\% $\mathrm{Cl}: 0.22-0.24 ; \mathrm{p}<0.001$), and hospitalizations ($\mathrm{OR}=0.26$;
419 95\%CI:0.24-0.29; p<0.001). These findings were robust when comparing BP users with BP non-users when stratified by geographic region or NY-state alone.

Table 1: Primary Analysis Cohort (All Regions), Patient Characteristics Pre/Post Match

Clinical Characteristics

	mean	SD	mean	SD	mean	SD	p-value	mean	SD	mean	SD	mean	SD	p-value
CCI	0.62	1.38	0.60	1.35	0.95	1.76	<0.001	0.95	1.76	0.95	1.76	0.95	1.76	0.70

Regression Comorbidity Covariates

	N	\%	N	\%	N	\%	p-value	N	\%	N	\%	N	\%	p-value
Osteoporosis	267,020	3.4\%	135,231	1.8\%	131,789	29.2\%	<0.001	163,814	18.2\%	32,390	7.2\%	131,424	29.2\%	<0.001
Cancer	419,083	5.3\%	366,786	4.9\%	52,297	11.6\%	<0.001	94,148	10.5\%	41,861	9.3\%	52,287	11.6\%	<0.001
CKD/ESRD	361,451	4.6\%	328,633	4.4\%	32,818	7.3\%	<0.001	68,999	7.7\%	36,182	8.0\%	32,817	7.3\%	<0.001
COPD	466,094	5.9\%	427,850	5.7\%	38,244	8.5\%	<0.001	84,234	9.4\%	45,990	10.2\%	38,244	8.5\%	<0.001
CVD	1,084,031	13.7\%	999,526	13.4\%	84,505	18.7\%	<0.001	197,243	21.9\%	112,933	25.1\%	84,310	18.7\%	<0.001
Dementia	125,811	1.6\%	113,778	1.5\%	12,033	2.7\%	<0.001	24,921	2.8\%	12,889	2.9\%	12,032	2.7\%	<0.001
Depression	571,303	7.2\%	531,355	7.1\%	39,948	8.8\%	<0.001	86,280	9.6\%	46,431	10.3\%	39,849	8.8\%	<0.001
Dyslipidemia	1,532,254	19.4\%	1,375,920	18.5\%	156,334	34.6\%	<0.001	322,125	35.8\%	166,360	36.9\%	155,765	34.6\%	<0.001
HIV/AIDS	33,229	0.4\%	31,711	0.4\%	1,518	0.3\%	<0.001	2,897	0.3\%	1,379	0.3\%	1,518	0.3\%	0.01
Hypertension	1,899,063	24.0\%	1,723,519	23.1\%	175,544	38.8\%	<0.001	384,059	42.6\%	209,184	46.4\%	174,875	38.8\%	<0.001
Liver Disease	251,331	3.2\%	231,664	3.1\%	19,667	4.4\%	<0.001	38,697	4.3\%	19,031	4.2\%	19,666	4.4\%	0.001
Obesity	638,506	8.1\%	608,083	8.2\%	30,423	6.7\%	<0.001	76,844	8.5\%	46,498	10.3\%	30,346	6.7\%	<0.001
Sickle Cell Anemia	10,499	0.1\%	10,292	0.1\%	207	0.0\%	<0.001	422	0.0\%	215	0.0\%	207	0.0\%	0.70
Stroke	104,859	1.3\%	97,001	1.3\%	7,858	1.7\%	<0.001	19,395	2.2\%	11,569	2.6\%	7,826	1.7\%	<0.001
Type 2 Diabetes	978,239	12.4\%	895,983	12.0\%	82,256	18.2\%	<0.001	184,978	20.5\%	103,031	22.9\%	81,947	18.2\%	<0.001

BP: bisphosphonate; CCI: Charlson Comorbidity Index; COPD: chronic obstructive pulmonary disease;
CKD/ESRD: chronic kidney disease/end-stage renal disease; CVD: cardiovascular disease (overall); PCP: primary care physician; SD: standard deviation

428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482

Figure 2: Association of BP use and COVID-19-Related Outcomes
Incidence (left) and regression-adjusted results for odds (right) of SARS-CoV-2 testing (blue), COVID-19 diagnosis (purple), and COVID-19-related hospitalizations (red) of BP users compared with BP non-users in the all-regions combined primary analysis cohort (i) and when stratified by region/state into: Northeast (ii), Midwest (iii), South (iv), West (v), and New York state (vi).

Timing of last BP exposure and COVID-19-Related Outcomes

The above results demonstrate that any BP exposure during the 14-months pre-observation period is associated with a marked reduction in each of the three COVID-19-related outcomes. To further investigate the relationship between COVID-19-related outcomes and the timing of BP exposure, we focused on the two most commonly prescribed BPs, alendronic acid (oral formulation dosed daily or weekly) and zoledronic acid (infusion dosed annually). For each BP type, COVID-19-related outcomes were assessed among users: (i-ii) with exposure or days covered (based on prescription frequency) during the pre-observation period and throughout the observation period; (iii-iv) with exposure or days covered ending prior to the observation period; and (v-vi) newly initiating therapy prior to the observation period (Fig. 3A). Strikingly, all subgroups of BP users had decreased odds of COVID-19related outcomes (Fig. 3B) except for the odds of hospitalization among zoledronic acid users who were last dosed in January/February of 2019 (OR=0.52; 95\%CI:0.20-1.40; p=0.20) or newly initiated in February of 2020 ($\mathrm{OR}=0.49$; 95\%Cl:0.13-1.88; $\mathrm{p}=0.30$).

Sensitivity Analysis 1: COVID-19-Related Outcomes Among All Users of Anti-Resorptive Medications ("Bone-Rx" Cohort)

The first sensitivity analysis was performed to address potential confounding by indication. To validate our primary findings in more comparable cohorts, analysis was restricted to comparing BP users to patients using non-BP anti-resorptive bone medications during the pre-observation period. Compared to non-BP users of anti-resorptive medications, BP users had decreased odds of testing ($\mathrm{OR}=0.31$; 95\% $\mathrm{Cl}: 0.28-0.33$; $\mathrm{p}<0.001$), diagnosis ($\mathrm{OR}=0.35$; 95\%CI:0.31-0.38; p<0.001), and hospitalization (OR=0.45; 95\%CI:0.36-0.56; p<0.001) (Fig. 4A). Furthermore, these findings were robust when assessed separately across every geographic region as well as NY state for all outcomes except hospitalizations when restricted to the Western U.S. ($p=0.08$; Table S4).

Sensitivity Analysis 2: COVID-19-Related Outcomes Among Users of Anti-Resorptive Medications with a Diagnosis of Osteoporosis ("Osteo-Dx-Rx" Cohort)
The second sensitivity analysis was performed to address the fact that, even after restricting the comparator cohort to users of anti-resorptive medications, differences may still exist between patient cohorts that could affect COVID-19-related outcomes, including different indications for anti-resorptive medication use and other uncontrolled patient characteristics. To address this, the association between BP use and COVID-19 related outcomes were examined in a cohort restricted to female patients over 50 years old, with a diagnosis of osteoporosis, using either a BP or a non-BP anti-resorptive bone medication, matched within insurance-type as a proxy for socioeconomic status, and selected from four states (NY, IL, FL, CA) with high incidences of COVID-19 cases during the observation period ${ }^{23}$ ("Osteo-Dx-Rx" cohort). In agreement with the results reported above, the decrease in odds of COVID-19related outcomes in BP users remained robust for testing (OR=0.28; 95\%CI:0.23-0.35; $\mathrm{p}<0.001$), diagnosis ($\mathrm{OR}=0.40$; $95 \% \mathrm{Cl}: 0.32-0.49$; $\mathrm{p}<0.001$), and hospitalizations ($\mathrm{OR}=0.45$; 95\%Cl:0.26-0.75; p=0.003) (Figure 4B).

Sensitivity Analysis 3: Association of BP-use with Exploratory Negative Control Outcomes While the above sensitivity analyses were performed to control for health status differences between BP users and BP non-users during the pre-observation period, it remained theoretically possible that BP users exhibited differential health care access that might have

A

B

Figure 3: Timing of BP use and COVID-19-Related Outcomes. A. Schematic of BP user sub-stratification by timing of exposure to alendronic acid or zoledronic acid prior to outcome assessment. Broken lines represent periods of active BP dosing. For zoledronic acid users, days covered was considered to extend 1 year past the dosing period based on dosing guidelines. B. Incidence (left) and regression-adjusted results (right) for odds of SARS-CoV-2 testing, COVID-19 diagnosis, and COVID-19-related hospitalizations of BP users compared with BP non-users in pre-specified subgroups. CI: confidence interval; OR: odds ratio.
A ("Bone-Rx" Cohort)

B ("Osteo-Dx-Rx" Cohort)

Figure 4: COVID-19-Related Outcomes Among the Bone-RX and Osteo-Dx-Rx Restricted Cohorts. Incidence and forest plots summarizing regression-adjusted odds ratios of SARS-CoV-2 testing (blue), COVID-19 diagnosis (purple), ANDD COVID-19-related hospitalizations (red) in the (A) "Bone-Rx" and (B) "Osteo-Dx-Rx" sensitivity analysis cohorts.
impacted COVID-19-related outcomes. To examine such residual confounding, the third sensitivity analysis evaluated the incidence of exploratory outcomes not hypothesized to be modulated by BP-use in the primary, "Bone-Rx", and "Osteo-Dx-Rx" cohorts. Outcomes were measured during the observation period, as well as during a pre-pandemic period (the second half of 2019), to control for potential reduction in the use of healthcare services ${ }^{26,27}$ during the COVID-19 pandemic. The associations between BP-use and the following exploratory outcomes, which were anticipated to not be impacted by BP-use, were assessed: any acute cholecystitis or acute pancreatitis-related inpatient/ER service. Regression modelling found BP users in the primary analysis cohort to have decreased odds of any inpatient/ER service for acute cholecystitis (OR=0.55; 95\%CI:0.44-0.69; p<0.001) and acute pancreatitis ($\mathrm{OR}=0.58$; 95\%CI:0.49-0.69; p<0.001) during the observation period (Fig. 5A), as well as decreased odds of acute pancreatitis (OR=0.83; 95\%CI:0.71-0.96; $\mathrm{p}=0.01$) during the second half of 2019. BP users in the "Bone-Rx" cohort displayed a decreased odds of service for acute pancreatitis ($\mathrm{OR}=0.55 ; 95 \% \mathrm{Cl}: 0.36-0.87 ; \mathrm{p}=0.01$) only during the study observation period and no significant difference in odds of service for acute cholecystitis during either periods. Lastly, there was no difference in any outcome between BP users and $B P$ non-users in the "Osteo-Dx-Rx" cohort, although there were very few events in this cohort.

Sensitivity Analysis 4: Association of BP-use with Exploratory Positive Control Outcomes

The fourth sensitivity analysis was performed to assess if there is an association between BP-use and incidence of other respiratory infections, which has been previously reported ${ }^{16}$. Medical services for acute bronchitis or pneumonia were measured during the second half of 2019, prior to the advent of COVID-19, in the primary, "Bone-Rx", and "Osteo-Dx-Rx" cohorts. Regression modelling found that, among all cohort variations modelled, BP users had a decreased odds of any medical service related to acute bronchitis (point estimates of ORs ranged from 0.23 to 0.28) and pneumonia (point estimates of ORs ranged from 0.32 to 0.36) (Figure 5B).

Sensitivity Analysis 5: Association of Other Preventive Drugs with COVID-19-Related Outcomes

A potential pitfall in the interpretation of apparent effects of preventive medications on health outcomes is the so-called healthy adherer effect, whereby patients may have better outcomes due to their overall healthier behaviours and not due to active drug treatment itself ${ }^{25}$. To address this possibility of unmeasured confounding, a final sensitivity analysis was performed to evaluate the association between control exposures (i.e. use of other preventive medications such as statins, antihypertensives, antidiabetics, and antidepressants) and COVID-19-related outcomes (Figure 6A). In comparison to BPs, the impact of other preventive drug classes on COVID-19-related outcomes was much weaker overall (Figure $6 \mathrm{~B}-\mathrm{E}$) and varied between geographic regions in terms of magnitude or direction (Table S5AD). Furthermore, when assessing the impact of BP-use within matched user/non-user preventive drug cohorts (e.g. BP users compared to BP non-users among the matched statin user and statin non-user populations), we found BP-use to be consistently associated with lower odds of testing (point estimates of ORs ranged from 0.21 to 0.27), diagnosis (point estimates of ORs ranged from 0.22 to 0.30), and hospitalizations (point estimates of ORs ranged from 0.25 to 0.33) across all stratified preventive user/non-user cohorts (Figure 6B-E).

	Incidence of outcome events by exposure to bisphosphonates			Odds of Event
	Number of events / non-user patients (\%)	Number of events / user patients $(\%)$	Crude OR $(95 \% \mathrm{Cl})$	Adjusted OR $(95 \% \mathrm{Cl})$
Inpatient/ER service for acute cholecystitis (observation period)				
Primary	$260 / 450,366$	$128 / 450,366$	0.49	0.55
Cohort	(0.06)	(0.03)	$(0.40-0.61)$	$(0.44-0.69)$
Bone-Rx	$28 / 50,498$	$22 / 50,498$	0.79	0.80
Cohort	(0.06)	(0.04)	$(0.45-1.37)$	$(0.45-1.41)$
Osteo-Dx-Rx	$4 / 7,949$	$4 / 7,949$	1.00	0.96
Cohort	(0.05)	(0.05)	$(0.25-4.00)$	$(0.23-3.99)$

Inpatient/ER service for acute pancreatitis (observation period)				
Primary	$428 / 450,366$	$234 / 450,366$	0.55	0.58
Cohort	(0.10)	(0.05)	$(0.47-0.64)$	$(0.49-0.69)$
Bone-Rx	$56 / 50,498$	$31 / 50,498$	0.55	0.55
Cohort	(0.11)	(0.06)	$(0.36-0.86)$	$(0.36-0.87)$
Osteo-Dx-Rx	$4 / 7,949$	$5 / 7,949$	1.25	1.14
Cohort	(0.05)	(0.06)	$(0.34-4.66)$	$(0.30-4.36)$

Inpatient/ER service for acute cholecystitis (Q3/Q4 2019)

Primary	$261 / 326,638$	$194 / 326,638$	0.74	0.89
Cohort	(0.08)	(0.06)	$(0.62-0.89)$	$(0.73-1.09)$
Bone-Rx	$21 / 36,282$	$33 / 36,282$	1.57	1.57
Cohort	(0.06)	(0.09)	$(0.91-2.72)$	$(0.89-2.74)$
Osteo-Dx-Rx	$4 / 5,591$	$4 / 5,591$	1.00	1.03
Cohort	(0.07)	(0.07)	$(0.25-4.01)$	$(0.24-4.45)$

Inpatient/ER service for acute pancreatitis (Q3/Q4 2019)				
Primary	$478 / 326,638$	$315 / 326,638$	0.66	0.83
Cohort	(0.15)	(0.10)	$(0.57-0.76)$	$(0.71-0.96)$
Bone-Rx	$60 / 36,282$	$42 / 36,282$	0.70	0.70
Cohort	(0.17)	(0.12)	$(0.47-1.04)$	$(0.47-1.05)$
Osteo-Dx-Rx	$7 / 5,591$	$5 / 5,591$	0.72	0.84
Cohort	(0.13)	(0.09)	$(0.23-2.26)$	$(0.26-2.71)$

B

Figure 5: Exploratory Outcomes among BP Users versus BP Non-users. Incidence and adjusted odds ratios of (\mathbf{A}) expected negative exploratory outcomes and (B) other respiratory infections, in the primary, "Bone-Rx", and "Osteo-Dx-Rx" cohorts. CI: confidence interval; ER: emergency room; OR: odds ratio.

A

1. Sub-stratify by Preventive Medication User/Non-user
2. PSM at 1:1 BP Users to BP Non-users

Matched within each Region by PS based on: Age,
Gender, Insurance type, PCP visit in 2019, CCI score

| | Matched Patient Counts by BP-Use within Other Preventive Medication Classes | | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Statin | Antihypertensive | Antidiabetic | Antidepressant | |
| User | BP User/Non-user: 213,480 | BP User/Non-user: 204,396 | BP User/Non-user: 79,500 | BP User/Non-user: 144,282 |
| Non-user | BP User/Non-user: 124,716 | BP User/Non-user: 135,724 | BP User/Non-user: 72,514 | BP User/Non-user: 112,402 |

B

C

D

E

Figure 6: Association of Other Preventive Drugs with COVID-19-Related Outcomes
A. Schematic illustrating the identification of study populations and matched controls for each drug class. B-E. Incidence and adjusted odds ratios of SARS-CoV-2 testing (blue), COVID-19 diagnosis (purple), and COVID-19-related hospitalizations (red) in users and non-users of (B) statins, (C) antihypertensive medications, (D) non-insulin antidiabetic medications, and (E) antidepressant medications. For each class of preventive medications, further analysis was performed comparing BP users and BP non-users within matched cohorts of medication users (middle) and medication non-users (bottom). BP: bisphosphonate; CCI: Charlson comorbidity index; Cl: confidence interval; COPD: chronic obstructive pulmonary disease; OR: odds ratio; PCP: primary care physician; PS: propensity score; PSM: propensity score match

DISCUSSION

This study examined the association between recent exposure to BPs and subsequent COVID-19-related outcomes during the initial outbreak of the COVID-19 pandemic in the U.S. Our findings demonstrate that amino-BP users experienced a three- to five-fold reduced incidence of SARS-CoV-2 testing, COVID-19 diagnosis, and COVID-19-related hospitalization during this period. This dramatic difference in outcomes was consistently observed when comparing BP users to BP non-users in a propensity score-matched general population, when comparing to users of other anti-resorptive bone medications, when further restricting the latter cohort to female osteoporosis patients that were matched by comorbidities within state of residence and by insurance type, and when comparing BP users to BP non-users stratified by use of other preventive medications. Therefore, although there are confounding-related limitations inherent within retrospective studies, the consistency and strength of our observed associations when using various methods to control for unmeasured confounding support the contention that further prospective research should be performed to determine the true magnitude of the potential immunomodulatory effects of BP use.
Our findings are consistent with previous observational studies, prior to the advent of COVID19, that had reported associations between BP use and reduced incidence of pneumonia and pneumonia-related mortality ${ }^{16,28,29}$. Accordingly, we observed in our population that BP use was associated with decreased odds of medical services for acute bronchitis and pneumonia during the second half of 2019. Taken together, these findings suggest that BPs may play a protective role in respiratory tract infections from a variety of causes, including SARS-CoV-2.
Other recent retrospective studies have explored, to some extent, associations of antiresorptive medication use and COVID-19-related outcomes, albeit in much smaller patient populations than were analysed here. One study found no differences in the COVID-19related risk of hospitalization, ICU admission, and mortality among 1,997 female patients diagnosed with COVID-19 who received anti-osteoporosis medication as compared to propensity score-matched COVID-19 patients who were not receiving such drugs ${ }^{30}$. This study did not examine the incidence of COVID-19 among BP users, but it raises the possibility that the subset of BP users who do develop sufficient pathology to be diagnosed with COVID-19 may have a similar clinical course as BP non-users. Another retrospective cohort study in Italy examining the association of oral amino-BP use and incidence of COVID-19-related hospitalization and mortality found no difference between BP users and BP nonusers or users of non-BP anti-resorptive medications ${ }^{31}$. However, the overall incidence of COVID-19 hospitalization in the primary cohort ($151 / 126,370$ patients, or 0.12%) of this study was markedly lower than in the present analysis ($3,710 / 900,732$ patients, or 0.41%). A third study examined the influence of various anti-osteoporosis drugs, including BPs, on the cumulative incidence of COVID-19 in 2,102 patients with non-inflammatory rheumatic conditions that were compared to population estimates in the same geographic region ${ }^{32}$. In this analysis, users of non-BP anti-resorptive medications and zoledronate, but not users of oral BPs, had a lower incidence and relative risk of COVID-19 diagnosis and hospitalization. The observations with zoledronate are consistent with the findings reported here. However, we did not detect a significant impact of non-BP anti-resorptive medications in comparison to BPs, and we found a robust association between oral BP use and lower odds of COVID-19 diagnosis and related hospitalization. The reason for these discrepancies is unclear but could potentially reflect the large disparity in sample size between our study, which differed by more than three orders of magnitude. A fourth study, which used Israeli insurance data to perform
an analysis involving two separate case-control matched cohorts to assess the risk of COVID-19 hospitalizations when stratified by recent medication use, also found that the odds COVID-19-related hospitalizations were lower among users of BPs, and ranged from an OR of 0.705 ($95 \% \mathrm{Cl}: 0.522$ to 0.935) to 0.567 ($95 \% \mathrm{Cl}: 0.400$ to 0.789$)^{33}$.
The large size of our dataset allowed for a range of fully powered, stratified analyses to be performed to explore the robustness of our findings and to address unmeasured confounding factors and other sources of potential bias that can occur in retrospective studies using insurance claims data. These sensitivity analyses included: (1) comparing the effect of BP use and active control exposure, namely non-BP anti-resorptive bone medication; (2) further reducing unmeasured confounding by restricting sensitivity analysis (1) to females older than 50 years, diagnosed with osteoporosis, matched within state and insurance type and matched by comorbid conditions thought to impact COVID-19 severity; (3) assessing the effect of BP-use on exploratory negative control outcomes (acute cholecystitis or pancreatitis related inpatient/ER service); (4) evaluating the effect of BP-use on exploratory positive control outcomes (other respiratory infections); and (5) evaluating the potential bias related to the 'healthy adherer effect' by assessing (a) the effect of other preventive medication use on COVID-19-related outcomes (as negative control exposures) and (b) the BP effect in users and non-users of other preventive medications.
Notwithstanding, a retrospective analysis of insurance claims data has inevitable limitations that should be considered. For example, the interpretation of our findings depends, in part, on the assumption that BP users and non-users had a similar risk of SARS-CoV-2 infection during the observation period. However, our dataset does not allow us to restrict patient observations to those with known exposure to SARS-CoV-2. Therefore, to minimize potential differences in SARS-CoV-2 exposure between BP users and non-users in our primary study cohort, we implemented additional analytical strategies, including the sensitivity analyses discussed above, as well as matching BP users to BP non-users within geographical regions and specific states.
Despite these efforts, it is important to note that we have limited information to assess and match BP users to BP non-users by sociodemographic risk factors, such as socio-economic status and racial/ethnic minority status, that are associated with COVID-19 incidence and mortality ${ }^{34,35}$. In particular, our dataset does not include information on patients' race or ethnic background. This is a relevant limitation given the documented impact of racial/ethnic disparities on COVID-19 related outcomes. Specifically, Black/African-American and Hispanic patients have been shown to have significantly higher test positivity rates ${ }^{36-39}$ and severity of disease at the time of testing ${ }^{39}$. Furthermore, Black/African American ${ }^{40}$ and Hispanic patients were found to have a higher incidence of COVID-19 infection ${ }^{37,41}$ and odds of COVID-19 related hospital admission even after adjustment for comorbidities ${ }^{42}$, residence in a lowincome area ${ }^{38}$, and insurance plan ${ }^{40,43,44}$. The greater COVID-19 burden in these groups is likely due to a combination of systemic health inequities as well as a disproportionate representation among essential workers ${ }^{45,46}$, which could potentially increase their exposure risk to SARS-CoV-2. In addition, there are known variations in the prevalence of osteoporosis between different racial groups, which could potentially result in disproportionate frequencies of BP prescriptions ${ }^{47}$. The potential confounding due to socio-economic status and differential prevalence of osteoporosis among racial/ethnic groups was addressed in our analysis of the "Osteo-Dx-Rx" cohort where we compared BP users to non-users after restricting to female patients with a diagnosis of osteoporosis, all using anti-resorptive bone medications, and matched by insurance type (proportion of Medicaid and dual Medicare/Medicaid users) as a
proxy for social-economic status (Figure 4B). Nevertheless, this strategy cannot rigorously rule out a potential under-representation of groups with higher sociodemographic risk factors among BP users that could have contributed to the observed decreased odds of COVID-19 related outcomes in our primary analyses.
The potential bias introduced by a putative differential racial/ethnic group composition of BP users versus BP non-users is at least partially addressed by a recent study of a large Californian cohort of female BP users ${ }^{48}$. Compared to the racial composition of California atlarge (a proxy for BP non-users) ${ }^{49}$, BP users were predominantly Non-Hispanic White (36.5\% in California versus 53.3% among BP users). The proportions of Black/African-Americans and Asians among BP users in that study were similar to those in California at-large, whereas Hispanic patients represented a smaller percentage (24\%) of BP users as compared to Hispanics in the state's general population (39.4\%). Based on these findings and the reported differential case rates of COVID-19 infections among racial groups in California ${ }^{50}$, we can estimate the race-adjusted incidence of COVID-19 in populations reflecting the composition of BP users and non-users ${ }^{48}$ to be 1.7% and 2.1%, respectively. By comparison, in our study the actual rate of COVID-19 diagnosis in the Western US was 2.5% for BP non-users versus 0.46% for BP users (Fig. 2), indicating that the uneven representation of ethnic/racial groups cannot fully explain the observed differences in COVID-19 related outcomes. Moreover, we note that racial/ethnic minorities are also under-represented among statin users ${ }^{51}$, but statinusers in our primary cohort had similar odds of COVID-19 hospitalization as statin non-users (Figure 6B). Similarly, Black/African-Americans and Hispanics have lower utilization rates of antidepressants ${ }^{52}$ and Hispanics were also reported to be undertreated with antihypertensive medications ${ }^{53}$. Our analysis of COVID-19-related outcomes among users and non-users of antihypertensives showed a modest decrease in COVID-19 diagnosis and minimal association with COVID-19-related hospitalization (Figure 6C). By contrast, users of antidepressants had uniformly lower odds for both endpoints (Figures 6E), which is consistent with other recent studies ${ }^{33,54,55}$. However, regardless of the class of non-BP preventive drugs analysed, concomitant BP use was consistently associated with dramatically decreased odds of COVID-19 diagnosis and hospitalization as well as testing for SARS-CoV-2 (Figure 6B-E).
Furthermore, specifically looking at the rate of SARS-CoV-2 testing in California ${ }^{37,38}$ or nationwide ${ }^{36}$, the proportions of different racial and ethnic groups among tested patients were nearly identical to estimates for the state or national population. Thus, the observed association between BP use and reduced testing for SARS-CoV-2 infection in our nationwide cohorts is unlikely to be explained by potential differences in racial composition between BP users and non-users. It also seems unlikely that exposure to BPs reduces the actual incidence of SARS-CoV-2 infections. More likely, we propose that immune-modulatory effects of BPs may enhance the anti-viral response of BP users to SARS-CoV-2 and mitigate the development of symptoms. Milder or absent symptoms may have caused infected BP users to be less likely to seek testing. Moreover, because there was a nationwide shortage of available tests for SARS-CoV-2 during the observation period, patients needed to present with sufficiently severe disease symptoms to be eligible for testing, so fewer test-seeking BP users may have qualified. Consequently, a larger proportion of uncaptured 'silent' infections among BP users could explain why fewer diagnoses and hospitalizations were observed in this group.
The scarceness of COVID-19 tests combined with the strain on healthcare systems during the observation period could potentially have resulted in a misclassification bias whereby
some patients may have been falsely diagnosed and/or hospitalized with COVID-19 without having received a confirmatory test. However, this bias should equally affect BP users and BP non-users and bias our findings towards the null. Relatedly, limited hospital capacity during the observation period could have led to rationing of inpatient hospital beds based on severity of disease and likelihood to survive ${ }^{56}$. However, matching by age and comorbidities should produce patient populations with similar characteristics used for rationing.
A further limitation of our study is the lack of information on the result of COVID-19 tests received by patients. Therefore, as discussed above, the incidence and odds of COVID-19 testing should not be viewed as a proxy for the rate of infection, but rather reflects the incidence of patients with severe enough symptoms or exposure to warrant testing. Another potential source of confounding is the possibility that some patients in our study were classified as BP non-users due to the absence of BP exposure during the pre-observation period but may have received a BP during the observation period. The potential misclassification of BP non-users, however, would bias towards the null hypothesis, and was only seen in 1.92% of the matched BP non-user population.
An additional limitation is potential censoring of patients who died during the observation period, resulting in truncated insurance eligibility and exclusion based on the continuous insurance eligibility requirement. However, modelling the impact of censoring by using death rates observed in BP users and non-users in the first six months of 2020 and attributing all deaths as COVID-19-related did not significantly alter the decreased odds of COVID-19 diagnosis in BP users (see Appendix 3).
Additional limitations could also arise from comorbidities and misclassification bias due to the diagnostic and procedure codes used to identify study outcomes. Regarding comorbidities, one potential limitation in both the primary and "Bone-Rx" cohorts is imbalanced comorbidity burden in BP user and non-user cohorts post-match. Table 1 shows there is differential prevalence of most co-morbid diseases despite matched cumulative CCl score between BP user and BP non-user cohorts. However, this limitation is in part addressed given (1) these covariates were controlled for during regression analyses on study outcomes, and (2) that the key study findings were also observed in the "Osteo-Dx-Rx" cohort, which matched based on individual comorbidities. Another potential limitation, misclassification bias of study outcomes, may be present due to the specific procedure/diagnostic codes used. For SARS-CoV-2 testing, procedure codes were limited to those testing for active infection, and therefore observations could be missed if they were captured via antibody testing (CPT 86318, 86328). These codes were excluded a priori due to the focus on the symptomatic COVID-19 population. Furthermore, for the COVID-19 diagnosis and hospitalization outcomes, all events were identified using the ICD-10 code for lab-confirmed COVID-19 (U07.1), and therefore events with an associated diagnosis code for suspected COVID-19 (U07.2) were not included. This was done to have a more stringent algorithm when identifying COVID-19related events, and any impact of events identified using U07.2 is considered minimal, as previous studies of the early COVID-19 outbreak have found that U07.1 alone has a positive predictive value of $94 \%{ }^{57}$, and for this study U07.1 captured $99.2 \%, 99.0 \%$, and 97.5% of all COVID-19 patient-diagnoses for the primary, "Bone-Rx", and "Osteo-Dx-Rx" cohorts, respectively.
One large potential bias to consider when comparing BP users to BP non-users is the healthy adherer effect, whereby adherence to drug therapy is associated with overall healthier behavior ${ }^{58,59}$. During the COVID-19 pandemic, this could have potentially resulted in differences between BP users and non-users such as, for example, adherence to mask-
wearing, hand washing, or social distancing. However, if this effect accounted for the observed association between BP use and COVID-19-related outcomes, one would expect that BP users would have distinct odds for outcomes not predicted to be modulated by BPs and/or that users of other preventive medications would show similar associations. The sensitivity analysis of exploratory outcomes in our primary cohort indicates that BP users had decreased odds of any ER/inpatient visit for acute pancreatitis or acute cholecystitis during the observation period and decreased odds of ER/inpatient visits for acute pancreatitis prior to the COVID-19 pandemic in 2019 (Figure 5A). Plausible (non-exclusive) explanations for BP use association with decreased odds of these exploratory outcomes could be that: (1) BP users may be healthier at baseline; (2) BP users may have fewer risk factors for cholecystitis and pancreatitis such as smoking ${ }^{60}$, which can modify COVID-19-related outcomes ${ }^{61}$ but was not captured in our propensity score matching; (3) BPs directly decreased the risk of hypercalcemia-induced cholecystitis ${ }^{62}$ and pancreatitis ${ }^{63}$; and/or (4) BP users may have preferentially avoided or postponed use of medical services during the pandemic.
Thus, the healthy adherer effect could have potentially contributed to the association of BP use with a lower incidence of exploratory outcomes. However, as discussed above, other preventive drug classes had a variable directional impact on the odds of COVID-19-related events, and sub-analyses within each drug class identified a strong association between concomitant BP use and decreased COVID-19-related events (Figures 6B-E). Taken together, these results suggest the observed association between BP use and COVID-19related outcomes cannot solely be attributed to general behaviors associated with the healthy adherer effect.

Notably, several observational studies have reported that the use of one of our comparator preventive drug classes, statins, is associated with a lower risk of mortality in hospitalized COVID-19 patients ${ }^{333} 64,65$. Indeed, statins are currently being tested as an adjunct therapy for COVID-19 (NCT04380402). In our study population, statin use was associated with moderately decreased odds of SARS-CoV-2 testing and COVID-19 diagnosis, though at a much smaller magnitude than BPs, and was not consistently associated with reduced odds of COVID-19-related hospitalizations. Our analysis did not address the clinical course of hospitalized patients, so these results are not necessarily conflicting. However, we note that in our primary cohort, as many as 15.2% of statin users concomitantly used a BP. Indeed, within statin users, stratification by BP use revealed that the decreased odds of SARS-CoV-2 testing, COVID-19 diagnosis, and COVID-19-related hospitalizations remained regardless of statin use. Future studies on disease outcomes of hospitalized COVID-19 patients with antecedent use of BPs and statins alone or in combination are needed to clarify the effects of each drug class.
The differential association of amino-BPs versus statins with COVID-19 related outcomes is somewhat unexpected because both target the same biochemical pathway, albeit at different enzymatic steps ${ }^{13}$. Statins block HMG-CoA reductase, the first and key rate-limiting enzyme in the mevalonate pathway ${ }^{66}$. Amino-BPs, which account for $>99 \%$ of BPs prescribed in our study, inhibit a downstream enzyme in the same metabolic pathway, farnesyl pyrophosphate synthase (FPPS), which converts geranyl pyrophosphate to farnesyl pyrophosphate ${ }^{67}$. FPPS blockade disrupts protein prenylation and interferes with cytoskeletal rearrangement, membrane ruffling and vesicular trafficking in osteoclasts, thus preventing bone resorption ${ }^{68}$. However, the anti-osteolytic activity of BPs per se is unlikely to account for the observed association between BP use and decreased incidence of COVID-19 and, more broadly,
respiratory tract infections, because patients treated with non-BP anti-resorptive bone health medications have higher odds of respiratory infections (${ }^{16}$ and this study).
Another consequence of mevalonate pathway inhibition by both statins and amino-BPs is arrested endosomal maturation in antigen-presenting cells resulting in enhanced antigen presentation, T cell activation and humoral immunity ${ }^{13}$. In addition to this adjuvant-like effect, FPPS blockade by amino-BPs causes the intracellular accumulation of the enzyme's substrate, isopentyl diphosphate (IPP), in myeloid leukocytes, which then stimulate Vy9V 02 T cell ${ }^{69,70}$, a large population of migratory innate lymphocytes in humans that are thought to play an important role in host defense against infectious pathogens ${ }^{71}$, including SARS-CoV-1 (ref. ${ }^{6}$). Experiments in humanized mice that were challenged with influenza viruses have shown that amino-BP-induced expansion of $\mathrm{V} 9 \mathrm{~V} \delta 2 \mathrm{~T}$ cells markedly improves viral control and mitigates disease severity and mortality ${ }^{8,72}$. However, since statins act upstream of FPPS, they are expected to inhibit IPP synthesis and, hence, have been shown to counteract the stimulatory effect of amino-BPs on $\mathrm{V} \gamma 9 \mathrm{~V} \delta 2 \mathrm{~T}$ cells ${ }^{69}$. However, statins and amino-BPs do not always antagonize each other. In vitro, concomitant statin and amino-BP use has been shown to be synergistic in inhibition of cancer cell growth, but mainly through downstream inhibition of geranylgeranyl transferases and subsequent protein prenylation by statins ${ }^{73}$. The fact that the observed reduction in COVID-19-related outcomes in BP users was not altered by concomitant statin use implies that the apparent protective effects of amino-BPs may not rely solely on stimulation of $\mathrm{V} 99 \mathrm{~V} \delta 2 \mathrm{~T}$ cells. Indeed, in mice (in which BPs are not known to stimulate $\gamma \delta$ T cells), BPs potently boost systemic and mucosal antiviral antibody and T cell responses ${ }^{14}$. This effect was also seen with non-nitrogenous BPs, which do not antagonize FPPS ${ }^{14}$. In the present study, the number of patients who used non-nitrogenous BPs was less than 20, and therefore too small to determine any impact on COVID-19-related outcomes. Nevertheless, in aggregate, these clinical and pre-clinical findings raise the possibility that BPs may exert (at least some) immuno-stimulatory effects by engaging an as yet unidentified additional pathway, regardless of their nitrogen content.
Irrespective of the precise molecular mechanism of action, BPs have been reported to exert a plethora of effects on additional immune cell populations in humans, including NK cells ${ }^{74}$ and regulatory $\mathrm{T}^{\text {cells }}{ }^{75}$. Moreover, studies of patients treated with amino-BPs found impaired chemotaxis and generation of reactive oxygen species by neutrophils ${ }^{76,77}$, a population of inflammatory cells whose dysregulated recruitment and activation are strongly implicated in the pathogenesis of severe COVID-19 (refs. ${ }^{78,79}$). Thus, BPs may provide therapeutic benefits during infections with SARS-CoV-2 through modulation of both innate and adaptive immune responses. However, further studies to directly test these pleiotropic immunomodulatory effects of BPs and to assess their relative contribution to the host response to SARS-CoV-2 infection are needed.
We conclude that, despite a number of caveats discussed above, the association between BP use and decreased odds of COVID-19-related endpoints was robust in analyses comparing BP users to BP non-users. Large differences were detected regardless of age, sex or geographic location that remained robust when using multiple approaches to address unmeasured confounding and/or potential sources of bias. These retrospective findings strongly suggest that BPs should be considered for prophylactic and/or therapeutic use in individuals at risk of SARS-CoV-2 infection. However, additional well-controlled prospective clinical studies will be needed to rigorously assess whether the observed reduction in COVID-19-related outcomes is directly caused by BPs and remains true in patient populations not commonly prescribed BPs.

A number of BPs are globally available as relatively affordable generics that are generally well tolerated and could be prescribed for off-label use. Rare, but severe adverse events that have been linked to BP use include osteonecrosis of the jaw ${ }^{80}$ and atypical femur fractures ${ }^{81}$, which are both associated with long-term BP therapy. In this context, it is important to consider the relationship between the timing of BP exposure and COVID-19-related outcomes. Remarkably, BP users of alendronic acid whose prescription ended more than eight months prior to the observation period, as well as users who initiated alendronic acid therapy immediately preceding the observation period, had similarly decreased odds of COVID-19-related outcomes (Figure 3B). A likely explanation for the observed long-term protection after transient BP use may be the well-documented retention of BPs in bone resulting in half-lives of several years ${ }^{20}$. Small amounts of stored BPs are continuously released, especially in regions of high bone turnover, which may result in persistent exposure of immune cells either systemically or preferentially in bone marrow, a site of active immune cell trafficking ${ }^{82,83}$ where anti-viral immune responses can be initiated in response to respiratory infection ${ }^{84}$. Thus, BP use at the time of infection may not be necessary for protection against COVID-19. Rather, our results suggest that prophylactic BP therapy may be sufficient to achieve a potentially rapid and sustained immune modulation resulting in profound mitigation of the incidence and/or severity of infections by SARS-CoV-2.

Acknowledgements

The authors acknowledge Ziqi Chen, Paris Pallis, and Flora Tierney for helpful discussions on the interpretation of study results.

We are grateful to Komodo Health who provided all data used in this analysis at no cost, and we thank Vicki Guan and Ben Cohen from Komodo Health for facilitating this research.
Special thanks to Kantar Health (now Cerner Enviza) who provided the support needed to complete this study with no associated financial requirements.
This study was supported by NIH grants AR068383 and AI155865 (to U.H.v.A.) and a CRI Irvington postdoctoral fellowship CRI2453 (to P.H.).

Competing interests

JT and TH are full-time employees of Cerner Health. UHvA is paid consultant of Avenge Bio, Beam Therapeutics, Bluesphere Bio, DNAlite, Gate Biosciences, Gentibio, Intergalactic, intrECate Biotherapeutics, Interon, Mallinckrodt Pharmaceuticals, Moderna, Monopteros Biotherapeutics, Morphic Therapeutics, Rubius, Selecta and SQZ.

REFERENCES

1. Sultana J, Crisafulli S, Gabbay F, Lynn E, Shakir S, Trifiro G. Challenges for Drug Repurposing in the COVID-19 Pandemic Era. Front Pharmacol. 2020;11:588654.
2. Roelofs AJ, Thompson K, Ebetino FH, Rogers MJ, Coxon FP. Bisphosphonates: molecular mechanisms of action and effects on bone cells, monocytes and macrophages. Curr Pharm Des. 2010;16(27):2950-2960.
3. Dhesy-Thind S, Fletcher GG, Blanchette PS, et al. Use of Adjuvant Bisphosphonates and Other Bone-Modifying Agents in Breast Cancer: A Cancer Care Ontario and American Society of Clinical Oncology Clinical Practice Guideline. J Clin Oncol. 2017;35(18):2062-2081.
4. Russell RG, Watts NB, Ebetino FH, Rogers MJ. Mechanisms of action of bisphosphonates: similarities and differences and their potential influence on clinical efficacy. Osteoporos Int. 2008;19(6):733-759.
5. Brufsky A, Marti JLG, Nasrazadani A, Lotze MT. Boning up: amino-bisphophonates as immunostimulants and endosomal disruptors of dendritic cell in SARS-CoV-2 infection. J Trans/ Med. 2020;18(1):261.
6. Poccia F, Agrati C, Castilletti C, et al. Anti-severe acute respiratory syndrome coronavirus immune responses: the role played by V gamma 9 V delta 2 T cells. J Infect Dis.
2006;193(9):1244-1249.
7. Hewitt RE, Lissina A, Green AE, Slay ES, Price DA, Sewell AK. The bisphosphonate acute phase response: rapid and copious production of proinflammatory cytokines by peripheral blood gd T cells in response to aminobisphosphonates is inhibited by statins. Clin Exp Immunol. 2005;139(1):101-111.
8. Tu W, Zheng J, Liu Y, et al. The aminobisphosphonate pamidronate controls influenza pathogenesis by expanding a gammadelta T cell population in humanized mice. J Exp Med. 2011;208(7):1511-1522.
9. Favot CL, Forster C, Glogauer M. The effect of bisphosphonate therapy on neutrophil function: a potential biomarker. Int J Oral Maxillofac Surg. 2013;42(5):619-626.
10. Roelofs AJ, Coxon FP, Ebetino FH, et al. Fluorescent risedronate analogues reveal bisphosphonate uptake by bone marrow monocytes and localization around osteocytes in vivo. J Bone Miner Res. 2010;25(3):606-616.
11. Rogers TL, Holen I. Tumour macrophages as potential targets of bisphosphonates. J Trans/ Med. 2011;9:177.
12. Wolf AM, Rumpold H, Tilg H, Gastl G, Gunsilius E, Wolf D. The effect of zoledronic acid on the function and differentiation of myeloid cells. Haematologica. 2006;91(9):1165-1171.
13. Xia Y, Xie Y, Yu Z, et al. The Mevalonate Pathway Is a Druggable Target for Vaccine Adjuvant Discovery. Cell. 2018;175(4):1059-1073 e1021.
14. Tonti E, Jimenez de Oya N, Galliverti G, et al. Bisphosphonates target B cells to enhance humoral immune responses. Cell Rep. 2013;5(2):323-330.
15. Lee P, Ng C, Slattery A, Nair P, Eisman JA, Center JR. Preadmission Bisphosphonate and Mortality in Critically III Patients. J Clin Endocrinol Metab. 2016;101(5):1945-1953.
16. Sing CW, Kiel DP, Hubbard RB, et al. Nitrogen-Containing Bisphosphonates Are Associated With Reduced Risk of Pneumonia in Patients With Hip Fracture. J Bone Miner Res. 2020;35(9):1676-1684.
17. Suresh E, Pazianas M, Abrahamsen B. Safety issues with bisphosphonate therapy for osteoporosis. Rheumatology (Oxford). 2014;53(1):19-31.
18. Sbrocchi AM, Forget S, Laforte D, Azouz EM, Rodd C. Zoledronic acid for the treatment of osteopenia in pediatric Crohn's disease. Pediatr Int. 2010;52(5):754-761.
19. George S, Weber DR, Kaplan P, Hummel K, Monk HM, Levine MA. Short-Term Safety of Zoledronic Acid in Young Patients With Bone Disorders: An Extensive Institutional Experience. J Clin Endocrinol Metab. 2015;100(11):4163-4171.
20. Cremers S, Drake MT, Ebetino FH, Bilezikian JP, Russell RGG. Pharmacology of bisphosphonates. Br J Clin Pharmacol. 2019;85(6):1052-1062.
21. Quan H, Sundararajan V, Halfon P, et al. Coding algorithms for defining comorbidities in ICD-9CM and ICD-10 administrative data. Med Care. 2005;43(11):1130-1139.
22. Parsons LS. Reducing Bias in a Propensity Score Matched-Pair sample Using Greedy Matching techniques. . The Twenty-Sixth Annual SAS Users Group International Conference; 2001.
23. CDC. United States COVID-19 Cases and Death by State Over Time. https://data.cdc.gov/Case-Surveillance/United-States-COVID-19-Cases-and-Deaths-by-State-o/9mfa-cb36/data. Published 2021. Accessed.
24. Rosenthal N, Cao Z, Gundrum J, Sianis J, Safo S. Risk Factors Associated With In-Hospital Mortality in a US National Sample of Patients With COVID-19. JAMA Netw Open. 2020;3(12):e2029058.
25. Ladova K, Vlcek J, Vytrisalova M, Maly J. Healthy adherer effect - the pitfall in the interpretation of the effect of medication adherence on health outcomes. J Eval Clin Pract. 2014;20(2):111-116.
26. Birkmeyer JD, Barnato A, Birkmeyer N, Bessler R, Skinner J. The Impact Of The COVID-19 Pandemic On Hospital Admissions In The United States. Health Affairs. 2020;39(11):2010-2017.
27. Jeffery MM, D'Onofrio G, Paek H, et al. Trends in Emergency Department Visits and Hospital Admissions in Health Care Systems in 5 States in the First Months of the COVID-19 Pandemic in the US. JAMA Internal Medicine. 2020;180(10).
28. Colon-Emeric CS, Mesenbrink P, Lyles KW, et al. Potential mediators of the mortality reduction with zoledronic acid after hip fracture. J Bone Miner Res. 2010;25(1):91-97.
29. Reid IR, Horne AM, Mihov B, Stewart A, Bastin S, Gamble GD. Effect of Zoledronate on Lower Respiratory Infections in Older Women: Secondary Analysis of a Randomized Controlled Trial. Calcified Tissue International. 2021;109(1):12-16.
30. Atmaca A, Demirci I, Haymana C, et al. No association of anti-osteoporosis drugs with COVID-19-related outcomes in women: a nationwide cohort study. Osteoporos Int. 2021.
31. Degli Esposti L, Perrone V, Sangiorgi D, et al. The Use of Oral Amino-Bisphosphonates and Coronavirus Disease 2019 (COVID-19) Outcomes. J Bone Miner Res. 2021.
32. Blanch-Rubio J, Soldevila-Domenech N, Tio L, et al. Influence of anti-osteoporosis treatments on the incidence of COVID-19 in patients with non-inflammatory rheumatic conditions. Aging (Albany NY). 2020;12(20):19923-19937.
33. Israel A, Schaffer AA, Cicurel A, et al. Identification of drugs associated with reduced severity of COVID-19 - a case-control study in a large population. Elife. 2021;10.
34. Karmakar M, Lantz PM, Tipirneni R. Association of Social and Demographic Factors With COVID-19 Incidence and Death Rates in the US. JAMA Network Open. 2021;4(1).
35. Rogers TN, Rogers CR, VanSant-Webb E, Gu LY, Yan B, Qeadan F. Racial Disparities in COVID-19 Mortality Among Essential Workers in the United States. World Med Health Policy. 2020.
36. Kaufman HW, Niles JK, Nash DB. Disparities in SARS-CoV-2 Positivity Rates: Associations with Race and Ethnicity. Population Health Management. 2021;24(1):20-26.
37. Escobar GJ, Adams AS, Liu VX, et al. Racial Disparities in COVID-19 Testing and Outcomes. Annals of Internal Medicine. 2021;174(6):786-793.
38. Jacobson M, Chang TY, Shah M, Pramanik R, Shah SB. Racial and Ethnic Disparities in SARS-CoV-2 Testing and COVID-19 Outcomes in a Medicaid Managed Care Cohort. American Journal of Preventive Medicine. 2021.
39. Rubin-Miller L. COVID-19 Racial Disparities in Testing, Infection, Hospitalization, and Death: Analysis of Epic Patient Data. https://www.kff.org/coronavirus-covid-19/issue-brief/covid-19-racial-disparities-testing-infection-hospitalization-death-analysis-epic-patient-data/. Published 2020. Updated September 16, 2020. Accessed September 10, 2021.
40. Azar KMJ, Shen Z, Romanelli RJ, et al. Disparities In Outcomes Among COVID-19 Patients In A Large Health Care System In California. Health Affairs. 2020;39(7):1253-1262.
41. CDC. Risk for COVID-19 Infection, Hospitalization, and Death By Race/Ethnicity.
https://www.cdc.gov/coronavirus/2019-ncov/covid-data/investigations-
discovery/hospitalization-death-by-race-ethnicity.html\#footnote03. Published 2021. Updated July 16, 2021. Accessed Septebmer 7, 2019.
42. Nau C, Bruxvoort K, Navarro RA, et al. COVID-19 Inequities Across Multiple Racial and Ethnic Groups: Results From an Integrated Health Care Organization. Annals of Internal Medicine. 2021;174(8):1183-1186.
43. Price-Haywood EG, Burton J, Fort D, Seoane L. Hospitalization and Mortality among Black Patients and White Patients with Covid-19. N Engl J Med. 2020;382(26):2534-2543.
44. Muñoz-Price LS, Nattinger AB, Rivera F, et al. Racial Disparities in Incidence and Outcomes Among Patients With COVID-19. JAMA Network Open. 2020;3(9).
45. Statistics UBoL. Labor force characteristics by race and ethnicity, 2018.
https://www.bls.gov/opub/reports/race-and-ethnicity/2018/home.htm. Published 2019. Accessed September 7, 2021.
46. Selden TM, Berdahl TA. COVID-19 And Racial/Ethnic Disparities In Health Risk, Employment, And Household Composition. Health Affairs. 2020;39(9):1624-1632.
47. QuickStats: Percentage* of Adults Aged $\geqslant 50$ Years with Osteoporosis, \dagger by Race and Hispanic Origin§ - United States, 2017-2018. MMWR Morbidity and Mortality Weekly Report. 2021;70(19).
48. Black DM, Geiger EJ, Eastell R, et al. Atypical Femur Fracture Risk versus Fragility Fracture Prevention with Bisphosphonates. New England Journal of Medicine. 2020;383(8):743-753.
49. Bureau C. Race and Hispanic Origin. https://www.census.gov/quickfacts/CA. Published 2019. Accessed September 7, 2019.
50. Reitsma MB, Claypool AL, Vargo J, et al. Racial/Ethnic Disparities In COVID-19 Exposure Risk, Testing, And Cases At The Subcounty Level In California. Health Aff (Millwood). 2021;40(6):870-878.
51. Salami JA, Warraich H, Valero-Elizondo J, et al. National Trends in Statin Use and Expenditures in the US Adult Population From 2002 to 2013: Insights From the Medical Expenditure Panel Survey. JAMA Cardiol. 2017;2(1):56-65.
52. Chen J, Rizzo JA. Racial and ethnic disparities in antidepressant drug use. J Ment Health Policy Econ. 2008;11(4):155-165.
53. Gu A, Yue Y, Desai RP, Argulian E. Racial and Ethnic Differences in Antihypertensive Medication Use and Blood Pressure Control Among US Adults With Hypertension. Circulation: Cardiovascular Quality and Outcomes. 2017;10(1).
54. Hoertel N, Sánchez-Rico M, Vernet R, et al. Association between antidepressant use and reduced risk of intubation or death in hospitalized patients with COVID-19: results from an observational study. Molecular Psychiatry. 2021.
55. Zimniak M, Kirschner L, Hilpert H, et al. The serotonin reuptake inhibitor Fluoxetine inhibits SARS-CoV-2 in human lung tissue. Sci Rep. 2021;11(1):5890.
56. Emanuel EJ, Persad G, Upshur R, et al. Fair Allocation of Scarce Medical Resources in the Time of Covid-19. N Engl J Med. 2020;382(21):2049-2055.
57. Kluberg SA, Hou L, Dutcher SK, et al. Validation of diagnosis codes to identify hospitalized COVID - 19 patients in health care claims data. Pharmacoepidemiology and Drug Safety. 2022;31(4):476-480.
58. Curtis JR, Larson JC, Delzell E, et al. Placebo adherence, clinical outcomes, and mortality in the women's health initiative randomized hormone therapy trials. Med Care. 2011;49(5):427-435.
59. Dormuth CR, Patrick AR, Shrank WH, et al. Statin adherence and risk of accidents: a cautionary tale. Circulation. 2009;119(15):2051-2057.
60. Tolstrup JS, Kristiansen L, Becker U, Gronbaek M. Smoking and risk of acute and chronic pancreatitis among women and men: a population-based cohort study. Arch Intern Med. 2009;169(6):603-609.
61. Shastri MD, Shukla SD, Chong WC, et al. Smoking and COVID-19: What we know so far. Respir Med. 2021;176:106237.
62. Gleeson D, Murphy GM, Dowling RH. Changes in serum calcium levels influence biliary calcium levels in humans. Gastroenterology. 1994;107(6):1812-1818.
63. Kumar A, Kumar PG, Pujahari AK, Sampath S. Hypercalcemia Related Pancreatitis. Med J Armed Forces India. 2010;66(4):385-386.
64. Lohia P, Kapur S, Benjaram S, Mir T. Association between antecedent statin use and severe disease outcomes in COVID-19: A retrospective study with propensity score matching. J Clin Lipidol. 2021.
65. Zhang XJ, Qin JJ, Cheng X, et al. In-Hospital Use of Statins Is Associated with a Reduced Risk of Mortality among Individuals with COVID-19. Cell Metab. 2020;32(2):176-187 e174.
66. Istvan ES, Deisenhofer J. Structural mechanism for statin inhibition of HMG-CoA reductase. Science. 2001;292(5519):1160-1164.
67. Kavanagh KL, Guo K, Dunford JE, et al. The molecular mechanism of nitrogen-containing bisphosphonates as antiosteoporosis drugs. Proceedings of the National Academy of Sciences. 2006;103(20):7829-7834.
68. Russell RG. Bisphosphonates: mode of action and pharmacology. Pediatrics. 2007;119 Suppl 2:S150-162.
69. Wang H, Sarikonda G, Puan KJ, et al. Indirect stimulation of human Vgamma2Vdelta2 T cells through alterations in isoprenoid metabolism. J Immunol. 2011;187(10):5099-5113.
70. Nada MH, Wang H, Workalemahu G, Tanaka Y, Morita CT. Enhancing adoptive cancer immunotherapy with Vgamma2Vdelta2 T cells through pulse zoledronate stimulation. J Immunother Cancer. 2017;5:9.
71. Ribot JC, Lopes N, Silva-Santos B. gammadelta T cells in tissue physiology and surveillance. Nat Rev Immunol. 2021;21(4):221-232.
72. Zheng J, Wu WL, Liu Y, et al. The Therapeutic Effect of Pamidronate on Lethal Avian Influenza A H7N9 Virus Infected Humanized Mice. PLoS One. 2015;10(8):e0135999.
73. Abdullah MI, Abed MN, Richardson A. Inhibition of the mevalonate pathway augments the activity of pitavastatin against ovarian cancer cells. Scientific Reports. 2017;7(1).
74. Sarhan D, Leijonhufvud C, Murray S, et al. Zoledronic acid inhibits NFAT and IL-2 signaling pathways in regulatory T cells and diminishes their suppressive function in patients with metastatic cancer. Oncoimmunology. 2017;6(8):e1338238.
75. Liu H, Wang SH, Chen SC, Chen CY, Lo JL, Lin TM. Immune modulation of CD4(+)CD25(+) regulatory T cells by zoledronic acid. BMC Immunol. 2016;17(1):45.
76. Kuiper JW, Forster C, Sun C, Peel S, Glogauer M. Zoledronate and pamidronate depress neutrophil functions and survival in mice. Br J Pharmacol. 2012;165(2):532-539.
77. Chadwick JW, Tenenbaum HC, Sun CX, Wood RE, Glogauer M. The effect of pamidronate delivery in bisphosphonate-naive patients on neutrophil chemotaxis and oxidative burst. Sci Rep. 2020;10(1):18309.
78. Meizlish ML, Pine AB, Bishai JD, et al. A neutrophil activation signature predicts critical illness and mortality in COVID-19. Blood Adv. 2021;5(5):1164-1177.
79. Reusch N, De Domenico E, Bonaguro L, et al. Neutrophils in COVID-19. Front Immunol. 2021;12:652470.
80. Migliorati CA, Siegel MA, Elting LS. Bisphosphonate-associated osteonecrosis: a long-term complication of bisphosphonate treatment. The Lancet Oncology. 2006;7(6):508-514.
81. Saita Y, Ishijima M, Kaneko K. Atypical femoral fractures and bisphosphonate use: current evidence and clinical implications. Therapeutic Advances in Chronic Disease. 2015;6(4):185193.
82. Mazo IB, Honczarenko M, Leung H, et al. Bone marrow is a major reservoir and site of recruitment for central memory CD8+ T cells. Immunity. 2005;22(2):259-270.
83. Zhao E, Xu H, Wang L, et al. Bone marrow and the control of immunity. Cell Mol Immunol. 2012;9(1):11-19.
84. Hermesh T, Moltedo B, Moran TM, Lopez CB. Antiviral instruction of bone marrow leukocytes during respiratory viral infections. Cell Host Microbe. 2010;7(5):343-353.
APPENDIX 3: Deceased Sensitivity Analysis A23
1413 ADDITIONAL TABLES A28
ADDITIONAL TABLES

Association Between Bisphosphonate Use and COVID-19-Related Outcomes

APPENDIX Table of Contents

APPENDIX 1: Study Methods A2
Section 1: Variable Assignment A2
Section 2: Sensitivity Analyses Methodologies A6
Sensitivity Analysis 1 A6
Sensitivity Analysis 2 A7
Sensitivity Analysis 3 A8
Sensitivity Analysis 4 A9
Sensitivity Analysis 5 A10

APPENDIX 2: Additional Results
A12
APPENDIX 2: Additional Results A12

APPENDIX 1: Study Methods

Section 1: Variable Assignment

Outcomes

The following details the identification algorithms and associated codes that were used to identify outcomes of interest, including COVID-19-related as well as the exploratory outcomes that were assessed during sensitivity analyses.

Primary Outcomes

SARS-CoV-2 Testing

- Any medical services claim with a procedure code indicating polymerase chain reaction (PCR) testing for active SARS-CoV-2 infection 3/1/2020-6/30/2020
- Identified using HCPCS codes: $87635,87636,87637$

COVID-19 Diagnosis

- Any medical services claim with a diagnosis code indicating COVID-19 3/1/2020-6/30/2020
- Identified using ICD-10 code U07.1x

COVID-19-Related Hospitalization

- Any medical services claim occurring in an inpatient setting with a diagnosis code indicating COVID-19 3/1/2020-6/30/2020
- Identified using ICD-10 code U07.1x

Exploratory Outcomes (study observation period)

Acute Cholecystitis-Related Service

- Any medical services claim occurring in an emergency room/inpatient setting with a diagnosis indicating acute cholecystitis 3/1/2020-6/30/2020
- Identified using ICD-10 codes K81.0x

Acute Pancreatitis-Related Service

- Any medical services claim occurring in an emergency room/inpatient setting with a diagnosis indicating acute pancreatitis 3/1/2020-6/30/2020
- Identified using ICD-10 codes K85.x

Exploratory Outcomes (2019)

Acute Cholecystitis-Related Service

- Any medical services claim occurring in an emergency room/inpatient setting with a diagnosis indicating acute cholecystitis 7/1/2019-12/31/2019
- Identified using ICD-10 codes K81.0x

Acute Pancreatitis-Related Service

- Any medical services claim occurring in an emergency room/inpatient setting with a diagnosis indicating acute pancreatitis 7/1/2019-12/31/2019
- Identified using ICD-10 codes K85.x

Acute Bronchitis-Related Service

- Any medical services claim with a diagnosis indicating acute bronchitis 7/1/2019-12/31/2019
- Identified using ICD-10 codes J20.x-J21.x

Acute Pneumonia-Related Service

- Any medical services claim with a diagnosis indicating acute bronchitis 7/1/2019-12/31/2019

- Identified using ICD-10 codes J13.x-J18.x

Osteonecrosis

Osteonecrosis

- Any medical services claim with a diagnosis indicating drug-induced osteonecrosis 1/1/20196/30/2020
- Identified using ICD-10 codes M87.1x

Drug-Exposure Assignment

The following details the identification algorithms and associated inputs used for drug-exposure classification of study subjects into users/non-users of bisphosphonates, non-bisphosphonates osteoporosis medications, statins, antihypertensives, non-insulin antidiabetics, and antidepressants.

Bisphosphonates

- Any outpatient prescription or in-office dispensing 1/1/2019-2/29/2020
- Drugs included: alendronate, alendronic acid, etidronate, ibandronate, ibandronic acid, pamidronate, risedronate, and zoledronic acid

Non-BP Anti-Resorptive Bone Health Medications

- Any outpatient prescription or in-office dispensing 1/1/2019-2/29/2020
- Drugs included: denosumab, calcitonin, raloxifene, romosozumab-aqqg, teriparatide, abaloparatide, or bazedoxifene

Statins

- Any outpatient prescription 1/1/2019-2/29/2020
- Drugs included: pravastatin, rosuvastatin, fluvastatin, atorvastatin, pitavastatin, or simvastatin

Antihypertensives

- Any non-ophthalmic, non-injection, outpatient prescription claim for a beta-blocker, calcium channel blocker, or renin angiotensin system antagonist 1/1/2019-2/29/2020
- Drugs included: acebutolol, atenolol, betaxolol, bisoprolol, carvedilol, labetalol, metoprolol, nadolol, nebivolol, penbutolol, pindolol, propranolol, timolol, amlodipine, diltiazem, felodipine, isradipine, nicardipine, nifedipine, nisoldipine, verapamil, aliskiren, azilsartan, benazepril, candesartan, captopril, enalapril, eprosartan, fosinopril, irbesartan, lisinopril, losartan, moexipril, olmesartan, perindopril, quinapril, ramipril, sacubitril, telmisartan, trandolapril, valsartan

Antidiabetics

- Any outpatient prescription claim for a non-insulin antidiabetic medication 1/1/20192/29/2020
- Drugs included: metformin, chlorpropamide, glimepiride, glipizide, glyburide, tolazamide, tolbutamide, pioglitazone, rosiglitazone, alogliptin, linagliptin, saxagliptin, sitagliptin, albiglutide, dulaglutide, exenatide, liraglutide, lixisenatide, semaglutide, nateglinide, repaglinide, canagliflozin, dapagliflozin, empagliflozin, ertugliflozin

Antidepressants

- Any outpatient prescription claim for a selective serotonin reuptake inhibitor, norepinephrinedopamine reuptake inhibitor, serotonin-norepinephrine reuptake inhibitor, tricyclic, tetracyclic, modified cyclic, or MAO inhibitor medication 1/1/2019-2/29/2020
- Drugs included: amoxapine, bupropion, citalopram, clomipramine, desipramine, desvenlafaxine, doxepin, duloxetine, escitalopram, esketamine, fluoxetine, fluvoxamine, imipramine, isocarboxazid, levomilnacipran, maprotiline, mirtazapine, nefazodone, nortriptyline, paroxetine, phenelzine, protriptyline, selegiline, sertraline, tranylcypromine, trazodone, trimipramine, venlafaxine, vilazodone, vortioxetine

Charlson Comorbidity Condition Assignment

The following ICD-10 codes were used to assign the CCI condition-specific indicators that are used to calculate the overall CCI score. The time period used for identification of condition-specific indicators was the entire pre-observation period (1/1/2019-2/29/2020).

Myocardial infarction

- ICD-10 codes: I21.x, I22.x, I25.2

Congestive heart failure

- ICD-10 codes: I09.9, I11.0, I13.0, I13.2, I25.5, I42.0, I42.5-I42.9, I43.x, I50.x, P29.0

Peripheral vascular disease

- ICD-10 codes: I70.x, I71.x, I73.8, I73.9, I77.1, I79.0, I79.2, K55.1, K55.8, K55.9, Z95.8, Z95.9

Cerebrovascular disease

- ICD-10 codes: G45.x, G46.x, H34.0, I60.x-I69.x

Dementia

- ICD-10 codes: F00.x - F03.x, F05.1, G30.x, G31.1

Chronic pulmonary disease

- ICD-10 codes: I27.8, I27.9, J40.x - J47.x, J60.x - J67.x, J68.4, J70.1, J70.3

Rheumatologic disease

- ICD-10 codes: M05.x, M06.x, M31.5, M32.x - M34.x, M35.1, M35.3, M36.0

Peptic ulcer disease

- ICD-10 codes: K25.x-K28.x

Mild liver disease

- ICD-10 codes: B18.x, K70.0 - K70.3, K70.9, K71.3 - K71.5, K71.7, K73.x, K74.x, K76.0, K76.2-K76.4, K76.8, K76.9, Z94.4

Diabetes without chronic complications

- ICD-10 codes: E10.0, E10.1, E10.6, E10.8, E10.9, E11.0, E11.1, E11.6, E11.8, E11.9, E12.0, E12.1, E12.6, E12.8, E12.9, E13.0, E13.1, E13.6, E13.8, E13.9, E14.0, E14.1, E14.6, E14.8, E14.9

Diabetes with chronic complications

- ICD-10 codes: E10.2-E10.5, E10.7, E11.2-E11.5, E11.7, E12.2-E12.5, E12.7, E13.2E13.5, E13.7, E14.2-E14.5, E14.7
Hemiplegia or paraplegia
- ICD-10 codes: G04.1, G11.4, G80.1, G80.2, G81.x, G82.x, G83.0-G83.4, G83.9

Renal disease

- ICD-10 codes: I12.0, I13.1, N03.2 - N03.7, N05.2 - N05.7, N18.x, N19.x, N25.0, Z49.0 Z49.2, Z94.0, Z99.2
Any tumor, leukemia, or lymphoma
- ICD-10 codes: C00.x-C26.x, C30.x-C34.x, C37.x - C41.x, C43.x, C45.x-C58.x, C60.x -

Moderate or severe liver disease

- ICD-10 codes: I85.0, I85.9, I86.4, I98.2, K70.4, K71.1, K72.1, K72.9, K76.5, K76.6, K76.7

Metastatic solid tumor

- ICD-10 codes: C77.x - C80.x

AIDS/HIV

- ICD-10 codes: B20.x - B22.x, B24.x

Additional Condition Covariate Assignment

The following details the ICD-10 diagnosis codes that were used to identify comorbid conditions.
For all condition indicators classification was based on all medical claims occurring during the preobservation period (1/1/2019-2/29/2020).

Osteoporosis: M80.x, M81.x, M82.x
Cardiovascular Disease Overall: I3x.x-I4x.x, I20.x-I28.x, I50.x-I52.x
Cancer: C0x.x-C9x.x
Chronic Kidney Disease (CKD)/ End-Stage Renal Disease (ESRD): I12.0, I13.1, N03.2 - N03.7, N05.2 - N05.7, N18.x, N19.x, N25.0, Z49.0 - Z49.2, Z94.0, Z99.2

Chronic Obstructive Pulmonary Disease (COPD): J43.x, J44.x
Dementia: F00.x - F03.x, F05.1, G30.x, G31.1
Depression: F32.x, F33.x
Dyslipidemia: E78.x
Heart Failure: I50.x, I11.0xx, I13.0xx, I13.2xx
HIVIAIDS: B20.x - B22.x, B24.x
Hypertension: I10.x, I12.x, I11.9xx, I13.1xx
Liver Disease: B18.x, K70.0 - K70.3, K70.9, K71.3-K71.5, K71.7, K73.x, K74.x, K76.0, K76.2K76.4, K76.8, K76.9, Z94.4, I85.0, I85.9, I86.4, I98.2, K70.4, K71.1, K72.1, K72.9, K76.5, K76.6, K76.7

Obesity: E66.x
Sickle Cell Disease: D57.x
Stroke: I63.x
Type 2 Diabetes: E11.x

Section 2: Sensitivity Analyses Methodologies

Sensitivity Analysis (1): COVID-19-Related Outcomes in "Bone-Rx" Cohort

Overview \& Rationale

- The first sensitivity analysis was performed to validate the robustness of the primary findings by limiting all BP non-users to those who had used non-BP anti-resorptive bone health medications during the pre-observation period, thus yielding a more comparable comparator cohort that was also receiving bone health medication therapy.
- The use of an active-comparator cohort was done to reduce the impact of unmeasured confounding that may have occurred in the primary analysis due to the use of the derived Charlson Comorbidity Index composite score as the only comorbidity matching covariate. Restriction of the patient population to users of any non-BP anti-resorptive bone health medication prior to propensity-score matching improves the probability of having drug user/non-user matches with more similar clinical characteristics.
- This sensitivity analysis, further, also acted to increase the robustness and reliability of the matched user/non-user outcome comparisons since non-BP anti-resorptive bone health medication users represented the smaller portion of the total bone health medication-user population ("Bone-Rx" cohort) and therefore were matched to their best BP-user pair.

Analysis Cohort Definition(s)

- Continuous medical and prescription insurance coverage 1/1/2019-6/30/2020
- Patients with $\geqslant 1$ claim for any anti-resorptive bone health medication 1/1/2019-2/29/2020

Exposures of Interest

- Patients were assigned into the BP user cohort if they had any claim 1/1/2019-2/29/2020 for one of the following: alendronate, alendronic acid, etidronate, ibandronate, ibandronic acid, pamidronate, risedronate, and zoledronic acid.
- Patients were assigned into the non-BP any anti-resorptive bone health medication user cohort if: (1) they had any claim 1/1/2019-2/29/2020 for one of the following: denosumab, calcitonin, raloxifene, romosozumab-aqqg, teriparatide, abaloparatide, or bazedoxifene; and (2) they had no BP claims 1/1/2019-2/29/2020.

Outcomes

- SARS-CoV-2 testing, COVID-19 diagnosis, and COVID-19-related hospitalizations

Cohort Matching

- Non-BP anti-resorptive bone health medication users were matched to BP users based on age, gender, insurance type, any PCP visit in 2019, and comorbidity score. Matching was performed within each region separately (northeast, midwest, south, west) and then combined as well as in NY-state alone.

Statistical Analyses

- Same as was performed for the primary analysis cohort.

Sensitivity Analysis (2): COVID-19-Related Outcomes in "Osteo-Dx-Rx" Cohort

Overview \& Rationale

- The second sensitivity analysis was performed to further assess the robustness of the primary analysis findings by performing a highly restricted comparator cohort matching that included patients diagnosed and treated for osteoporosis ("Osteo-Dx-Rx" cohort).
- The relationship between COVID-19-related outcomes and BP-exposure was modelled after restricting anti-resorptive bone health medication users to those most likely to use BPs and matching BP non-users to BP users based on the presence of comorbid diagnoses within insurance type in four states with early COVID-19 spread representing each to further reduce confounding related to differences in demographic/clinical characteristics amongst BP users/non-users, confounding due to socioeconomic status (insurance type as proxy), and confounding due to differences in COVID-19-exposure risk based on geography.

Analysis Cohort Definition(s)

- Continuous medical and prescription insurance coverage 1/1/2019-6/30/2020
- Patients with $\geqslant 1$ claim for any osteoporosis medication 1/1/2019-2/29/2020 who also met the following criteria: (i) female; (ii) age 51 or older; (iii) identified as residing in New York, Illinois, Florida, or California; and (iv) had $\geqslant 1$ medical claim indicating a diagnosis of osteoporosis 1/1/2019-2/29/2020

Exposures of Interest

- Patients were assigned into the BP user cohort if they had any claim 1/1/2019-2/29/2020 for one of the following: alendronate, alendronic acid, etidronate, ibandronate, ibandronic acid, pamidronate, risedronate, and zoledronic acid.
- Patients were assigned into the non-BP anti-resorptive bone health medication user cohort if: (1) they had any claim 1/1/2019-2/29/2020 for one of the following: denosumab, calcitonin, raloxifene, romosozumab-aqqg, teriparatide, abaloparatide, or bazedoxifene; and (2) they had no BP claims 1/1/2019-2/29/2020.

Outcomes

- SARS-CoV-2 testing, COVID-19 diagnosis, and COVID-19-related hospitalizations

Cohort Matching

- Non- anti-resorptive bone health medication users were matched to BP users based on age, PCP visit in 2019, and the presence of the following comorbid conditions (assigned using ICD10 codes on claims occurring 1/1/2019-2/29/2020): cancer, chronic obstructive pulmonary disease, depression, dyslipidaemia, heart failure, hypertension, obesity, and type 2 diabetes.
- Matching was performed within each state when stratified by insurance type (commercial, dual, Medicaid, Medicare).

Statistical Analyses

- Multivariate logistic regression analyses, modelled separately for each COVID-19-related outcome of interest, were performed on the unmatched and matched samples after combining all patient observations. In addition to the key exposure variable (indicating BP user versus non-BP user), the regression model also included demographic/clinical covariate for age group, region, insurance type, PCP visit in 2019, and the following comorbid conditions: osteoporosis, cancer, chronic obstructive pulmonary disease, depression, dyslipidaemia, hypertension, obesity, type 2 diabetes, cardiovascular disease overall, sickle cell anemia, stroke, dementia, HIV/AIDS, chronic kidney disease/end-stage renal disease, and liver disease.

Sensitivity Analysis (3): Association of BP-use with Exploratory Negative Control Outcomes

Overview \& Rationale

- The third sensitivity analysis was performed to assess the relationship between BP-use and outcomes not anticipated to be impacted by the pharmacological mechanism of BPs.
- This was performed by modelling the relationship between BP-exposure and other outcomes occurring (1) during the study observation, and (2) during the second half of 2019 among BP users with claims during the first half of 2019 and their previously-assigned BP non-user matched pair, in the primary, "Bone-Rx", and "Osteo-Dx-Rx" cohorts.
- Outcomes modelled included any acute cholecystitis-related or acute pancreatitis-related inpatient/emergency-room (ER) service, used as exploratory outcomes not predicted to be modulated by BP exposure to assess the validity of the core COVID-19-related outcomes.

Analysis Cohort Definition(s)

- Patients who were included in the primary analysis cohort for assessment of (1) outcomes occurring during the study observation period; for (2) outcomes assessed during the second half of 2019 the cohort was restricted to among BP users with claims during the first half of 2019 and their previously-assigned BP non-user matched pair.
- Patients who met all eligibility criteria to be included in the 'Bone-Rx' cohort for assessment of (1) outcomes occurring during the study observation period; for (2) outcomes assessed during the second half of 2019 the cohort was restricted to among BP users with claims during the first half of 2019 and their previously-assigned BP non-user matched pair.
- Patients who met all eligibility criteria to be included in the 'Osteo-Dx-Rx' cohort for assessment of (1) outcomes occurring during the study observation period; for (2) outcomes assessed during the second half of 2019 the cohort was restricted to among BP users with claims during the first half of 2019 and their previously-assigned BP non-user matched pair.

Exposures of Interest

- For the primary analysis cohort, the BP user / BP non-user assignment was the same as used in the core analyses.
- For the "Bone-Rx" and "Osteo-Dx-Rx" cohorts, assignment was the same as used in those analyses stratifying medication users into BP users and non-BP medication users.

Outcomes

- Any medical claim from an ER/inpatient setting with a diagnosis indicating acute cholecystitis (ICD-10 code K81.0x) occurring 3/1/2020-6/30/2020 (observation period)
- Any medical claim from an ER/inpatient setting with a diagnosis indicating acute pancreatitis (ICD-10 code K85.x) occurring 3/1/2020-6/30/2020 (observation period)
- Any medical claim from an ER/inpatient setting with a diagnosis indicating acute cholecystitis (ICD-10 code K81.0x) occurring 7/1/2019-12/31/2019 (2019)
- Any medical claim from an ER/inpatient setting with a diagnosis indicating acute pancreatitis (ICD-10 code K85.x) occurring 7/1/2019-12/31/2019 (2019)

Cohort Matching

- NA; all cohorts previously matched.

Statistical Analyses

- Multivariate logistic regression analyses were performed using the same methodologies employed when assessing COVID-19 outcomes that were cohort-build-specific (i.e. followed previous approach detailed for each respective cohort build) to assess the odds of acute cholecystitis or acute pancreatitis.

Sensitivity Analysis (4): Association of BP-use with Exploratory Positive Control Outcomes in 2019

Overview \& Rationale

- The fourth sensitivity analysis was performed to assess the relationship between BP-use and select outcomes occurring in 2019 to validate the theorized BP mechanism of action.
- This was performed by modelling the relationship between BP-exposure in the first half of 2019 and other outcomes occurring during the second half of 2019 in the primary, "Bone-Rx", and "Osteo-Dx-Rx" cohorts, specifically medical services for other infectious respiratory conditions (acute bronchitis, pneumonia), used to assess the validity of the relationship between BP-use and decreased respiratory infections.

Analysis Cohort Definition(s)

- The following criteria were applied to all three cohort build variations (primary analysis cohort, "Bone-Rx" cohort, "Osteo-Dx-Rx" cohort): (i) BP users were restricted to those with any BP claim 1/1/2019-6/30/2019, and the remaining previously-classified BP-user patients with their first BP-claim date occurring on/after 7/1/2019 were excluded; (ii) BP non-users were restricted to their BP-user matched-pair previously assigned.

Exposures of Interest

- In all cohort build variations, the previously-classified BP user cohorts were restricted to those with any BP-claim 1/1/2019-6/30/2019; all other previously-classified BP users were excluded.

Outcomes

- Any medical claim with a diagnosis indicating acute bronchitis (ICD-10 code J20.x-J21.x) occurring 7/1/2019-12/31/2019
- Any medical claim with a diagnosis indicating pneumonia (ICD-10 code J13.x-J18.x) occurring 7/1/2019-12/31/2019

Cohort Matching

- NA; all cohorts previously matched.

Statistical Analyses

- Multivariate logistic regression analyses were performed using the same methodologies employed when assessing COVID-19-related outcomes that were cohort-build-specific (i.e. followed previous approach detailed for each respective cohort build) to assess the odds of acute bronchitis, or pneumonia.

Sensitivity Analysis (5): Association between use of Other Drug Classes and COVID-19Related Outcomes

Overview \& Rationale

- The fifth sensitivity analysis was performed to assess whether the observed protective effect of BPs may be associated with general healthier behaviours in patients using any medication rather than specifically BP use. To assess this unmeasured confounding due to the healthy adherer effect, which is a type of potential bias where patients may have better outcomes due to their heathier behaviours and not better outcomes related to active drug treatment itself, the first sensitivity analysis evaluated the association between use of other preventive medications (statin, antihypertensive, antidiabetic, antidepressant) and COVID-19-related outcomes were evaluated.
- This was performed following the same techniques used in the primary cohort matching and analyses but when assigned drug exposure cohorts based on the use of statin, antihypertensive, antidiabetic, or antidepressant medications. The consistency of methods was done to permit direct comparison on the association between drug-use and COVID-19-related outcomes to assess whether the healthy adherer effect alone accounts for the decrease in the odds of COVID-19 outcomes when comparing BP users to non-users in the primary analysis. Evidence to support the contention that the HAE is a significant source of unmeasured confounding would necessitate that other drug classes display a similar statistically significant trend and/or magnitude when comparing drug users to non-users. Variability in directional impact, magnitude, and/or statistical significance would, conversely, suggest that the healthy adherer effect itself does not account for the differences seen when comparing BP users to BP non-users.
- This sensitivity analysis, additionally, also employed a unique nested-matching technique wherein BP users were matched to BP non-users within the other-medication-class matched populations when stratified into the already matched but mutually exclusive user/non-user cohorts. This was performed to: (1) assess whether the decreased odds of COVID-19-realted outcomes in BP users compared to BP non-users was robust, even amongst cohorts displaying an increase in the odds of COVID-19-related outcomes; and (2) to assess whether the magnitude of decrease in odds of COVID-19-related outcomes amongst BP users compared to BP non-users seen in the primary analysis is impacted by use of other medication classes, including some that have also been identified as being associated with a reduced incidence and/or severity of COVID-19-related outcomes.

Analysis Cohort Definition(s)

- Continuous medical and prescription insurance coverage 1/1/2019-6/30/2020 (all)
- Patients with any claim for another drug class of interest (statin, antihypertensive, antidiabetic, antidepressant) medication 1/1/2019-2/29/2020 were classified users
- Among the propensity-score matched drug user/non-user cohorts, a further stratification and propensity-score matching based on BP use 1/1/2019-2/29/2020 to yield the following: (i) drug user/BP user matched to drug user/BP non-user, (ii) drug non-user/BP user matched to drug non-user/BP non-user.

Exposures of Interest

- Patients were assigned into the statin user cohort if they had any claim 1/1/2019-2/29/2020 for one of the following: pravastatin, rosuvastatin, fluvastatin, atorvastatin, pitavastatin, or simvastatin
- Patients were assigned into the antihypertensive user cohort if they had any non-ophthalmic, non-injection claim 1/1/2019-2/29/2020 for a beta blocker, calcium channel blocker, or reninangiotensin system antagonist medication.
medRxiv preprint doi: https://doi.org/10.1101/2022.06.14.22276397; this version posted June 21, 2022. The copyright holder for this preprint
- Patients were assigned into the antidiabetic user cohort if they had any claim 1/1/20192/29/2020 for one of the following non-insulin medications: metformin, chlorpropamide, glimepiride, glipizide, glyburide, tolazamide, tolbutamide, pioglitazone, rosiglitazone, alogliptin, linagliptin, saxagliptin, sitagliptin, albiglutide, dulaglutide, exenatide, liraglutide, lixisenatide, semaglutide, nateglinide, repaglinide, canagliflozin, dapagliflozin, empagliflozin, ertugliflozin
- Patients were assigned into the antidepressant user cohort if they had any claim 1/1/20192/29/2020 for one of the following: amoxapine, bupropion, citalopram, clomipramine, desipramine, desvenlafaxine, doxepin, duloxetine, escitalopram, esketamine, fluoxetine, fluvoxamine, imipramine, isocarboxazid, levomilnacipran, maprotiline, mirtazapine, nefazodone, nortriptyline, paroxetine, phenelzine, protriptyline, selegiline, sertraline, tranylcypromine, trazodone, trimipramine, venlafaxine, vilazodone, vortioxetine

Outcomes

- SARS-CoV-2 testing, COVID-19 diagnosis, and COVID-19-related hospitalizations

Cohort Matching

- For the larger drug-class analyses, matching was performed following the same methods used in the primary analysis: users were matched to non-users based on age, gender, insurance type, any PCP visit in 2019, and comorbidity score. Matching was performed within each region separately (northeast, midwest, south, west) and then combined, as well as in NY-state alone.
- Following this matching procedure, a nested BP user to BP non-user propensity score match was then performed on the aforementioned matched populations (i.e. within the separate and already matched statin user and statin non-user populations). Matching was performed using the same list of demographic/clinical characteristics, and was also performed within each region separately (northeast, midwest, south, west) and then combined as well as in NY-state alone.

Statistical Analyses

- Same as was performed for the primary analysis cohort.

APPENDIX 2: Additional Study Results; Cohort Characteristics Pre/Post Match

Primary Analysis Study Population

Northeast Region

A total of $2,152,560$ patients identified as residing in the northeast were included in the unmatched primary analysis cohort comparisons, of which 119,728 (5.6\%) and 2,032,832 (94.4\%) were classified as BP users and BP non-users, respectively (Table S2a). Prior to propensity-score matching, there were significant differences across all demographic and clinical characteristics. Compared to BP nonusers, BP users were older (97.5% age ≥ 51 versus 49.8%; $p<0.001$), predominantly female (90.5% versus 57.4%; $p<0.001$), with higher comorbidity burden (mean $\mathrm{CCl}=0.93$ versus $0.65 ; \mathrm{p}<0.001$), insured by Medicare (46.5% versus 18.0%; $p<0.001$), and have had a primary-care physician (PCP) visit in 2019 (58.3% versus 42.8%; p<0.001). Propensity-score matching yielded 119,494 BP users and 119,494 BP non-users with no significant differences across examined characteristics. A total of 234 BP users from the northeast region in the unmatched primary analysis cohort were not assigned an applicable BP non-user pair during the matching procedure and were excluded from the matched $B P$ user population.

Midwest Region

A total of $1,467,802$ patients identified as residing in the midwest were included in the unmatched primary analysis cohort comparisons, of which 75,967 (5.2\%) and 1,391,835 (94.8\%) were classified as BP users and BP non-users, respectively (Table S2b). Prior to propensity-score matching, there were significant differences across all demographic and clinical characteristics. Compared to BP nonusers, BP users were older (96.6% age ≥ 51 versus 44.0%; $p<0.001$), predominantly female (90.3% versus 57.1%; $p<0.001$), with higher comorbidity burden (mean $\mathrm{CCl}=0.99$ versus $0.56 ; \mathrm{p}<0.001$), insured by Medicare (43.6% versus 14.5%; $p<0.001$), and have had a primary-care physician (PCP) visit in 2019 (62.2% versus 51.0%; $\mathrm{p}<0.001$). Propensity-score matching yielded $75,901 \mathrm{BP}$ users and 75,901 BP non-users with no significant differences across examined characteristics. A total of 66 BP users from the midwest region in the unmatched primary analysis cohort were not assigned an applicable BP non-user pair during the matching procedure and were excluded from the matched BP user population.

South Region

A total of $3,042,604$ patients identified as residing in the south were included in the unmatched primary analysis cohort comparisons, of which 160,886 (5.3\%) and 2,881,718 (94.7\%) were classified as BP users and BP non-users, respectively (Table S2c). Prior to propensity-score matching, there were significant differences across all demographic and clinical characteristics. Compared to BP nonusers, BP users were older (96.8% age ≥ 51 versus 39.2%; $\mathrm{p}<0.001$), predominantly female (90.6% versus $57.4 \% ; p<0.001$), with higher comorbidity burden (mean $\mathrm{CCI}=0.86$ versus $0.55 ; p<0.001$), insured by Medicare (41.0% versus 11.3%; $p<0.001$), and have had a primary-care physician (PCP) visit in 2019 (66.1% versus 49.2\%; p<0.001). Propensity-score matching yielded 159,704 BP users and 159,704 BP non-users with no significant differences across examined characteristics. A total of $1,182 \mathrm{BP}$ users from the south region in the unmatched primary analysis cohort were not assigned an applicable BP non-user pair during the matching procedure and were excluded from the matched BP user population.

West Region

A total of $1,243,637$ patients identified as residing in the west were included in the unmatched primary analysis cohort comparisons, of which 95,470 (7.7%) and 1,148,167 (92.3\%) were classified as BP users and BP non-users, respectively (Table S2d). Prior to propensity-score matching, there were significant differences across all demographic and clinical characteristics. Compared to BP non-users,

BP users were older (97.8% age ≥ 51 versus 43.5%; $p<0.001$), predominantly female (88.7% versus 56.4%; $p<0.001$), with higher comorbidity burden (mean $\mathrm{CCl}=1.08$ versus $0.66 ; p<0.001$), insured by Medicare (43.5% versus 11.0%; $p<0.001$), and have had a primary-care physician (PCP) visit in 2019 (67.7% versus 45.3%; $p<0.001$). Propensity-score matching yielded 95,267 BP users and 95,267 BP non-users with no significant differences across examined characteristics. A total of 203 BP users from the west region in the unmatched primary analysis cohort were not assigned an applicable BP non-user pair during the matching procedure and were excluded from the matched BP user population.

New York State

A total of 968,296 patients identified as residing in New York state were included in the unmatched primary analysis NY-state restricted cohort, of which 50,035 (5.2\%) and 918,261 (94.8\%) were classified as BP users and BP non-users, respectively (Table S2e). Prior to propensity-score matching, there were significant differences across all demographic and clinical characteristics. Compared to BP non-users, BP users were older (98.1% age ≥ 51 versus 50.7%; $p<0.001$), predominantly female (90.9% versus 57.5%; $\mathrm{p}<0.001$), with higher comorbidity burden (mean $\mathrm{CCI}=0.95$ versus $0.63 ; \mathrm{p}<0.001$), insured by Medicare (57.7% versus 19.5%; $p<0.001$), and have had a primary-care physician (PCP) visit in 2019 (62.7% versus 45.3%; $\mathrm{p}<0.001$). Propensity-score matching yielded 49,862 BP users and 49,862 BP non-users with no significant differences across examined characteristics. A total of 173 BP users from the unmatched New York state primary analysis cohort were not assigned an applicable BP non-user pair during the matching procedure and were excluded from the matched BP user population.

Bone-Rx Analysis Study Population

All Observations (all regions combined)

A total of 502,895 patients were included in the unmatched "Bone-Rx" analysis cohort comparisons, of which 452,051 (89.9%) and 50,844 (10.1%) were classified as BP users and BP non-users, respectively (Table S6a). Prior to propensity-score matching, there were significant differences across all demographic and clinical characteristics. Compared to BP non-users, BP users were younger (47.9\% age ≥ 71 versus 55.2%; $p<0.001$), predominantly female (90.1% versus 87.2%; $p<0.001$), with a lower comorbidity burden (mean $\mathrm{CCI}=0.95$ versus 1.99 ; $\mathrm{p}<0.001$), with a larger proportion of patients residing in the west (21.1% versus 15.8%; $p<0.001$), a lower proportion covered by Medicare (43.4% versus 47.5%; $p<0.001$), and a lower proportion have had a primary-care physician (PCP) visit in 2019 (63.8% versus 64.3%; $p=0.009$). Propensity-score matching yielded 50,498 BP users and $50,498 \mathrm{BP}$ non-users with no significant differences across examined characteristics. A total of 346 $B P$ non-users from the unmatched "Bone-Rx" analysis cohort were not assigned an applicable BP user pair during the matching procedure and were excluded from the matched BP non-user population.

Northeast Region

A total of 135,867 patients identified as residing in the northeast were included in the unmatched "Bone-Rx" analysis cohort comparisons, of which 119,728 (88.1\%) and 16,139 (11.9\%) were classified as BP users and BP non-users, respectively (Table S6b). Prior to propensity-score matching based on BP-use, there were significant differences across all demographic and clinical characteristics except for any PCP visit in 2019 ($p=0.95$). Compared to BP non-users, BP users were younger (48.1% age ≥ 71 versus 54.8%; $\mathrm{p}<0.001$), predominantly female (90.5% versus 87.5%; $p<0.001$), with a lower comorbidity burden (mean $\mathrm{CCI}=0.93$ versus $1.97 ; \mathrm{p}<0.001$), and a lower proportion insured by Medicare (46.5% versus 54.0%; $\mathrm{p}<0.001$). Propensity-score matching yielded 15,993 BP users and 15,993 BP non-users with no significant differences across examined characteristics. A total of 146 BP non-users from the northeast region in the unmatched "Bone-Rx"
analysis cohort were not assigned an applicable BP user pair during the matching procedure and were excluded from the matched BP non-user population.

Midwest Region

A total of 85,391 patients identified as residing in the midwest were included in the unmatched "Bone$R x$ " analysis cohort comparisons, of which 75,967 (89.0%) and 9,424 (11.0\%) were classified as BP users and BP non-users, respectively (Table S6c). Prior to propensity-score matching, there were significant differences across all demographic and clinical characteristics. Compared to BP non-users, BP users were younger (43.0% age ≥ 71 versus 54.1%; p<0.001), predominantly female (90.3% versus 86.1%; $p<0.001$), with a lower comorbidity burden (mean $\mathrm{CCI}=0.99$ versus $2.12 ; \mathrm{p}<0.001$), had a lower proportion insured by Medicare (43.6% versus 51.9%; $p<0.001$), with a lower proportion having a primary-care physician (PCP) visit in 2019 (62.2% versus 64.7%; $p<0.001$). Propensity-score matching yielded 9,360 BP users and 9,360 BP non-users with no significant differences across examined characteristics. A total of 64 BP non-users from the midwest region in the unmatched "Bone-Rx" analysis cohort were not assigned an applicable BP user pair during the matching procedure and were excluded from the matched BP non-user population.

South Region

A total of 178,118 patients identified as residing in the south were included in the unmatched "Bone$R x$ " analysis cohort comparisons, of which 160,886 (90.3\%) and 17,232 (9.7\%) were classified as BP users and BP non-users, respectively (Table S6d). Prior to propensity-score matching, there were significant differences across all demographic and clinical characteristics except for any PCP visit in 2019 ($p=0.45$). Compared to BP non-users, BP users were younger (46.6% age ≥ 71 versus 53.3%; $\mathrm{p}<0.001$), predominantly female (90.6% versus 88.1%; $\mathrm{p}<0.001$), with a lower comorbidity burden (mean $\mathrm{CCI}=0.86$ versus 1.86 ; $\mathrm{p}<0.001$), and a lower proportion insured by Medicare (41.0% versus 44.0%; p<0.001). Propensity-score matching yielded 17,140 BP users and 17,140 BP non-users with no significant differences across examined characteristics. A total of 92 BP non-users from the south region in the unmatched "Bone-Rx" analysis cohort were not assigned an applicable BP user pair during the matching procedure and were excluded from the matched BP non-user population.

West Region

A total of 103,519 patients identified as residing in the west were included in the unmatched "Bone-Rx" analysis cohort comparisons, of which 95,470 (92.2\%) and 8,049 (7.8\%) were classified as BP users and BP non-users, respectively (Table S6e). Prior to propensity-score matching, there were significant differences across all demographic and clinical characteristics. Compared to BP non-users, BP users were younger (54.1% age ≥ 71 versus 61.6%; $p<0.001$), predominantly female (88.7% versus 86.2%; $\mathrm{p}<0.001$), with a lower comorbidity burden (mean $\mathrm{CCI}=1.08$ versus 2.17 ; $\mathrm{p}<0.001$), insured by Medicare (43.5% versus 36.9%; $\mathrm{p}<0.001$), with a lower proportion having a primary-care physician (PCP) visit in 2019 (67.7% versus 71.6%; $p<0.001$). Propensity-score matching yielded $8,005 \mathrm{BP}$ users and 8,005 BP non-users with no significant differences across examined characteristics. A total of 44 BP non-users from the west region in the unmatched "Bone-Rx" analysis cohort were not assigned an applicable BP user pair during the matching procedure and were excluded from the matched BP non-user population.

New York State

A total of 57,397 patients identified as residing in New York state were included in the unmatched "Bone-Rx" analysis NY-state restricted cohort, of which 50,035 (87.2\%) and 7,362 (12.8\%) were classified as BP users and BP non-users, respectively (Table S6f). Prior to propensity-score matching, there were significant differences across all demographic and clinical characteristics except for any PCP visit in 2019 ($\mathrm{p}=0.35$). Compared to BP non-users, BP users were younger (53.2% age ≥ 11 versus 54.5%; $p<0.001$), predominantly female (90.9% versus 89.5%; $p<0.001$), with a lower
comorbidity burden (mean $\mathrm{CCI}=0.95$ versus $1.81 ; \mathrm{p}<0.001$), and a higher proportion insured by Medicaid (18.3% versus 13.8%; $p<0.001$). Propensity-score matching yielded 7,254 BP users and 7,254 BP non-users with no significant differences across examined characteristics. A total of 108 BP non-users from the unmatched New York state "Bone-Rx" analysis cohort were not assigned an applicable BP user pair during the matching procedure and were excluded from the matched BP nonuser population.

Osteo-Dx-Rx Analysis Study Population

A total of 60,043 female patients age ≥ 51 with a diagnosis of osteoporosis who resided in New York (NY), Illinois (IL), Florida (FL), or California (CA) were included in the unmatched "Osteo-Dx-Rx" analysis cohort comparison, of which 51,651 (86.0%) and 8,392 (14.0\%) were classified as BP users and BP non-users, respectively (Table S7). Prior to propensity-score matching, which was performed within each state by insurance type, there were significant differences across all demographic and clinical characteristics except the proportion of patients with a diagnosis of dyslipidemia ($\mathrm{p}=0.08$). Compared to BP non-users, BP users were younger (18.8% age ≥ 81 versus 26.0%; $p<0.001$), with a larger proportion of patients residing in CA (42.5\% versus 30.5\%; p<0.001), insured by Medicaid (23.1% versus 21.3\%; $p<0.001$), have had a primary-care physician (PCP) visit in 2019 (77.4\% versus 71.1%; $p<0.001$), had a higher proportion with a diagnosis of obesity (11.2% versus 9.6%; $p<0.001$, and had a lower proportion diagnosed with the following: cancer (11.8\% versus 19.4\%; p<0.001), COPD (10.1\% versus 16.2%; $p<0.001$), heart failure (6.1% versus 10.7%; $p<0.001$), hypertension (58.0% versus 60.9%; $p<0.001$), type 2 diabetes (25.6% versus 26.9%; $p<0.01$), and depression (13.9% versus 15.2%; $\mathrm{p}<0.001$). Propensity-score matching yielded 7,949 BP users and 7,949 BP non-users with no significant differences across examined characteristics. A total of 443 BP non-users from the unmatched "Osteo-Dx-Rx" analysis cohort were not assigned an applicable BP user pair during the matching procedure and were excluded from the matched BP non-user population.

Statin User/Non-User Analysis

Statin-Use Comparison: All Observations (all regions combined)

A total of $7,906,603$ patients were included in the unmatched analysis cohort comparison of statin-use, of which $1,503,395$ (19.0%) and 6,403,208 (81.0\%) were classified as statin users and statin nonusers, respectively (Table S8a). Prior to propensity-score matching, there were significant differences across all demographic and clinical characteristics. Compared to statin non-users, statin users were older (87.9% age ≥ 51 versus 37.1%; $p<0.001$), with a higher proportion of males (41.1% versus 40.9%; $p<0.001$), from the northeast (29.7% versus 26.6%; $p<0.001$), with higher comorbidity burden (mean CCI=1.15 versus 0.49; p<0.001), insured by Medicare (32.7% versus 11.3%; $p<0.001$), and have had a primary-care physician (PCP) visit in 2019 (66.1% versus 44.1%; p<0.001). Propensityscore matching yielded $1,436,300$ statin users and $1,436,300$ statin non-users with no significant differences across age group, region, insurance type, and having had any PCP visit in 2019. The final matched population did, however, display statistically significant differences between statin users and statin non-users for gender (58.7% versus 58.4% male; $\mathrm{p}<0.001$) and mean CCI (1.11 versus 1.12; $\mathrm{p}<0.001$). These differences, however, are small in magnitude, and were statistically significant due to the underlying statistical power associated with the large sample size. A total of 67,095 statin users from the unmatched analysis cohort were not assigned an applicable statin non-user pair during the matching procedure and were excluded from the matched statin user population.

Statin-Use Comparison: New York State

A total of 968,296 patients identified as residing in New York state were included in the unmatched analysis cohort comparison of statin-use, of which 206,301 (21.3\%) and 761,995 (78.7\%) were classified as statin users and statin non-users, respectively (Table S8b). Prior to propensity-score
matching, there were significant differences across all demographic and clinical characteristics. Compared to statin non-users, statin users were older (90.3% age ≥ 51 versus 43.1%; $p<0.001$), with a higher proportion of males (42.0% versus 40.4%; $\mathrm{p}<0.001$), with higher comorbidity burden (mean CCI=1.17 versus 0.51; $p<0.001$), insured by Medicare (47.4% versus $14.5 \% ; p<0.001$), and have had a primary-care physician (PCP) visit in 2019 (64.0% versus 41.3%; p<0.001). Propensity-score matching yielded 185,536 statin users and 185,536 statin non-users with no significant differences across age group, gender, insurance type, and having had any PCP visit in 2019. The final matched population did, however, display statistically significant differences between statin users and statin non-users for mean $\operatorname{CCI}(1.06$ versus $1.08 ; \mathrm{p}<0.001$). This difference, however, is small in magnitude, and was statistically significant due to the underlying statistical power associated with the large sample size. A total of 20,765 statin users from the unmatched analysis cohort were not assigned an applicable statin non-user pair during the matching procedure and were excluded from the matched statin user population.

BP-Use Comparison within Statin Users: All Regions Combined

Of the $1,436,300$ statin users from the statin user/non-user propensity-score matching analysis, a total of 217,981 (15.2\%) and $1,218,319$ (84.8%) were classified as BP users and BP non-users, respectively (Table S8c). Prior to propensity-score matching based on BP-use, there were significant differences across all demographic and clinical characteristics except for any PCP visit in 2019 ($p=0.27$). Compared to BP non-users, BP users were older (98.9% age ≥ 51 versus $85.3 \% ; p<0.001$), with a higher proportion of females (90.1% versus 53.1%; $p<0.001$), from the west (21.7% versus $14.0 \% ; p<0.001$), with lower comorbidity burden (mean CCl= 0.95 versus $1.13 ; p<0.001$), and insured by Medicare (50.8% versus 29.7%; p<0.001). Propensity-score matching yielded 213,480 BP users and $213,480 \mathrm{BP}$ non-users with no significant differences across examined characteristics. A total of 4,501 BP users were not assigned an applicable BP non-user pair during the matching procedure and were excluded from the matched BP user population.

BP-Use Comparison within Statin Users: New York State

Of the 185,536 statin users from the statin user/non-user propensity-score matching analysis on patients residing in New York state, a total of 23,863 (12.9\%) and 161,673 (87.1\%) were classified as BP users and BP non-users, respectively (Table S8d). Prior to propensity-score matching based on BP-use, there were significant differences across all demographic and clinical characteristics except for any PCP visit in 2019 ($\mathrm{p}=0.33$). Compared to BP non-users, BP users were older (99.3% age ≥ 51 versus 87.7%; $p<0.001$), with a higher proportion of females (91.2% versus 53.3%; $p<0.001$), with lower comorbidity burden (mean $\mathrm{CCI}=0.92$ versus 1.08; $\mathrm{p}<0.001$), and insured by Medicare (66.4% versus 41.9%; $p<0.001$). Propensity-score matching yielded 23,736 BP users and 23,736 BP nonusers with no significant differences across examined characteristics. A total of 127 BP users were not assigned an applicable BP non-user pair during the matching procedure and were excluded from the matched BP user population.

BP-Use Comparison within Statin Non-users: All Regions Combined
Of the $1,436,300$ statin non-users from the statin user/non-user propensity-score matching analysis, a total of $124,843(8.7 \%)$ and $1,311,457$ (91.3%) were classified as BP users and BP non-users, respectively (Table S8e). Prior to propensity-score matching based on BP-use, there were significant differences across all demographic and clinical characteristics. Compared to BP non-users, BP users were older (98.7% age ≥ 51 versus 86.3%; $p<0.001$), with a higher proportion of females (89.6% versus 55.5%; $p<0.001$), from the west (21.4% versus 14.6%; $p<0.001$), with lower comorbidity burden (mean CCI=1.02 versus 1.13; $p<0.001$), insured by Medicare (45.8% versus 31.7%; $p<0.001$), and have had a primary-care physician (PCP) visit in 2019 (71.7% versus 63.9%; $p<0.001$).
Propensity-score matching yielded 124,716 BP users and 124,716 BP non-users with no significant differences across examined characteristics. A total of 127 BP users were not assigned an applicable BP non-user pair during the matching procedure and were excluded from the matched BP user population.

BP-Use Comparison within Statin Non-users: New York State
Of the 185,536 statin non-users from the statin user/non-user propensity-score matching analysis on patients residing in New York state, a total of 14,546 (7.8\%) and 170,990 (92.2\%) were classified as BP users and BP non-users, respectively (Table S8f). Prior to propensity-score matching based on BP-use, there were significant differences across all demographic and clinical characteristics. Compared to BP non-users, BP users were older (99.2% age ≥ 51 versus $88.4 \% ; p<0.001$), with a higher proportion of females (90.6% versus 55.1%; $p<0.001$), with lower comorbidity burden (mean CCI=0.95 versus 1.09; $p<0.001$), insured by Medicare (59.7% versus $43.7 \% ; p<0.001$), and have had a primary-care physician (PCP) visit in 2019 (70.5\% versus 59.4\%; p<0.001). Propensity-score matching yielded 14,521 BP users and $14,521 \mathrm{BP}$ non-users with no significant differences across examined characteristics. A total of 25 BP users were not assigned an applicable BP non-user pair during the matching procedure and were excluded from the matched BP user population.

Antihypertensive User/Non-User Analysis

Antihypertensive-Use Comparison: All Observations (all regions combined)

A total of $7,906,603$ patients were included in the unmatched analysis cohort comparison of antihypertensive-use, of which $2,101,120$ (26.6\%) and $5,805,483$ (73.4%) were classified as antihypertensive users and antihypertensive non-users, respectively (Table S9a). Prior to propensityscore matching, there were significant differences across all demographic and clinical characteristics. Compared to antihypertensive non-users, antihypertensive users were older (80.8\% age ≥ 51 versus 34.4%; $p<0.001$), with a higher proportion of females (60.4% versus $58.6 \% ; p<0.001$), from the northeast (27.8% versus 27.0%; $\mathrm{p}<0.001$), with higher comorbidity burden (mean $\mathrm{CCl}=1.13$ versus 0.43 ; $p<0.001$), insured by Medicare (29.5% versus 10.3\%; $p<0.001$), and have had a primary-care physician (PCP) visit in 2019 (64.2\% versus 39.2\%; p<0.001). Propensity-score matching yielded 1,786,001 antihypertensive users and 1,786,001 antihypertensive non-users with no significant differences across age group, gender, region, insurance type, and having had any PCP visit in 2019. The final matched population did, however, display statistically significant difference between antihypertensive users and antihypertensive non-users for mean CCl (1.64 versus 1.66; p<0.05). This difference, however, is small in magnitude, and was statistically significant due to the underlying statistical power associated with the large sample size. A total of 315,119 antihypertensive users from the unmatched analysis cohort were not assigned an applicable antihypertensive non-user pair during the matching procedure and were excluded from the matched antihypertensive user population.

Antihypertensive-Use Comparison: New York State

A total of 968,296 patients identified as residing in New York state were included in the unmatched analysis cohort comparison of antihypertensive-use, of which 258,652 (26.7\%) and 709,644 (73.3\%) were classified as antihypertensive users and antihypertensive non-users, respectively (Table S9b). Prior to propensity-score matching, there were significant differences across all demographic and clinical characteristics. Compared to antihypertensive non-users, antihypertensive users were older (86.6% age ≥ 51 versus 40.9%; $p<0.001$), with a higher proportion of females (59.4% versus 59.2%; $\mathrm{p}=0.02$), with higher comorbidity burden (mean $\mathrm{CCI}=1.17$ versus $0.46 ; \mathrm{p}<0.001$), insured by Medicare (45.9\% versus 12.6\%; $p<0.001$), and have had a primary-care physician (PCP) visit in 2019 (62.4\% versus 40.3%; $p<0.001$). Propensity-score matching yielded 203,624 antihypertensive users and 203,624 antihypertensive non-users with no significant differences across examined characteristics. A total of 55,028 antihypertensive users from the unmatched analysis cohort were not assigned an applicable antihypertensive non-user pair during the matching procedure and were excluded from the matched antihypertensive user population.

BP-Use Comparison within Antihypertensive Users: All Regions Combined

Of the 1,786,001 antihypertensive users from the antihypertensive user/non-user propensity-score matching analysis, a total of 206,613 (11.6\%) and $1,579,388$ (88.4%) were classified as BP users and BP non-users, respectively (Table S9c). Prior to propensity-score matching based on BP-use, there were significant differences across all demographic and clinical characteristics. Compared to BP nonusers, BP users were older (98.2% age ≥ 51 versus 75.2%; $p<0.001$), with a higher proportion of females (89.7% versus 56.6%; $p<0.001$), from the west (22.0% versus $14.3 \% ; p<0.001$), with lower comorbidity burden (mean $\mathrm{CCI}=0.94$ versus $0.95 ; \mathrm{p}=0.02$), insured by Medicare (48.6% versus 24.4%; $p<0.001$), and have not had a primary-care physician (PCP) visit in 2019 (41.2% versus 40.1%; $p<0.001$). Propensity-score matching yielded 204,396 BP users and 204,396 BP non-users with no significant differences across examined characteristics. A total of 2,217 BP users were not assigned an applicable BP non-user pair during the matching procedure and were excluded from the matched $B P$ user population.

BP-Use Comparison within Antihypertensive Users: New York State

Of the 203,624 antihypertensive users from the antihypertensive user/non-user propensity-score matching analysis on patients residing in New York state, a total of 21,213 (10.4\%) and 182,411 (89.6%) were classified as BP users and BP non-users, respectively (Table S9d). Prior to propensityscore matching based on BP-use, there were significant differences across all demographic and clinical characteristics. Compared to BP non-users, BP users were older (98.8\% age ≥ 51 versus 81.4%; $p<0.001$), with a higher proportion of females (90.9% versus $55.5 \% ; p<0.001$), with lower comorbidity burden (mean $\mathrm{CCI}=0.88$ versus 0.95 ; $\mathrm{p}<0.001$), insured by Medicare (64.1% versus 35.9%; $p<0.001$), and have not had a primary-care physician (PCP) visit in 2019 (53.4% versus 55.7\%; $p<0.001$). Propensity-score matching yielded 21,126 BP users and 21,126 BP non-users with no significant differences across examined characteristics. A total of 87 BP users were not assigned an applicable BP non-user pair during the matching procedure and were excluded from the matched BP user population.

BP-Use Comparison within Antihypertensive Non-users: All Regions Combined

Of the 1,786,001 antihypertensive non-users from the antihypertensive user/non-user propensityscore matching analysis, a total of 136,016 (7.6\%) and 1,649,985 (92.4\%) were classified as BP users and BP non-users, respectively (Table S9e). Prior to propensity-score matching based on BP-use, there were significant differences across all demographic and clinical characteristics. Compared to BP non-users, BP users were older (97.7% age ≥ 51 versus $76.3 \% ; p<0.001$), with a higher proportion of females (90.5\% versus 58.0\%; p<0.001), from the west (20.3% versus $14.8 \% ; p<0.001$), with lower comorbidity burden (mean $\mathrm{CCI}=0.88$ versus $0.96 ; \mathrm{p}<0.001$), insured by Medicare (40.7% versus 26.0%; $p<0.001$), and have had a primary-care physician (PCP) visit in 2019 (68.0% versus 59.0%; $p<0.001$). Propensity-score matching yielded 135,724 BP users and 135,724 BP non-users with no significant differences across examined characteristics. A total of 292 BP users were not assigned an applicable BP non-user pair during the matching procedure and were excluded from the matched BP user population.

BP-Use Comparison within Antihypertensive Non-users: New York State
Of the 203,624 antihypertensive non-users from the antihypertensive user/non-user propensity-score matching analysis on patients residing in New York state, a total of 14,051 (6.9\%) and 189,573 (93.1\%) were classified as BP users and BP non-users, respectively (Table S9f). Prior to propensityscore matching based on BP-use, there were significant differences across all demographic and clinical characteristics. Compared to BP non-users, BP users were older (98.7% age ≥ 51 versus 82.1%; $p<0.001$), with a higher proportion of females (91.3% versus $56.8 \% ; p<0.001$), with lower comorbidity burden (mean $\mathrm{CCI}=0.81$ versus 0.96 ; $\mathrm{p}<0.001$), insured by Medicare (54.9\% versus $37.7 \% ; \mathrm{p}<0.001$), and have had a primary-care physician (PCP) visit in 2019 (66.3\% versus 54.7\%; p<0.001). Propensity-score matching yielded 13,983 BP users and 13,983 BP non-users with no significant differences across examined characteristics. A total of 68 BP users were not assigned an
applicable $B P$ non-user pair during the matching procedure and were excluded from the matched $B P$ user population.

Antidiabetic User/Non-User Analysis

Antidiabetic-Use Comparison: All Observations (all regions combined)

A total of $7,906,603$ patients were included in the unmatched analysis cohort comparison of antidiabetic-use, of which 755,252 (9.6%) and $7,151,351$ (90.4%) were classified as antidiabetic users and antidiabetic non-users, respectively (Table S10a). Prior to propensity-score matching, there were significant differences across all demographic and clinical characteristics. Compared to antidiabetic non-users, antidiabetic users were older (79.4% age ≥ 51 versus 43.3%; $p<0.001$), with a higher proportion of females (60.8% versus 58.9%; p<0.001), from the northeast (28.8% versus 27.1%; $\mathrm{p}<0.001$), with higher comorbidity burden (mean $\mathrm{CCI}=1.25$ versus $0.55 ; \mathrm{p}<0.001$), insured by Medicare (26.2% versus 14.2\%; p<0.001), and have had a primary-care physician (PCP) visit in 2019 (66.5% versus 43.6%; $p<0.001$). Propensity-score matching yielded 754,553 antidiabetic users and 754,553 antidiabetic non-users with no significant differences across examined characteristics. A total of 699 antidiabetic users from the unmatched analysis cohort were not assigned an applicable antidiabetic non-user pair during the matching procedure and were excluded from the matched antidiabetic user population.

Antidiabetic-Use Comparison: New York State

A total of 968,296 patients identified as residing in New York state were included in the unmatched analysis cohort comparison of antidiabetic-use, of which 105,117 (10.9\%) and 863,179 (89.1\%) were classified as antidiabetic users and antidiabetic non-users, respectively (Table S10b). Prior to propensity-score matching, there were significant differences across all demographic and clinical characteristics. Compared to antidiabetic non-users, antidiabetic users were older (83.8% age ≥ 51 versus 49.4%; $\mathrm{p}<0.001$), with a higher proportion of males (42.2% versus 40.6%; $\mathrm{p}<0.001$), with higher comorbidity burden (mean CCI=1.34 versus 0.56; p<0.001), insured by Medicare (40.5\% versus 19.2\%; p<0.001), and have had a primary-care physician (PCP) visit in 2019 (64.6% versus 43.9\%; p<0.001). Propensity-score matching yielded 104,691 antidiabetic users and 104,691 antidiabetic non-users with no significant differences across examined characteristics. A total of 426 antidiabetic users from the unmatched analysis cohort were not assigned an applicable antidiabetic non-user pair during the matching procedure and were excluded from the matched antidiabetic user population.

BP-Use Comparison within Antidiabetic Users: All Regions Combined

Of the 754,553 antidiabetic users from the antidiabetic user/non-user propensity-score matching analysis, a total of 80,529 (10.7\%) and 674,024 (89.3%) were classified as BP users and BP nonusers, respectively (Table S10c). Prior to propensity-score matching based on BP-use, there were significant differences across all demographic and clinical characteristics. Compared to BP non-users, BP users were older (98.2% age ≥ 51 versus 75.2%; $p<0.001$), with a higher proportion of females (98.5% versus 77.1%; $p<0.001$), from the west (22.2% versus 14.2%; $p<0.001$), with a higher comorbidity burden (mean CCI=1.32 versus 1.23; $p<0.001$), insured by Medicare (45.2% versus 24.0%; $p<0.001$), and have had a primary-care physician (PCP) visit in 2019 (69.5\% versus 66.1\%; $\mathrm{p}<0.001$). Propensity-score matching yielded $79,500 \mathrm{BP}$ users and $79,500 \mathrm{BP}$ non-users with no significant differences across examined characteristics. A total of $1,029 \mathrm{BP}$ users were not assigned an applicable BP non-user pair during the matching procedure and were excluded from the matched $B P$ user population.

BP-Use Comparison within Antidiabetic Users: New York State
Of the 104,691 antidiabetic users from the antidiabetic user/non-user propensity-score matching analysis on patients residing in New York state, a total of 9,529 (9.1\%) and 95,162 (90.9\%) were
classified as BP users and BP non-users, respectively (Table S10d). Prior to propensity-score matching based on BP-use, there were significant differences across all demographic and clinical characteristics. Compared to BP non-users, BP users were older (99.1\% age ≥ 51 versus 82.2%; $\mathrm{p}<0.001$), with a higher proportion of females (90.1% versus 54.5%; $\mathrm{p}<0.001$), with a higher comorbidity burden (mean CCI=1.46 versus 1.31; $p<0.001$), insured by Medicare (64.6% versus 38.2%; $p<0.001$), and have had a primary-care physician (PCP) visit in 2019 (66.3% versus 64.4%; $p<0.001$). Propensity-score matching yielded 9,456 BP users and 9,456 BP non-users with no significant differences across examined characteristics. A total of 73 BP users were not assigned an applicable BP non-user pair during the matching procedure and were excluded from the matched BP user population.

BP-Use Comparison within Antidiabetic Non-users: All Regions Combined

Of the 754,553 antidiabetic non-users from the antidiabetic user/non-user propensity-score matching analysis, a total of 73,173 (9.7%) and 681,380 (90.3%) were classified as BP users and BP non-users, respectively (Table S10e). Prior to propensity-score matching based on BP-use, there were significant differences across all demographic characteristics, but no difference was seen in mean CCI (1.24 versus $1.24 ; \mathrm{p}=0.92$). Compared to BP non-users, BP users were older (98.0% age ≥ 51 versus 77.3%; $p<0.001$), with a higher proportion of females (88.9% versus 57.7%; $p<0.001$), from the west (20.1% versus 14.5%; $p<0.001$), insured by Medicare (40.0% versus 24.8%; $p<0.001$), and have had a primary-care physician (PCP) visit in 2019 (74.1% versus 65.7%; $p<0.001$). Propensity-score matching yielded $72,514 \mathrm{BP}$ users and $72,514 \mathrm{BP}$ non-users with no significant differences across examined characteristics. A total of 659 BP users were not assigned an applicable BP non-user pair during the matching procedure and were excluded from the matched BP user population.

BP-Use Comparison within Antidiabetic Non-users: New York State

Of the 104,691 antidiabetic non-users from the antidiabetic user/non-user propensity-score matching analysis on patients residing in New York state, a total of 9,275 (8.9\%) and 95,416 (91.1\%) were classified as BP users and BP non-users, respectively (Table S10f). Prior to propensity-score matching based on BP-use, there were significant differences across all demographic and clinical characteristics. Compared to BP non-users, BP users were older (99.0\% age ≥ 51 versus 82.2%; $p<0.001$), with a higher proportion of females (89.2% versus $54.7 \% ; p<0.001$), with a higher comorbidity burden (mean CCI=1.37 versus 1.32; $\mathrm{p}<0.01$), insured by Medicare (57.7% versus 38.9%; $\mathrm{p}<0.001$), and have had a primary-care physician (PCP) visit in 2019 (72.5% versus 63.8%; $p<0.001$). Propensity-score matching yielded 13,983 BP users and 13,983 BP non-users with no significant differences across examined characteristics. A total of 131 BP users were not assigned an applicable $B P$ non-user pair during the matching procedure and were excluded from the matched BP user population.

Antidepressant User/Non-User Analysis

Antidepressant-Use Comparison: All Observations (all regions combined)

A total of $7,906,603$ patients were included in the unmatched analysis cohort comparison of antidepressant-use, of which 1,571,005 (19.9\%) and 6,335,598 (80.1\%) were classified as antidepressant users and antidepressant non-users, respectively (Table S11a). Prior to propensityscore matching, there were significant differences across all demographic and clinical characteristics. Compared to antidepressant non-users, antidepressant users were older (58.6% age ≥ 51 versus 43.8%; $p<0.001$), with a higher proportion of females (72.8% versus 55.7%; $p<0.001$), from the midwest (22.1% versus 17.7%; $\mathrm{p}<0.001$), with higher comorbidity burden (mean $\mathrm{CCI}=0.90$ versus 0.55 ; $p<0.001$), insured by Medicare (18.5% versus 14.6%; $p<0.001$), and have had a primary-care physician (PCP) visit in 2019 (61.1\% versus 42.0\%; p<0.001). Propensity-score matching yielded 1,536,048 antidepressant users and 1,536,048 antidepressant non-users with no significant differences across examined characteristics. A total of 34,957 antidepressant users from the
unmatched analysis cohort were not assigned an applicable antidepressant non-user pair during the matching procedure and were excluded from the matched antidepressant user population.

Antidepressant-Use Comparison: New York State

A total of 968,296 patients identified as residing in New York state were included in the unmatched analysis cohort comparison of antidepressant-use, of which 136,081 (14.1\%) and 832,215 (85.9\%) were classified as antidepressant users and antidepressant non-users, respectively (Table S11b). Prior to propensity-score matching, there were significant differences across all demographic and clinical characteristics. Compared to antidepressant non-users, antidepressant users were older (66.3\% age ≥ 51 versus $51.0 \% ; p<0.001$), with a higher proportion of females (71.2% versus $57.3 \% ; p<0.001$), with higher comorbidity burden (mean $\mathrm{CCI}=0.98$ versus $0.59 ; \mathrm{p}<0.001$), insured by Medicare (32.2\% versus 19.8\%; p<0.001), and have had a primary-care physician (PCP) visit in 2019 (60.7\% versus 43.8\%; p<0.001). Propensity-score matching yielded 135,516 antidepressant users and 135,516 antidepressant non-users with no significant differences across examined characteristics. A total of 565 antidepressant users from the unmatched analysis cohort were not assigned an applicable antidepressant non-user pair during the matching procedure and were excluded from the matched antidepressant user population.

BP-Use Comparison within Antidepressant Users: All Regions Combined

Of the 1,536,048 antidepressant users from the antidepressant user/non-user propensity-score matching analysis, a total of 145,109 (9.4\%) and 1,390,939 (90.6\%) were classified as BP users and BP non-users, respectively (Table S11c). Prior to propensity-score matching based on BP-use, there were significant differences across all demographic and clinical characteristics. Compared to BP nonusers, BP users were older (96.7% age ≥ 51 versus 54.4%; $p<0.001$), with a higher proportion of females (91.9\% versus 70.2\%; $p<0.001$), from the west (19.6% versus $13.9 \% ; p<0.001$), with a higher comorbidity burden (mean $\mathrm{CCI}=1.09$ versus $0.84 ; \mathrm{p}<0.001$), insured by Medicare (42.4\% versus 16.2%; $p<0.001$), and have had a primary-care physician (PCP) visit in 2019 (64.6\% versus 60.2\%; $p<0.001$). Propensity-score matching yielded 144,282 BP users and 144,282 BP non-users with no significant differences across examined characteristics. A total of 827 BP users were not assigned an applicable BP non-user pair during the matching procedure and were excluded from the matched BP user population.

BP-Use Comparison within Antidepressant Users: New York State

Of the 135,516 antidepressant users from the antidepressant user/non-user propensity-score matching analysis on patients residing in New York state, a total of 12,950 (9.6\%) and 122,566 (90.4\%) were classified as BP users and BP non-users, respectively (Table S11d). Prior to propensity-score matching based on BP-use, there were significant differences across all demographic and clinical characteristics. Compared to BP non-users, BP users were older (97.8\% age ≥ 51 versus $63.0 \% ; p<0.001$), with a higher proportion of females (92.6% versus $68.9 \% ; p<0.001$), with a higher comorbidity burden (mean $\mathrm{CCl}=1.13$ versus $0.95 ; \mathrm{p}<0.001$), insured by Medicare (60.8\% versus 29.1\%; p<0.001), and have had a primary-care physician (PCP) visit in 2019 (65.3\% versus 60.1%; p<0.001). Propensity-score matching yielded 12,859 BP users and 12,859 BP non-users with no significant differences across examined characteristics. A total of 91 BP users were not assigned an applicable BP non-user pair during the matching procedure and were excluded from the matched BP user population.

BP-Use Comparison within Antidepressant Non-users: All Regions Combined
Of the 1,536,048 antidepressant non-users from the antidepressant user/non-user propensity-score matching analysis, a total of 113,110 (7.4\%) and $1,422,938$ (92.6\%) were classified as BP users and BP non-users, respectively (Table S11e). Prior to propensity-score matching based on BP-use, there were significant differences across all demographic characteristics. Compared to BP non-users, BP users were older (97.1% age ≥ 51 versus 55.4%; $p<0.001$), with a higher proportion of females $(93.2 \%$
versus 70.6%; $p<0.001$), from the west (20.0% versus 14.0%; $p<0.001$), with a higher comorbidity burden (mean $\mathrm{CCI}=1.06$ versus 0.85 ; $\mathrm{p}<0.001$), insured by Medicare (40.4% versus 17.0%; $p<0.001$), and have had a primary-care physician (PCP) visit in 2019 (71.2% versus 59.8%; $p<0.001$). Propensity-score matching yielded 112,402 BP users and 112,402 BP non-users with no significant differences across examined characteristics. A total of 708 BP users were not assigned an applicable BP non-user pair during the matching procedure and were excluded from the matched BP user population.

BP-Use Comparison within Antidepressant Non-users: New York State
Of the 135,516 antidepressant non-users from the antidepressant user/non-user propensity-score matching analysis on patients residing in New York state, a total of 10,174 (7.5\%) and 125,342 (92.5\%) were classified as BP users and BP non-users, respectively (Table S11f). Prior to propensityscore matching based on BP-use, there were significant differences across all demographic and clinical characteristics. Compared to BP non-users, BP users were older (98.4% age ≥ 51 versus 63.7%; $p<0.001$), with a higher proportion of females (93.6% versus $69.4 \% ; p<0.001$), with a higher comorbidity burden (mean $\mathrm{CCI}=1.13$ versus 0.95 ; $p<0.01$), insured by Medicare (60.0% versus 29.9%; $\mathrm{p}<0.001$), and have had a primary-care physician (PCP) visit in 2019 (71.7% versus 59.7%; $\mathrm{p}<0.001$). Propensity-score matching yielded 10,091 BP users and 10,091 BP non-users with no significant differences across examined characteristics. A total of 83 BP users were not assigned an applicable BP non-user pair during the matching procedure and were excluded from the matched BP user population.

APPENDIX 3: Post-hoc Analysis on the Impact of Censoring due to Death

Background

Following completion of all core study analyses, an additional post-hoc investigation was performed to assess whether censoring bias due to patient death could impact our current findings of a decrease in the odds of COVID-19 outcomes seen amongst BP users. Typically, it is very difficult to perform assessments on this type of bias due to the fact that insurance claims databases in the United States do not include this information. Some claims database providers, including Komodo Health, do have the capability to 'link' their de-identified claims data with external sources on decedent enrollees, but at the time of study initiation and data extraction there were enhanced HIPAA constraints associated with claims datasets that included COVID-identifying diagnosis/treatment codes due to the heightened risk of patient re-identification due to the then lower prevalence and high visibility associated for patients with COVID-19. Eventually the increased prevalence of COVID-19 reduced the HIPAA concerns on working with claims data that include COVID-19-identifiers, and in support of this analysis and the potentially significant public health implications of our findings, Komodo Health linked their COVID-identifiable dataset with mortality data sources that account for roughly $80-85 \%$ of available death records. In conjunction with Komodo Health, queries on this mortality-linked COVID-19-identifiable dataset were performed to determine whether bias caused by patient censoring due to death could have impacted the validity and/or reliability of our current findings

Methodological Concerns of Patient Censoring due to Death

The single motivating factor for initiation of this post-hoc analysis was the fact that the decrease in odds of COVID-19 outcomes among BP users in this study was found to be statistically significant, large in magnitude, and robust across almost all analysis variations performed. The exhaustive use of methodological techniques to control for unmeasured confounding and/or outside sources of bias employed in this current study were undertaken not in search of statistical significance, but in search of non-significance. This was undertaken because the consistency seen in statistical significance, in addition to the magnitude of the decrease in the odds of our outcomes of interest, are typically not seen to this degree. As such, the next logical step after exhausting all methodological techniques is to search for other sources that could induce a large-enough bias on the underlying patient population itself, such as censoring of the target study cohort, that could drastically alter the typical composition of the overall sample and thus impact the reliability and validity of outcomes measured.
The high rate of death associated with COVID-19 infection, which was even worse during the early months of the pandemic, represents such an instance where outside influences could impact the underlying data, and as such, the validity of research performed on that data. The primary concern is whether patients who have died are censored from the analytical sample due to the application of one of the most fundamental inclusion/exclusion criteria used in claims-based research, the requirement for continuous insurance eligibility over the entire study period that is needed so that healthcare resource utilization events from all subjects are captured and available in the data for analysis. If in our current sample, a larger number of BP users died after contracting COVID-19 and were censored due to insurance eligibility, and a lower number of $B P$ non-users survived and thus met the insurance eligibility criteria, then the remaining study sample would be comprised of healthier-looking BP users and a higher number of BP non-users with COVID-19 related healthcare services.
The potential for such a censoring bias in this current study sample, and the impact of that bias on the magnitude and statistical significance of our core study findings, was assessed in this post-hoc analysis by: (1) adjusting eligibility criteria to prevent the censoring of patients that may have died during the first half of 2020; (2) replicating key exposure (BP-use, use of other non-BP bone health medications) and outcomes (COVID-19 diagnosis) in this expanded sample that aligns with the core study methods; (3) analysing the impact on study findings that would result from the retention and inclusion of deceased-patient observations in the core study sample on the odds of COVID-19
diagnosis; and (4) calculating the number of missing patient observations censored due to death that would be required to reach a statistically non-significant difference in the odds of COVID-19.

Post-Hoc Analysis

Methods

Cohort Definition

- Continuous insurance eligibility $1 / 1 / 2019-12 / 31 / 2019$; used to ensure that any censoring due to death occurs during the observation period of 1/1/2020-6/30/2020
- BP users compared to BP non-users to produce a cohort comparison similar to the primary analysis cohort
- BP users compared to users of non-BP anti-resorptive bone health medications to produce a cohort comparison similar to the "Bone-Rx" active comparator analysis

Exposures of Interest

- Patients were assigned into the BP user cohort if they had any claim 1/1/2019-2/29/2020 for one of the following: alendronate, alendronic acid, etidronate, ibandronate, ibandronic acid, pamidronate, risedronate, and zoledronic acid; for the cohort comparison of all osteoporosis medication users BP users were further restricted to those that had no claims for a non-BP anti-resorptive bone health medication 1/1/2019-2/29/2020.
- Patients were assigned into the non-BP anti-resorptive bone health medication user cohort if: (1) they had any claim 1/1/2019-2/29/2020 for one of the following: denosumab, calcitonin, raloxifene, romosozumab-aqqg, teriparatide, abaloparatide, or bazedoxifene; and (2) they had no BP claims

Outcomes / Endpoints

- Patients were assigned into the COVID-19 diagnosis cohort based on any medical service claim with an ICD-10 diagnosis code of U07.1 occurring 1/1/2200-6/30/2020
- Patients with a date-of-death between 1/1/2020-6/30/2020 were classified into the deceased cohort

Statistical Analysis

- Chi-square testing was used to assess whether statistically significant differences exist between BP users and BP non-users in the unadjusted odds of having any COVID-19 diagnosis during the first half of 2020 among cohorts that approximate the primary analysis and "Bone-Rx" study cohorts for the following:

1. Among all patient-observations with a COVID-19 diagnosis to assess the potential 'true' comparison that would occur
2. With deceased patient-observations that had a known COVID-19 diagnosis removed prior to testing to replicate findings that would occur if these observations were censored
3. When making the assumption that all patients who died during this period died due to COVID-19, and thus should be classified as having a COVID-19 diagnosis

- An additional analysis was performed on the last variation modelled (assuming all patients died due to COVID-19) to determine the additional BP user patient observations that would be needed to be classified as having had a COVID-19 diagnosis to yield a similar distribution of COVID-19 diagnosis (yes/no) as was seen in the BP non-user cohort to yield an odds ratio ~1.0
- Finally, the impact on odds ratio testing results comparing BP users to BP non-users was modelled based on the additional number of BP users needed to be classified as having been diagnosed with COVID-19 to reach statistical non-significance

Results

Patient Count Distribution

- Among the full sample a decreased rate of COVID-19 among BP users compared to BP nonusers was seen in both the full sample population (1.2% versus 4.7%) as well as when restricted to users of non-BP anti-resorptive bone health medications (1.2% versus 4.3%) (Table S12a)

Unadjusted Chi-Square Comparison Inclusive of Deceased Patients

- The decrease in the odds of any COVID-19 diagnosis amongst BP users compared to BP nonusers was found to be robust in both the full ($\mathrm{OR}=0.24$) and "Bone-Rx" ($\mathrm{OR=0.35} \mathrm{)}$ comparisons when including deceased patients with a known COVID-19 diagnosis (Table S12b)

Unadjusted Chi-Square Comparison with Deceased Patients Removed

- The decrease in the odds of any COVID-19 diagnosis amongst BP users compared to BP nonusers was found to be robust in both the full ($\mathrm{OR}=0.23$) and "Bone-Rx" ($\mathrm{OR=0.26} \mathrm{)}$ comparisons when removing deceased patients with a known COVID-19 diagnosis (Table S12c)

Unadjusted Chi-Square Comparison Assuming all Deceased Patients had COVID-19

- The decrease in the odds of any COVID-19 diagnosis amongst BP users compared to BP nonusers was found to be robust in both the full ($O R=0.39$) and "Bone-Rx" ($O R=0.29$) comparisons when assuming that all deceased patients had a COVID-19 diagnosis (Table S12d)
- Among this final analysis that assumes all deceased patients had a diagnosis of COVID-19, the percentage of BP non-users with an assumed COVID-19 diagnosis was 5.5% and 7.2% for the full and OPRX comparisons, respectively.
- These proportions were then used to estimate the number of additional BP users with a COVID-19 diagnosis that would be needed to have the same distribution and thus an odds ratio ~1.0 (Table S12e)
- It would require an additional 22,235 (37,095-14,860) BP-user patient observations from the full cohort comparison to be classified as having a COVID-19 diagnosis to have an equivalent odds of being diagnosed with COVID-19 as was seen among the BP non-user cohort
- It would require an additional $32,598(46,637-14,039)$ BP-user patient observations from the "Bone-Rx" cohort comparison to be classified as having a COVID-19 diagnosis to have an equivalent odds of being diagnosed with COVID-19 as was seen among the BP non-user cohort
medRxiv preprint doi: https://doi.org/10.1101/2022.06.14.22276397; this version posted June 21, 2022. The copyright holder for this preprint
- In the full (all observations) comparison, the minimum number of additional BP users classified as having a COVID-19 diagnosis needed to reach statistical non-significance for the calculated unadjusted odds ratio was 21,860 (Figure S1)

Figure S1: Full Cohort: Odds Ratio by Additional Number of BP Users Classified as having COVID-19 Diagnosis

BP: bisphosphonate
Legend: Shown in Figure S1 is the forest plot of the change in the crude odds ratio (OR) of BP users having a COVID-19 diagnosis as a factor of the additional number of BP users needed to be classified as having a COVID-19 diagnosis to reach statistical non-significance for all observations.
medRxiv preprint doi: https://doi.org/10.1101/2022.06.14.22276397; this version posted June 21, 2022. The copyright holder for this preprint

- In the "Bone-Rx" comparison, the minimum number of additional BP users classified as having a COVID-19 diagnosis needed to reach statistical non-significance for the calculated unadjusted odds ratio was 31,360 (Figure S2)

Figure S2: Bone-Rx Cohort: Odds Ratio by Additional Number of BP Users Classified as having COVID-19 Diagnosis

BP: bisphosphonate
Legend: Shown in Figure S 2 is the forest plot of the change in the crude odds ratio (OR) of BP users having a COVID-19 diagnosis as a factor of the additional number of BP users needed to be classified as having a COVID-19 diagnosis to reach statistical non-significance when comparing BP users to users of non-BP anti-resorptive bone medications.

Drug (route)	N	$\%$
alendronate / alendronic acid (oral)	340,810	75.4%
etidronate (oral)	14	0.0%
ibandronate / ibandronic acid (oral)	37,988	8.4%
ibandronic acid (injection/infusion)	1,169	0.3%
pamidronate (injection/infusion)	1,121	0.2%
risedronate (oral)	18,991	4.2%
zoledronic acid (injection/infusion)	51,958	11.5%

Table S2a: Primary Analysis Cohort (Region=Northeast), Patient Characteristics Pre/Post Match

	Region=Northeast Unmatched							Region=Northeast Matched						
	All		BP Non-users		BP Users		p-value	All		BP Non-users		BP Users		p-value
	N	\%	N	\%	N	\%		N	\%	N	\%	N	\%	
All Patients	2,152,560	100.0\%	2,032,832	94.4\%	119,728	5.6\%		238,988	100.0\%	119,494	50.0\%	119,494	50.0\%	
Age														
≤ 20	363,637	16.9\%	363,401	17.9\%	236	0.2\%	<0.001	474	0.2\%	238	0.2\%	236	0.2\%	1.00
21-40	397,377	18.5\%	396,613	19.5\%	764	0.6\%		1,528	0.6\%	764	0.6\%	764	0.6\%	
41-50	261,570	12.2\%	259,528	12.8\%	2,042	1.7\%		4,084	1.7\%	2,042	1.7\%	2,042	1.7\%	
51-60	372,238	17.3\%	354,228	17.4\%	18,010	15.0\%		36,020	15.1\%	18,010	15.1\%	18,010	15.1\%	
61-70	354,331	16.5\%	313,237	15.4\%	41,094	34.3\%		82,233	34.4\%	41,139	34.4\%	41,094	34.4\%	
71-80	252,712	11.7\%	215,151	10.6\%	37,561	31.4\%		74,831	31.3\%	37,393	31.3\%	37,438	31.3\%	
≥ 81	150,695	7.0\%	130,674	6.4\%	20,021	16.7\%		39,818	16.7\%	19,908	16.7\%	19,910	16.7\%	
Gender														
Female	1,275,611	59.3\%	1,167,241	57.4\%	108,370	90.5\%	<0.001	216,273	90.5\%	108,137	90.5\%	108,136	90.5\%	0.99
Male	876,949	40.7\%	865,591	42.6\%	11,358	9.5\%		22,715	9.5\%	11,357	9.5\%	11,358	9.5\%	
Insurance														
Commercial	1,050,795	48.8\%	1,017,502	50.1\%	33,293	27.8\%	<0.001	66,552	27.8\%	33,259	27.8\%	33,293	27.9\%	0.99
Dual	47,773	2.2\%	40,168	2.0\%	7,605	6.4\%		15,114	6.3\%	7,576	6.3\%	7,538	6.3\%	
Medicaid	631,863	29.4\%	608,649	29.9\%	23,214	19.4\%		46,094	19.3\%	23,047	19.3\%	23,047	19.3\%	
Medicare	422,129	19.6\%	366,513	18.0\%	55,616	46.5\%		111,228	46.5\%	55,612	46.5\%	55,616	46.5\%	
PCP Visit 2019														
No	1,212,394	56.3\%	1,162,527	57.2\%	49,867	41.7\%	<0.001	99,741	41.7\%	49,874	41.7\%	49,867	41.7\%	0.98
Yes	940,166	43.7\%	870,305	42.8\%	69,861	58.3\%		139,247	58.3\%	69,620	58.3\%	69,627	58.3\%	
Continuous Outcomes														
	mean	SD	mean	SD	mean	SD	p-value	mean	SD	mean	SD	mean	SD	p-value
CCl	0.67	1.42	0.65	1.40	0.93	1.71	<0.001	0.93	1.71	0.93	1.71	0.93	1.71	0.96

BP: bisphosphonate; CCI: Charlson Comorbidity Index; PCP: primary care physician; SD: standard deviation

Table S2b: Primary Analysis Cohort (Region=Midwest), Patient Characteristics Pre/Post Match

	Region=Midwest Unmatched							Region=Midwest Matched						
	All		BP Non-users		BP Users		p-value	All		BP Non-users		BP Users		p-value
	N	\%	N	\%	N	\%		N	\%	N	\%	N	\%	
All Patients	1,467,802	100.0\%	1,391,835	94.8\%	75,967	5.2\%		151,802	100.0\%	75,901	50.0\%	75,901	50.0\%	
Age														
≤ 20	310,027	21.1\%	309,759	22.3\%	268	0.4\%	<0.001	537	0.4\%	269	0.4\%	268	0.4\%	1.00
21-40	287,236	19.6\%	286,643	20.6\%	593	0.8\%		1,188	0.8\%	595	0.8\%	593	0.8\%	
41-50	185,240	12.6\%	183,556	13.2\%	1,684	2.2\%		3,367	2.2\%	1,683	2.2\%	1,684	2.2\%	
51-60	246,230	16.8\%	233,992	16.8\%	12,238	16.1\%		24,478	16.1\%	12,240	16.1\%	12,238	16.1\%	
61-70	224,668	15.3\%	196,172	14.1\%	28,496	37.5\%		56,991	37.5\%	28,495	37.5\%	28,496	37.5\%	
71-80	130,563	8.9\%	109,442	7.9\%	21,121	27.8\%		42,153	27.8\%	21,075	27.8\%	21,078	27.8\%	
≥ 81	83,838	5.7\%	72,271	5.2\%	11,567	15.2\%		23,088	15.2\%	11,544	15.2\%	11,544	15.2\%	
Gender														
Female	863,156	58.8\%	794,578	57.1\%	68,578	90.3\%	<0.001	137,028	90.3\%	68,516	90.3\%	68,512	90.3\%	0.97
Male	604,646	41.2\%	597,257	42.9\%	7,389	9.7\%		14,774	9.7\%	7,385	9.7\%	7,389	9.7\%	
Insurance														
Commercial	885,651	60.3\%	854,518	61.4\%	31,133	41.0\%	<0.001	62,243	41.0\%	31,110	41.0\%	31,133	41.0\%	1.00
Dual	28,190	1.9\%	24,584	1.8\%	3,606	4.7\%		7,211	4.8\%	3,605	4.7\%	3,606	4.8\%	
Medicaid	318,596	21.7\%	310,473	22.3\%	8,123	10.7\%		16,136	10.6\%	8,079	10.6\%	8,057	10.6\%	
Medicare	235,365	16.0\%	202,260	14.5\%	33,105	43.6\%		66,212	43.6\%	33,107	43.6\%	33,105	43.6\%	
PCP Visit 2019														
No	711,308	48.5\%	682,601	49.0\%	28,707	37.8\%	<0.001	57,398	37.8\%	28,691	37.8\%	28,707	37.8\%	0.93
Yes	756,494	51.5\%	709,234	51.0\%	47,260	62.2\%		94,404	62.2\%	47,210	62.2\%	47,194	62.2\%	
Continuous Outcomes														
	mean	SD	mean	SD	mean	SD	p-value	mean	SD	mean	SD	mean	SD	p-value
CCI	0.59	1.37	0.56	1.34	0.99	1.86	<0.001	0.99	1.86	0.99	1.85	1.00	1.86	0.77

Table S2c: Primary Analysis Cohort (Region=South), Patient Characteristics Pre/Post Match

	Region=South Unmatched							Region=South Matched						
	All		BP Non-users		BP Users		p-value	All		BP Non-users		BP Users		p-value
	N	\%	N	\%	N	\%		N	\%	N	\%	N	\%	
All Patients	3,042,604	100.0\%	2,881,718	94.7\%	160,886	5.3\%		319,408	100.0\%	159,704	50.0\%	159,704	50.0\%	
Age														
≤ 20	890,677	29.3\%	890,203	30.9\%	474	0.3\%	<0.001	943	0.3\%	469	0.3\%	474	0.3\%	1.00
21-40	527,971	17.4\%	526,794	18.3\%	1,177	0.7\%		2,364	0.7\%	1,187	0.7\%	1,177	0.7\%	
41-50	338,262	11.1\%	334,841	11.6\%	3,421	2.1\%		6,839	2.1\%	3,418	2.1\%	3,421	2.1\%	
51-60	442,757	14.6\%	417,664	14.5\%	25,093	15.6\%		50,186	15.7\%	25,093	15.7\%	25,093	15.7\%	
61-70	409,854	13.5\%	353,958	12.3\%	55,896	34.7\%		111,800	35.0\%	55,904	35.0\%	55,896	35.0\%	
71-80	272,761	9.0\%	222,156	7.7\%	50,605	31.5\%		99,223	31.1\%	49,605	31.1\%	49,618	31.1\%	
≥ 81	160,322	5.3\%	136,102	4.7\%	24,220	15.1\%		48,053	15.0\%	24,028	15.0\%	24,025	15.0\%	
Gender														
Female	1,800,166	59.2\%	1,654,351	57.4\%	145,815	90.6\%	<0.001	289,263	90.6\%	144,630	90.6\%	144,633	90.6\%	0.99
Male	1,242,438	40.8\%	1,227,367	42.6\%	15,071	9.4\%		30,145	9.4\%	15,074	9.4\%	15,071	9.4\%	
Insurance														
Commercial	1,475,456	48.5\%	1,416,166	49.1\%	59,290	36.9\%	<0.001	118,587	37.1\%	59,297	37.1\%	59,290	37.1\%	1.00
Dual	53,474	1.8\%	39,414	1.4\%	14,060	8.7\%		25,752	8.1\%	12,874	8.1\%	12,878	8.1\%	
Medicaid	1,121,606	36.9\%	1,099,957	38.2\%	21,649	13.5\%		43,299	13.6\%	21,650	13.6\%	21,649	13.6\%	
Medicare	392,068	12.9\%	326,181	11.3\%	65,887	41.0\%		131,770	41.3\%	65,883	41.3\%	65,887	41.3\%	
PCP Visit 2019														
No	1,701,040	55.9\%	1,646,572	57.1\%	54,468	33.9\%	<0.001	108,601	34.0\%	54,275	34.0\%	54,326	34.0\%	0.85
Yes	1,341,564	44.1\%	1,235,146	42.9\%	106,418	66.1\%		210,807	66.0\%	105,429	66.0\%	105,378	66.0\%	
Continuous Outcomes														
	mean	SD	mean	SD	mean	SD	p-value	mean	SD	mean	SD	mean	SD	p-value
CCl	0.57	1.31	0.55	1.28	0.86	1.70	<0.001	0.86	1.70	0.86	1.70	0.86	1.71	0.84

BP: bisphosphonate; CCI: Charlson Comorbidity Index; PCP: primary care physician; SD: standard deviation

Table S2d: Primary Analysis Cohort (Region=West), Patient Characteristics Pre/Post Match

	Region=West Unmatched							Region=West Matched						
	All		BP Non-users		BP Users		p-value	All		BP Non-users		BP Users		p-value
	N	\%	N	\%	N	\%		N	\%	N	\%	N	\%	
All Patients	1,243,637	100.0\%	1,148,167	92.3\%	95,470	7.7\%		190,534	100.0\%	95,267	50.0\%	95,267	50.0\%	
Age														
≤ 20	275,709	22.2\%	275,559	24.0\%	150	0.2\%	<0.001	299	0.2\%	149	0.2\%	150	0.2\%	1.00
21-40	234,415	18.8\%	233,858	20.4\%	557	0.6\%		1,115	0.6\%	558	0.6\%	557	0.6\%	
41-50	140,237	11.3\%	138,833	12.1\%	1,404	1.5\%		2,806	1.5\%	1,402	1.5\%	1,404	1.5\%	
51-60	188,965	15.2\%	178,585	15.6\%	10,380	10.9\%		20,761	10.9\%	10,381	10.9\%	10,380	10.9\%	
61-70	192,408	15.5\%	161,016	14.0\%	31,392	32.9\%		62,798	33.0\%	31,406	33.0\%	31,392	33.0\%	
71-80	127,739	10.3\%	95,301	8.3\%	32,438	34.0\%		64,596	33.9\%	32,293	33.9\%	32,303	33.9\%	
≥ 81	84,164	6.8\%	65,015	5.7\%	19,149	20.1\%		38,159	20.0\%	19,078	20.0\%	19,081	20.0\%	
Gender														
Female	732,027	58.9\%	647,354	56.4\%	84,673	88.7\%	<0.001	168,933	88.7\%	84,463	88.7\%	84,470	88.7\%	0.96
Male	511,610	41.1\%	500,813	43.6\%	10,797	11.3\%		21,601	11.3\%	10,804	11.3\%	10,797	11.3\%	
Insurance														
Commercial	526,701	42.4\%	503,359	43.8\%	23,342	24.4\%	<0.001	46,688	24.5\%	23,346	24.5\%	23,342	24.5\%	1.00
Dual	27,060	2.2\%	20,924	1.8\%	6,136	6.4\%		11,859	6.2\%	5,925	6.2\%	5,934	6.2\%	
Medicaid	522,435	42.0\%	497,941	43.4\%	24,494	25.7\%		48,990	25.7\%	24,496	25.7\%	24,494	25.7\%	
Medicare	167,441	13.5\%	125,943	11.0\%	41,498	43.5\%		82,997	43.6\%	41,500	43.6\%	41,497	43.6\%	
PCP Visit 2019														
No	658,955	53.0\%	628,131	54.7\%	30,824	32.3\%	<0.001	61,643	32.4\%	30,819	32.4\%	30,824	32.4\%	0.98
Yes	584,682	47.0\%	520,036	45.3\%	64,646	67.7\%		128,891	67.6\%	64,448	67.6\%	64,443	67.6\%	
Continuous Outcomes														
	mean	SD	mean	SD	mean	SD	p-value	mean	SD	mean	SD	mean	SD	p-value
CCl	0.69	1.46	0.66	1.42	1.08	1.84	<0.001	1.09	1.83	1.08	1.83	1.09	1.84	0.73

BP: bisphosphonate; CCI : Charlson Comorbidity Index; PCP: primary care physician; SD: standard deviation

Table S2e: Primary Analysis Cohort (Region=New York State), Patient Characteristics Pre/Post Match

	Region=New York State Unmatched							Region=New York State Matched						
	All		BP Non-users		BP Users		p-value	All		BP Non-users		BP Users		p-value
	N	\%	N	\%	N	\%		N	\%	N	\%	N	\%	
All Patients	968,296	100.0\%	918,261	94.8\%	50,035	5.2\%		99,724	100.0\%	49,862	50.0\%	49,862	50.0\%	
Age														
≤ 20	133,178	13.8\%	133,128	14.5\%	50	0.1\%	<0.001	102	0.1\%	52	0.1\%	50	0.1\%	1.00
21-40	192,959	19.9\%	192,731	21.0\%	228	0.5\%		453	0.5\%	225	0.5\%	228	0.5\%	
41-50	127,794	13.2\%	127,139	13.8\%	655	1.3\%		1,311	1.3\%	656	1.3\%	655	1.3\%	
51-60	172,444	17.8\%	166,080	18.1\%	6,364	12.7\%		12,732	12.8\%	6,368	12.8\%	6,364	12.8\%	
61-70	159,912	16.5\%	143,776	15.7\%	16,136	32.2\%		32,265	32.4\%	16,129	32.3\%	16,136	32.4\%	
71-80	120,117	12.4\%	102,655	11.2\%	17,462	34.9\%		34,693	34.8\%	17,352	34.8\%	17,341	34.8\%	
≥ 81	61,892	6.4\%	52,752	5.7\%	9,140	18.3\%		18,168	18.2\%	9,080	18.2\%	9,088	18.2\%	
Gender														
Female	573,610	59.2\%	528,152	57.5\%	45,458	90.9\%	<0.001	90,567	90.8\%	45,282	90.8\%	45,285	90.8\%	0.97
Male	394,686	40.8\%	390,109	42.5\%	4,577	9.1\%		9,157	9.2\%	4,580	9.2\%	4,577	9.2\%	
Insurance														
Commercial	500,918	51.7\%	490,503	53.4\%	10,415	20.8\%	<0.001	20,830	20.9\%	10,415	20.9\%	10,415	20.9\%	1.00
Dual	6,814	0.7\%	5,218	0.6\%	1,596	3.2\%		3,154	3.2\%	1,581	3.2\%	1,573	3.2\%	
Medicaid	252,366	26.1\%	243,191	26.5\%	9,175	18.3\%		18,044	18.1\%	9,019	18.1\%	9,025	18.1\%	
Medicare	208,198	21.5\%	179,349	19.5\%	28,849	57.7\%		57,696	57.9\%	28,847	57.9\%	28,849	57.9\%	
PCP Visit 2019														
No	521,282	53.8\%	502,609	54.7\%	18,673	37.3\%	<0.001	37,253	37.4\%	18,616	37.3\%	18,637	37.4\%	0.89
Yes	447,014	46.2\%	415,652	45.3\%	31,362	62.7\%		62,471	62.6\%	31,246	62.7\%	31,225	62.6\%	
Continuous Outcomes														
	mean	SD	mean	SD	mean	SD	p-value	mean	SD	mean	SD	mean	SD	p-value
CCI	0.65	1.39	0.63	1.37	0.95	1.68	<0.001	0.95	1.68	0.95	1.67	0.95	1.68	0.93

BP: bisphosphonate; CCI: Charlson Comorbidity Index; PCP: primary care physician; SD: standard deviation

Table S3a: Unadjusted COVID-19-Related Outcomes Stratified by Age, Sex, \& Age by Sex; Matched Primary Analysis Cohort, AllRegions Combined

BP User	145,131	50.0\%	1,639	1.1\%	0.20		<0.001	851	0.6\%	0.23		<0.001	144	0.1\%	0.19		<0.001
BP Non-user	145,145	50.0\%	7,835	5.4\%	0.19	0.21		3,655	2.5\%	0.21	0.25		741	0.5\%	0.16	0.23	
Age 71-80	253,094	100.0\%	6,304	2.5\%				4,254	1.7\%				1,026	0.4\%			
BP User	126,559	50.0\%	1,140	0.9\%	0.21		<0.001	769	0.6\%	0.22		<0.001	193	0.2\%	0.23		<0.001
BP Non-user	126,535	50.0\%	5,164	4.1\%	0.20	0.23		3,485	2.8\%	0.20	0.23		833	0.7\%	0.20	0.27	
Age ≥ 81	130,730	100.0\%	2,984	2.3\%				3,237	2.5\%				842	0.6\%			
BP User	65,364	50.0\%	559	0.9\%	0.22		<0.001	592	0.9\%	0.22		<0.001	177	0.3\%	0.26		<0.001
BP Non-user	65,366	50.0\%	2,425	3.7\%	0.20	0.25		2,645	4.0\%	0.20	0.24		665	1.0\%	0.22	0.31	
Male Patients	89,235	100.0\%	3,201	3.6\%				1,922	2.2\%				583	0.7\%			
BP User	44,615	50.0\%	670	1.5\%	0.25		<0.001	357	0.8\%	0.22		<0.001	122	0.3\%	0.26		<0.001
BP Non-user	44,620	50.0\%	2,531	5.7\%	0.23	0.28		1,565	3.5\%	0.20	0.25		461	1.0\%	0.22	0.32	
By Age																	
Age ≤ 20	1,368	100.0\%	41	3.0\%				7	0.5\%				1	0.1\%			
BP User	686	50.1\%	18	2.6\%	0.77		0.42	1	0.1\%	0.16		0.07	1	0.1\%	NA		NA
BP Non-user	682	49.9\%	23	3.4\%	0.41	1.44		6	0.9\%	0.02	1.37		0	0.0\%	NA	NA	
Age 21-40	2,430	100.0\%	117	4.8\%				51	2.1\%				4	0.2\%			
BP User	1,212	49.9\%	18	1.5\%	0.17		<0.001	3	0.2\%	0.06		<0.001	1	0.1\%	0.33		0.63
BP Non-user	1,218	50.1\%	99	8.1\%	0.10	0.28		48	3.9\%	0.02	0.19		3	0.2\%	0.03	3.22	
Age 41-50	3,554	100.0\%	164	4.6\%				64	1.8\%				17	0.5\%			
BP User	1,777	50.0\%	31	1.7\%	0.22		<0.001	5	0.3\%	0.08		<0.001	3	0.2\%	0.21		0.01
BP Non-user	1,777	50.0\%	133	7.5\%	0.15	0.33		59	3.3\%	0.03	0.21		14	0.8\%	0.06	0.74	
Age 51-60	12,240	100.0\%	565	4.6\%				278	2.3\%				70	0.6\%			
BP User	6,119	50.0\%	131	2.1\%	0.29		<0.001	57	0.9\%	0.25		<0.001	19	0.3\%	0.37		<0.001
BP Non-user	6,121	50.0\%	434	7.1\%	0.24	0.35		221	3.6\%	0.19	0.34		51	0.8\%	0.22	0.63	
Age 61-70	23,546	100.0\%	964	4.1\%				523	2.2\%				150	0.6\%			
BP User	11,747	49.9\%	204	1.7\%	0.26		<0.001	88	0.7\%	0.20		<0.001	29	0.2\%	0.24		<0.001
BP Non-user	11,799	50.1\%	760	6.4\%	0.22	0.30		435	3.7\%	0.16	0.25		121	1.0\%	0.16	0.36	
Age 71-80	27,709	100.0\%	875	3.2\%				573	2.1\%				186	0.7\%			
BP User	13,878	50.1\%	169	1.2\%	0.23		<0.001	108	0.8\%	0.23		<0.001	41	0.3\%	0.28		<0.001
BP Non-user	13,831	49.9\%	706	5.1\%	0.19	0.27		465	3.4\%	0.18	0.28		145	1.0\%	0.20	0.40	
Age ≥ 81	18,388	100.0\%	475	2.6\%				426	2.3\%				155	0.8\%			
BP User	9,196	50.0\%	99	1.1\%	0.26		<0.001	95	1.0\%	0.28		<0.001	28	0.3\%	0.22		<0.001
BP Non-user	9,192	50.0\%	376	4.1\%	0.20	0.32		331	3.6\%	0.22	0.35		127	1.4\%	0.14	0.33	

BP: bisphosphonate; LL: lower 95\% confidence interval level; NA: not applicable; OR: odds ratio; UL: upper 95\% confidence interval level

Table S3b: Unadjusted COVID-19-Related Outcomes Stratified by Age, Sex, \& Age by Sex; Matched Primary Analysis Cohort, Region=Northeast

	Region=Northeast Matched																
	All		SARS-CoV-2 Test					COVID-19 Diagnosis					COVID-19 Hospitalization				
	N	\%	N	\%	OR		p-value	N	\%	OR		p-value	N	\%	OR		p-value
					LL	UL				LL	UL				LL	UL	
All Patients	238,988	100.0\%	8,831	3.7\%				7,820	3.3\%				1,505	0.6\%			
BP User	119,494	50.0\%	1,684	1.4\%	0.22		<0.001	1,578	1.3\%	0.24		<0.001	314	0.3\%	0.26		<0.001
BP Non-user	119,494	50.0\%	7,147	6.0\%	0.21	0.24		6,242	5.2\%	0.23	0.26		1,191	1.0\%	0.23	0.30	
By Age																	
Age ≤ 20	474	100.0\%	14	3.0\%				7	1.5\%				2	0.4\%			
BP User	236	49.8\%	7	3.0\%	1.01		0.99	2	0.8\%	0.40		0.45	2	0.8\%	NA		NA
BP Non-user	238	50.2\%	7	2.9\%	0.35	2.92		5	2.1\%	0.08	2.07		0	0.0\%	NA	NA	
Age 21-40	1,528	100.0\%	93	6.1\%				55	3.6\%				5	0.3\%			
BP User	764	50.0\%	14	1.8\%	0.16		<0.001	7	0.9\%	0.14		<0.001	1	0.1\%	0.25		0.37
BP Non-user	764	50.0\%	79	10.3\%	0.09	0.29		48	6.3\%	0.06	0.31		4	0.5\%	0.03	2.23	
Age 41-50	4,084	100.0\%	234	5.7\%				118	2.9\%				18	0.4\%			
BP User	2,042	50.0\%	53	2.6\%	0.27		<0.001	17	0.8\%	0.16		<0.001	6	0.3\%	0.50		0.16
BP Non-user	2,042	50.0\%	181	8.9\%	0.20	0.37		101	4.9\%	0.10	0.27		12	0.6\%	0.19	1.33	
Age 51-60	36,020	100.0\%	1,863	5.2\%				1,190	3.3\%				160	0.4\%			
BP User	18,010	50.0\%	353	2.0\%	0.22		<0.001	237	1.3\%	0.24		<0.001	38	0.2\%	0.31		<0.001
BP Non-user	18,010	50.0\%	1,510	8.4\%	0.19	0.25		953	5.3\%	0.21	0.28		122	0.7\%	0.22	0.45	
Age 61-70	82,233	100.0\%	3,200	3.9\%				2,424	2.9\%				403	0.5\%			
BP User	41,094	50.0\%	597	1.5\%	0.22		<0.001	507	1.2\%	0.26		<0.001	79	0.2\%	0.24		<0.001
BP Non-user	41,139	50.0\%	2,603	6.3\%	0.20	0.24		1,917	4.7\%	0.23	0.28		324	0.8\%	0.19	0.31	
Age 71-80	74,831	100.0\%	2,266	3.0\%				2,306	3.1\%				493	0.7\%			
BP User	37,438	50.0\%	442	1.2\%	0.23		<0.001	475	1.3\%	0.25		<0.001	99	0.3\%	0.25		<0.001
BP Non-user	37,393	50.0\%	1,824	4.9\%	0.21	0.26		1,831	4.9\%	0.23	0.28		394	1.1\%	0.20	0.31	
Age ≥ 81	39,818	100.0\%	1,161	2.9\%				1,720	4.3\%				424	1.1\%			
BP User	19,910	50.0\%	218	1.1\%	0.22		<0.001	333	1.7\%	0.23		<0.001	89	0.4\%	0.26		<0.001
BP Non-user	19,908	50.0\%	943	4.7\%	0.19	0.26		1,387	7.0\%	0.20	0.26		335	1.7\%	0.21	0.33	
Female Patients	216,273	100.0\%	7,897	3.7\%				6,941	3.2\%				1,263	0.6\%			
BP User	108,136	50.0\%	1,483	1.4\%	0.22		<0.001	1,392	1.3\%	0.24		<0.001	255	0.2\%	0.25		<0.001
BP Non-user	108,137	50.0\%	6,414	5.9\%	0.21	0.23		5,549	5.1\%	0.23	0.26		1,008	0.9\%	0.22	0.29	
By Age																	
Age ≤ 20	180	100.0\%	4	2.2\%				3	1.7\%				1	0.6\%			
BP User	90	50.0\%	2	2.2\%	1.00		1.00	1	1.1\%	0.49		1.00	1	1.1\%	NA		NA
BP Non-user	90	50.0\%	2	2.2\%	0.14	7.26		2	2.2\%	0.04	5.55		0	0.0\%	NA	NA	
Age 21-40	864	100.0\%	59	6.8\%				32	3.7\%				4	0.5\%			
BP User	431	49.9\%	10	2.3\%	0.19		<0.001	6	1.4\%	0.22		<0.001	1	0.2\%	0.33		0.62
BP Non-user	433	50.1\%	49	11.3\%	0.09	0.37		26	6.0\%	0.09	0.54		3	0.7\%	0.03	3.22	
Age 41-50	3,176	100.0\%	176	5.5\%				87	2.7\%				13	0.4\%			
BP User	1,588	50.0\%	40	2.5\%	0.28		<0.001	15	0.9\%	0.20		<0.001	5	0.3\%	0.62		0.40
BP Non-user	1,588	50.0\%	136	8.6\%	0.19	0.40		72	4.5\%	0.11	0.35		8	0.5\%	0.20	1.91	
Age 51-60	32,612	100.0\%	1,690	5.2\%				1,048	3.2\%				125	0.4\%			
BP User	16,306	50.0\%	310	1.9\%	0.21		<0.001	206	1.3\%	0.24		<0.001	31	0.2\%	0.33		<0.001
BP Non-user	16,306	50.0\%	1,380	8.5\%	0.18	0.24		842	5.2\%	0.20	0.27		94	0.6\%	0.22	0.49	
Age 61-70	76,403	100.0\%	2,933	3.8\%				2,181	2.9\%				343	0.4\%			

BP User	38,200	50.0\%	536	1.4\%	0.21		<0.001	456	1.2\%	0.26		<0.001	63	0.2\%	0.22		<0.001
BP Non-user	38,203	50.0\%	2,397	6.3\%	0.19	0.23		1,725	4.5\%	0.23	0.28		280	0.7\%	0.17	0.29	
Age 71-80	67,857	100.0\%	2,021	3.0\%				2,063	3.0\%				416	0.6\%			
BP User	33,930	50.0\%	393	1.2\%	0.23		<0.001	413	1.2\%	0.24		<0.001	77	0.2\%	0.23		<0.001
BP Non-user	33,927	50.0\%	1,628	4.8\%	0.21	0.26		1,650	4.9\%	0.22	0.27		339	1.0\%	0.18	0.29	
Age ≥ 81	35,181	100.0\%	1,014	2.9\%				1,527	4.3\%				361	1.0\%			
BP User	17,591	50.0\%	192	1.1\%	0.23		<0.001	295	1.7\%	0.23		<0.001	77	0.4\%	0.27		<0.001
BP Non-user	17,590	50.0\%	822	4.7\%	0.19	0.26		1,232	7.0\%	0.20	0.26		284	1.6\%	0.21	0.34	
Male Patients	22,715	100.0\%	934	4.1\%				879	3.9\%				242	1.1\%			
BP User	11,358	50.0\%	201	1.8\%	0.26		<0.001	186	1.6\%	0.26		<0.001	59	0.5\%	0.32		<0.001
BP Non-user	11,357	50.0\%	733	6.5\%	0.22	0.31		693	6.1\%	0.22	0.30		183	1.6\%	0.24	0.43	
By Age																	
Age ≤ 20	294	100.0\%	10	3.4\%				4	1.4\%				1	0.3\%			
BP User	146	49.7\%	5	3.4\%	1.01		0.98	1	0.7\%	0.33		0.62	1	0.7\%	NA		NA
BP Non-user	148	50.3\%	5	3.4\%	0.29	3.58		3	2.0\%	0.03	3.24		0	0.0\%	NA	NA	
Age 21-40	664	100.0\%	34	5.1\%				23	3.5\%				1	0.2\%			
BP User	333	50.2\%	4	1.2\%	0.12		<0.001	1	0.3\%	0.04		<0.001	0	0.0\%	NA		NA
BP Non-user	331	49.8\%	30	9.1\%	0.04	0.35		22	6.6\%	0.01	0.32		1	0.3\%	NA	NA	
Age 41-50	908	100.0\%	58	6.4\%				31	3.4\%				5	0.6\%			
BP User	454	50.0\%	13	2.9\%	0.27		<0.001	2	0.4\%	0.06		<0.001	1	0.2\%	0.25		0.37
BP Non-user	454	50.0\%	45	9.9\%	0.14	0.50		29	6.4\%	0.02	0.27		4	0.9\%	0.03	2.23	
Age 51-60	3,408	100.0\%	173	5.1\%				142	4.2\%				35	1.0\%			
BP User	1,704	50.0\%	43	2.5\%	0.31		<0.001	31	1.8\%	0.27		<0.001	7	0.4\%	0.25		<0.001
BP Non-user	1,704	50.0\%	130	7.6\%	0.22	0.45		111	6.5\%	0.18	0.40		28	1.6\%	0.11	0.57	
Age 61-70	5,830	100.0\%	267	4.6\%				243	4.2\%				60	1.0\%			
BP User	2,894	49.6\%	61	2.1\%	0.29		<0.001	51	1.8\%	0.26		<0.001	16	0.6\%	0.37		<0.001
BP Non-user	2,936	50.4\%	206	7.0\%	0.21	0.38		192	6.5\%	0.19	0.35		44	1.5\%	0.21	0.65	
Age 71-80	6,974	100.0\%	245	3.5\%				243	3.5\%				77	1.1\%			
BP User	3,508	50.3\%	49	1.4\%	0.24		<0.001	62	1.8\%	0.33		<0.001	22	0.6\%	0.39		<0.001
BP Non-user	3,466	49.7\%	196	5.7\%	0.17	0.32		181	5.2\%	0.24	0.44		55	1.6\%	0.24	0.64	
Age ≥ 81	4,637	100.0\%	147	3.2\%				193	4.2\%				63	1.4\%			
BP User	2,319	50.0\%	26	1.1\%	0.21		<0.001	38	1.6\%	0.23		<0.001	12	0.5\%	0.23		<0.001
BP Non-user	2,318	50.0\%	121	5.2\%	0.13	0.32		155	6.7\%	0.16	0.33		51	2.2\%	0.12	0.43	

BP: bisphosphonate; LL: lower 95\% confidence interval level; NA: not applicable; OR: odds ratio; UL: upper 95\% confidence interval level

Table S3c: Unadjusted COVID-19-Related Outcomes Stratified by Age, Sex, \& Age by Sex; Matched Primary Analysis Cohort, Region=Midwest

	Region=Midwest Matched																
	All		SARS-CoV-2 Test					COVID-19 Diagnosis					COVID-19 Hospitalization				
	N	\%	N	\%	OR		p-value	N	\%	OR		p-value	N	\%	OR		p-value
					LL	UL				LL	UL				LL	UL	
All Patients	151,802	100.0\%	4,451	2.9\%				2,099	1.4\%				636	0.4\%			
BP User	75,901	50.0\%	868	1.1\%	0.23		<0.001	383	0.5\%	0.22		<0.001	121	0.2\%	0.23		<0.001
BP Non-user	75,901	50.0\%	3,583	4.7\%	0.22	0.25		1,716	2.3\%	0.20	0.25		515	0.7\%	0.19	0.29	
By Age																	
Age ≤ 20	537	100.0\%	15	2.8\%				2	0.4\%				0	0.0\%			
BP User	268	49.9\%	6	2.2\%	0.66		0.44	0	0.0\%	NA		NA	0	0.0\%	NA		NA
BP Non-user	269	50.1\%	9	3.3\%	0.23	1.89		2	0.7\%	NA	NA		0	0.0\%	NA	NA	
Age 21-40	1,188	100.0\%	62	5.2\%				17	1.4\%				1	0.1\%			
BP User	593	49.9\%	7	1.2\%	0.12		<0.001	2	0.3\%	0.13		0.002	0	0.0\%	NA		NA
BP Non-user	595	50.1\%	55	9.2\%	0.05	0.26		15	2.5\%	0.03	0.57		1	0.2\%	NA	NA	
Age 41-50	3,367	100.0\%	184	5.5\%				46	1.4\%				16	0.5\%			
BP User	1,684	50.0\%	36	2.1\%	0.23		<0.001	10	0.6\%	0.27		<0.001	2	0.1\%	0.14		0.002
BP Non-user	1,683	50.0\%	148	8.8\%	0.16	0.33		36	2.1\%	0.14	0.55		14	0.8\%	0.03	0.62	
Age 51-60	24,478	100.0\%	951	3.9\%				293	1.2\%				80	0.3\%			
BP User	12,238	50.0\%	180	1.5\%	0.22		<0.001	52	0.4\%	0.21		<0.001	15	0.1\%	0.23		<0.001
BP Non-user	12,240	50.0\%	771	6.3\%	0.19	0.26		241	2.0\%	0.16	0.29		65	0.5\%	0.13	0.40	
Age 61-70	56,991	100.0\%	1,764	3.1\%				671	1.2\%				189	0.3\%			
BP User	28,496	50.0\%	322	1.1\%	0.21		<0.001	123	0.4\%	0.22		<0.001	35	0.1\%	0.23		<0.001
BP Non-user	28,495	50.0\%	1,442	5.1\%	0.19	0.24		548	1.9\%	0.18	0.27		154	0.5\%	0.16	0.33	
Age 71-80	42,153	100.0\%	1,009	2.4\%				577	1.4\%				200	0.5\%			
BP User	21,078	50.0\%	209	1.0\%	0.25		<0.001	95	0.5\%	0.19		<0.001	37	0.2\%	0.23		<0.001
BP Non-user	21,075	50.0\%	800	3.8\%	0.22	0.30		482	2.3\%	0.16	0.24		163	0.8\%	0.16	0.32	
Age ≥ 81	23,088	100.0\%	466	2.0\%				493	2.1\%				150	0.6\%			
BP User	11,544	50.0\%	108	0.9\%	0.30		<0.001	101	0.9\%	0.25		<0.001	32	0.3\%	0.27		<0.001
BP Non-user	11,544	50.0\%	358	3.1\%	0.24	0.37		392	3.4\%	0.20	0.31		118	1.0\%	0.18	0.40	
Female Patients	137,028	100.0\%	3,945	2.9\%				1,828	1.3\%				543	0.4\%			
BP User	68,512	50.0\%	762	1.1\%	0.23		<0.001	333	0.5\%	0.22		<0.001	103	0.2\%	0.23		<0.001
BP Non-user	68,516	50.0\%	3,183	4.6\%	0.21	0.25		1,495	2.2\%	0.19	0.25		440	0.6\%	0.19	0.29	
By Age																	
Age ≤ 20	226	100.0\%	7	3.1\%				1	0.4\%				0	0.0\%			
BP User	113	50.0\%	3	2.7\%	0.74		1.00	0	0.0\%	NA		NA	0	0.0\%	NA		NA
BP Non-user	113	50.0\%	4	3.5\%	0.16	3.40		1	0.9\%	NA	NA		0	0.0\%	NA	NA	
Age 21-40	700	100.0\%	34	4.9\%				7	1.0\%				0	0.0\%			
BP User	349	49.9\%	6	1.7\%	0.20		<0.001	1	0.3\%	0.17		0.12	0	0.0\%	NA		NA
BP Non-user	351	50.1\%	28	8.0\%	0.08	0.49		6	1.7\%	0.02	1.38		0	0.0\%	NA	NA	
Age 41-50	2,639	100.0\%	157	5.9\%				32	1.2\%				10	0.4\%			
BP User	1,319	50.0\%	31	2.4\%	0.23		<0.001	8	0.6\%	0.33		0.005	1	0.1\%	0.11		0.02
BP Non-user	1,320	50.0\%	126	9.5\%	0.15	0.34		24	1.8\%	0.15	0.74		9	0.7\%	0.01	0.87	
Age 51-60	22,101	100.0\%	856	3.9\%				260	1.2\%				70	0.3\%			
BP User	11,050	50.0\%	159	1.4\%	0.22		<0.001	47	0.4\%	0.22		<0.001	13	0.1\%	0.23		<0.001
BP Non-user	11,051	50.0\%	697	6.3\%	0.18	0.26		213	1.9\%	0.16	0.30		57	0.5\%	0.12	0.42	
Age 61-70	52,520	100.0\%	1,594	3.0\%				591	1.1\%				165	0.3\%			

BP User	26,260	50.0\%	286	1.1\%	0.21		<0.001	107	0.4\%	0.22		<0.001	29	0.1\%	0.21		<0.001
BP Non-user	26,260	50.0\%	1,308	5.0\%	0.18	0.24		484	1.8\%	0.18	0.27		136	0.5\%	0.14	0.32	
Age 71-80	38,367	100.0\%	877	2.3\%				501	1.3\%				172	0.4\%			
BP User	19,184	50.0\%	180	0.9\%	0.25		<0.001	85	0.4\%	0.20		<0.001	33	0.2\%	0.24		<0.001
BP Non-user	19,183	50.0\%	697	3.6\%	0.21	0.30		416	2.2\%	0.16	0.25		139	0.7\%	0.16	0.35	
Age ≥ 81	20,475	100.0\%	420	2.1\%				436	2.1\%				126	0.6\%			
BP User	10,237	50.0\%	97	0.9\%	0.29		<0.001	85	0.8\%	0.24		<0.001	27	0.3\%	0.27		<0.001
BP Non-user	10,238	50.0\%	323	3.2\%	0.23	0.37		351	3.4\%	0.19	0.30		99	1.0\%	0.18	0.41	
Male Patients	14,774	100.0\%	506	3.4\%				271	1.8\%				93	0.6\%			
BP User	7,389	50.0\%	106	1.4\%	0.25		<0.001	50	0.7\%	0.22		<0.001	18	0.2\%	0.24		<0.001
BP Non-user	7,385	50.0\%	400	5.4\%	0.20	0.32		221	3.0\%	0.16	0.30		75	1.0\%	0.14	0.40	
By Age																	
Age ≤ 20	311	100.0\%	8	2.6\%				1	0.3\%				0	0.0\%			
BP User	155	49.8\%	3	1.9\%	0.60		0.72	0	0.0\%	NA		NA	0	0.0\%	NA		NA
BP Non-user	156	50.2\%	5	3.2\%	0.14	2.54		1	0.6\%	NA	NA		0	0.0\%	NA	NA	
Age 21-40	488	100.0\%	28	5.7\%				10	2.0\%				1	0.2\%			
BP User	244	50.0\%	1	0.4\%	0.03		<0.001	1	0.4\%	0.11		0.02	0	0.0\%	NA		NA
BP Non-user	244	50.0\%	27	11.1\%	0.00	0.25		9	3.7\%	0.01	0.85		1	0.4\%	NA	NA	
Age 41-50	728	100.0\%	27	3.7\%				14	1.9\%				6	0.8\%			
BP User	365	50.1\%	5	1.4\%	0.22		<0.001	2	0.5\%	0.16		0.007	1	0.3\%	0.20		0.12
BP Non-user	363	49.9\%	22	6.1\%	0.08	0.57		12	3.3\%	0.04	0.73		5	1.4\%	0.02	1.69	
Age 51-60	2,377	100.0\%	95	4.0\%				33	1.4\%				10	0.4\%			
BP User	1,188	50.0\%	21	1.8\%	0.27		<0.001	5	0.4\%	0.18		<0.001	2	0.2\%	0.25		0.11
BP Non-user	1,189	50.0\%	74	6.2\%	0.17	0.44		28	2.4\%	0.07	0.46		8	0.7\%	0.05	1.17	
Age 61-70	4,471	100.0\%	170	3.8\%				80	1.8\%				24	0.5\%			
BP User	2,236	50.0\%	36	1.6\%	0.26		<0.001	16	0.7\%	0.24		<0.001	6	0.3\%	0.33		0.01
BP Non-user	2,235	50.0\%	134	6.0\%	0.18	0.37		64	2.9\%	0.14	0.42		18	0.8\%	0.13	0.84	
Age 71-80	3,786	100.0\%	132	3.5\%				76	2.0\%				28	0.7\%			
BP User	1,894	50.0\%	29	1.5\%	0.27		<0.001	10	0.5\%	0.15		<0.001	4	0.2\%	0.16		<0.001
BP Non-user	1,892	50.0\%	103	5.4\%	0.18	0.41		66	3.5\%	0.08	0.29		24	1.3\%	0.06	0.48	
Age ≥ 81	2,613	100.0\%	46	1.8\%				57	2.2\%				24	0.9\%			
BP User	1,307	50.0\%	11	0.8\%	0.31		<0.001	16	1.2\%	0.38		<0.001	5	0.4\%	0.26		0.004
BP Non-user	1,306	50.0\%	35	2.7\%	0.16	0.61		41	3.1\%	0.21	0.69		19	1.5\%	0.10	0.70	

BP: bisphosphonate; LL: lower 95\% confidence interval level; NA: not applicable; OR: odds ratio; UL: upper 95\% confidence interval level

Table S3d: Unadjusted COVID-19-Related Outcomes Stratified by Age, Sex, \& Age by Sex; Matched Primary Analysis Cohort, Region=South

	Region=South Matched																
	All		SARS-CoV-2 Test					COVID-19 Diagnosis					COVID-19 Hospitalization				
	N	\%	N	\%	OR		p-value	N	\%	OR		p-value	N	\%	OR		p-value
					LL	UL				LL	UL				LL	UL	
All Patients	319,408	100.0\%	8,418	2.6\%				3,535	1.1\%				849	0.3\%			
BP User	159,704	50.0\%	1,553	1.0\%	0.22		<0.001	624	0.4\%	0.21		<0.001	167	0.1\%	0.24		<0.001
BP Non-user	159,704	50.0\%	6,865	4.3\%	0.21	0.23		2,911	1.8\%	0.19	0.23		682	0.4\%	0.21	0.29	
By Age																	
Age ≤ 20	943	100.0\%	29	3.1\%				4	0.4\%				0	0.0\%			
BP User	474	50.3\%	15	3.2\%	1.06		0.87	0	0.0\%	NA		NA	0	0.0\%	NA		NA
BP Non-user	469	49.7\%	14	3.0\%	0.51	2.23		4	0.9\%	NA	NA		0	0.0\%	NA	NA	
Age 21-40	2,364	100.0\%	113	4.8\%				25	1.1\%				4	0.2\%			
BP User	1,177	49.8\%	20	1.7\%	0.20		<0.001	4	0.3\%	0.19		<0.001	2	0.2\%	1.01		1.00
BP Non-user	1,187	50.2\%	93	7.8\%	0.12	0.33		21	1.8\%	0.06	0.55		2	0.2\%	0.14	7.17	
Age 41-50	6,839	100.0\%	329	4.8\%				73	1.1\%				10	0.1\%			
BP User	3,421	50.0\%	72	2.1\%	0.26		<0.001	18	0.5\%	0.32		<0.001	5	0.1\%	1.00		0.99
BP Non-user	3,418	50.0\%	257	7.5\%	0.20	0.34		55	1.6\%	0.19	0.55		5	0.1\%	0.29	3.45	
Age 51-60	50,186	100.0\%	1,999	4.0\%				584	1.2\%				103	0.2\%			
BP User	25,093	50.0\%	393	1.6\%	0.23		<0.001	114	0.5\%	0.24		<0.001	23	0.1\%	0.29		<0.001
BP Non-user	25,093	50.0\%	1,606	6.4\%	0.21	0.26		470	1.9\%	0.19	0.29		80	0.3\%	0.18	0.46	
Age 61-70	111,800	100.0\%	3,246	2.9\%				1,106	1.0\%				247	0.2\%			
BP User	55,896	50.0\%	583	1.0\%	0.21		<0.001	191	0.3\%	0.21		<0.001	38	0.1\%	0.18		<0.001
BP Non-user	55,904	50.0\%	2,663	4.8\%	0.19	0.23		915	1.6\%	0.18	0.24		209	0.4\%	0.13	0.26	
Age 71-80	99,223	100.0\%	1,942	2.0\%				1,029	1.0\%				260	0.3\%			
BP User	49,618	50.0\%	322	0.6\%	0.19		<0.001	170	0.3\%	0.20		<0.001	55	0.1\%	0.27		<0.001
BP Non-user	49,605	50.0\%	1,620	3.3\%	0.17	0.22		859	1.7\%	0.17	0.23		205	0.4\%	0.20	0.36	
Age ≥ 81	48,053	100.0\%	760	1.6\%				714	1.5\%				225	0.5\%			
BP User	24,025	50.0\%	148	0.6\%	0.24		<0.001	127	0.5\%	0.21		<0.001	44	0.2\%	0.24		<0.001
BP Non-user	24,028	50.0\%	612	2.5\%	0.20	0.28		587	2.4\%	0.18	0.26		181	0.8\%	0.17	0.34	
Female Patients	289,263	100.0\%	7,519	2.6\%				3,159	1.1\%				745	0.3\%			
BP User	144,633	50.0\%	1,365	0.9\%	0.21		<0.001	562	0.4\%	0.21		<0.001	143	0.1\%	0.24		<0.001
BP Non-user	144,630	50.0\%	6,154	4.3\%	0.20	0.23		2,597	1.8\%	0.19	0.23		602	0.4\%	0.20	0.28	
By Age																	
Age ≤ 20	372	100.0\%	11	3.0\%				3	0.8\%				0	0.0\%			
BP User	185	49.7\%	6	3.2\%	1.22		0.75	0	0.0\%	NA		NA	0	0.0\%	NA		NA
BP Non-user	187	50.3\%	5	2.7\%	0.37	4.07		3	1.6\%	NA	NA		0	0.0\%	NA	NA	
Age 21-40	1,543	100.0\%	81	5.2\%				16	1.0\%				3	0.2\%			
BP User	770	49.9\%	14	1.8\%	0.20		<0.001	4	0.5\%	0.33		0.08	2	0.3\%	2.01		0.62
BP Non-user	773	50.1\%	67	8.7\%	0.11	0.35		12	1.6\%	0.11	1.03		1	0.1\%	0.18	22.22	
Age 41-50	5,569	100.0\%	273	4.9\%				66	1.2\%				9	0.2\%			
BP User	2,787	50.0\%	65	2.3\%	0.30		<0.001	18	0.6\%	0.37		<0.001	5	0.2\%	1.25		1.00
BP Non-user	2,782	50.0\%	208	7.5\%	0.22	0.39		48	1.7\%	0.21			4	0.1\%	0.33 4.65		
Age 51-60	46,012	100.0\%	1,819	4.0\%				521	1.1\%				89	0.2\%			
BP User	23,007	50.0\%	358	1.6\%	0.23		<0.001	100	0.4\%	0.23		<0.001	16	0.1\%	0.22		<0.001
BP Non-user	23,005	50.0\%	1,461	6.4\%	0.21	0.26		421	1.8\%	0.19	0.29		73	0.3\%	0.13	0.38	
Age 61-70	103,825	100.0\%	2,948	2.8\%				1,007	1.0\%				218	0.2\%			

BP User	51,910	50.0\%	517	1.0\%	0.20		<0.001	177	0.3\%	0.21		<0.001	33	0.1\%	0.18		<0.001
BP Non-user	51,915	50.0\%	2,431	4.7\%	0.19	0.23		830	1.6\%	0.18	0.25		185	0.4\%	0.12	0.26	
Age 71-80	89,474	100.0\%	1,729	1.9\%				915	1.0\%				230	0.3\%			
BP User	44,742	50.0\%	283	0.6\%	0.19		<0.001	153	0.3\%	0.20		<0.001	47	0.1\%	0.26		<0.001
BP Non-user	44,732	50.0\%	1,446	3.2\%	0.17	0.22		762	1.7\%	0.17	0.24		183	0.4\%	0.19	0.35	
Age ≥ 81	42,468	100.0\%	658	1.5\%				631	1.5\%				196	0.5\%			
BP User	21,232	50.0\%	122	0.6\%	0.22		<0.001	110	0.5\%	0.21		<0.001	40	0.2\%	0.26		<0.001
BP Non-user	21,236	50.0\%	536	2.5\%	0.18	0.27		521	2.5\%	0.17	0.25		156	0.7\%	0.18	0.36	
Male Patients	30,145	100.0\%	899	3.0\%				376	1.2\%				104	0.3\%			
BP User	15,071	50.0\%	188	1.2\%	0.26		<0.001	62	0.4\%	0.19		<0.001	24	0.2\%	0.30		<0.001
BP Non-user	15,074	50.0\%	711	4.7\%	0.22	0.30		314	2.1\%	0.15	0.26		80	0.5\%	0.19	0.47	
By Age																	
Age ≤ 20	571	100.0\%	18	3.2\%				1	0.2\%				0	0.0\%			
BP User	289	50.6\%	9	3.1\%	0.98		0.96	0	0.0\%	NA		NA	0	0.0\%	NA		NA
BP Non-user	282	49.4\%	9	3.2\%	0.38	2.49		1	0.4\%	NA	NA		0	0.0\%	NA	NA	
Age 21-40	821	100.0\%	32	3.9\%				9	1.1\%				1	0.1\%			
BP User	407	49.6\%	6	1.5\%	0.22		<0.001	0	0.0\%	NA		NA	0	0.0\%	NA		NA
BP Non-user	414	50.4\%	26	6.3\%	0.09	0.55		9	2.2\%	NA	NA		1	0.2\%	NA	NA	
Age 41-50	1,270	100.0\%	56	4.4\%				7	0.6\%				1	0.1\%			
BP User	634	49.9\%	7	1.1\%	0.13		<0.001	0	0.0\%	NA		NA	0	0.0\%	NA		NA
BP Non-user	636	50.1\%	49	7.7\%	0.06	0.30		7	1.1\%	NA	NA		1	0.2\%	NA	NA	
Age 51-60	4,174	100.0\%	180	4.3\%				63	1.5\%				14	0.3\%			
BP User	2,086	50.0\%	35	1.7\%	0.23		<0.001	14	0.7\%	0.28		<0.001	7	0.3\%	1.00		0.99
BP Non-user	2,088	50.0\%	145	6.9\%	0.16	0.33		49	2.3\%	0.15	0.51		7	0.3\%	0.35	2.86	
Age 61-70	7,975	100.0\%	298	3.7\%				99	1.2\%				29	0.4\%			
BP User	3,986	50.0\%	66	1.7\%	0.27		<0.001	14	0.4\%	0.16		<0.001	5	0.1\%	0.21		<0.001
BP Non-user	3,989	50.0\%	232	5.8\%	0.21	0.36		85	2.1\%	0.09	0.29		24	0.6\%	0.08	0.54	
Age 71-80	9,749	100.0\%	213	2.2\%				114	1.2\%				30	0.3\%			
BP User	4,876	50.0\%	39	0.8\%	0.22		<0.001	17	0.3\%	0.17		<0.001	8	0.2\%	0.36		0.01
BP Non-user	4,873	50.0\%	174	3.6\%	0.15	0.31		97	2.0\%	0.10	0.29		22	0.5\%	0.16	0.81	
Age ≥ 81	5,585	100.0\%	102	1.8\%				83	1.5\%				29	0.5\%			
BP User	2,793	50.0\%	26	0.9\%	0.34		<0.001	17	0.6\%	0.25		<0.001	4	0.1\%	0.16		<0.001
BP Non-user	2,792	50.0\%	76	2.7\%	0.21	0.53		66	2.4\%	0.15	0.43		25	0.9\%	0.06	0.46	

Table S3e: Unadjusted COVID-19-Related Outcomes Stratified by Age, Sex, \& Age by Sex; Matched Primary Analysis Cohort, Region=West

	Region=West Matched																
	All		SARS-CoV-2 Test					COVID-19 Diagnosis					COVID-19 Hospitalization				
	N	\%	N	\%	OR		p-value	N	\%	OR		p-value	N	\%	OR		p-value
					LL	UL				LL	UL				LL	UL	
All Patients	190,534	100.0\%	6,437	3.4\%				2,835	1.5\%				720	0.4\%			
BP User	95,267	50.0\%	1,084	1.1\%	0.19		<0.001	439	0.5\%	0.18		<0.001	113	0.1\%	0.19		<0.001
BP Non-user	95,267	50.0\%	5,353	5.6\%	0.18	0.21		2,396	2.5\%	0.16	0.20		607	0.6\%	0.15	0.23	
By Age																	
Age ≤ 20	299	100.0\%	9	3.0\%				1	0.3\%				0	0.0\%			
BP User	150	50.2\%	1	0.7\%	0.12		0.02	0	0.0\%	NA		NA	0	0.0\%	NA		NA
BP Non-user	149	49.8\%	8	5.4\%	0.01	0.96		1	0.7\%	NA	NA		0	0.0\%	NA	NA	
Age 21-40	1,115	100.0\%	67	6.0\%				18	1.6\%				3	0.3\%			
BP User	557	50.0\%	17	3.1\%	0.32		<0.001	2	0.4\%	0.12		0.001	1	0.2\%	0.50		1.00
BP Non-user	558	50.0\%	50	9.0\%	0.18	0.56		16	2.9\%	0.03	0.53		2	0.4\%	0.05	5.53	
Age 41-50	2,806	100.0\%	147	5.2\%				33	1.2\%				10	0.4\%			
BP User	1,404	50.0\%	27	1.9\%	0.21		<0.001	3	0.2\%	0.10		<0.001	1	0.1\%	0.11		0.01
BP Non-user	1,402	50.0\%	120	8.6\%	0.14	0.32		30	2.1\%	0.03	0.32		9	0.6\%	0.01	0.87	
Age 51-60	20,761	100.0\%	952	4.6\%				304	1.5\%				54	0.3\%			
BP User	10,380	50.0\%	178	1.7\%	0.22		<0.001	53	0.5\%	0.21		<0.001	7	0.1\%	0.15		<0.001
BP Non-user	10,381	50.0\%	774	7.5\%	0.18	0.26		251	2.4\%	0.15	0.28		47	0.5\%	0.07	0.33	
Age 61-70	62,798	100.0\%	2,228	3.5\%				828	1.3\%				196	0.3\%			
BP User	31,392	50.0\%	341	1.1\%	0.17		<0.001	118	0.4\%	0.16		<0.001	21	0.1\%	0.12		<0.001
BP Non-user	31,406	50.0\%	1,887	6.0\%	0.15	0.19		710	2.3\%	0.13	0.20		175	0.6\%	0.08	0.19	
Age 71-80	64,596	100.0\%	1,962	3.0\%				915	1.4\%				259	0.4\%			
BP User	32,303	50.0\%	336	1.0\%	0.20		<0.001	137	0.4\%	0.17		<0.001	43	0.1\%	0.20		<0.001
BP Non-user	32,293	50.0\%	1,626	5.0\%	0.18	0.22		778	2.4\%	0.14	0.21		216	0.7\%	0.14	0.27	
Age ≥ 81	38,159	100.0\%	1,072	2.8\%				736	1.9\%				198	0.5\%			
BP User	19,081	50.0\%	184	1.0\%	0.20		<0.001	126	0.7\%	0.20		<0.001	40	0.2\%	0.25		<0.001
BP Non-user	19,078	50.0\%	888	4.7\%	0.17	0.23		610	3.2\%	0.17	0.24		158	0.8\%	0.18	0.36	
Female Patients	168,933	100.0\%	5,575	3.3\%				2,439	1.4\%				576	0.3\%			
BP User	84,470	50.0\%	909	1.1\%	0.19		<0.001	380	0.4\%	0.18		<0.001	92	0.1\%	0.19		<0.001
BP Non-user	84,463	50.0\%	4,666	5.5\%	0.17	0.20		2,059	2.4\%	0.16	0.20		484	0.6\%	0.15	0.24	
By Age																	
Age ≤ 20	107	100.0\%	4	3.7\%				0	0.0\%				0	0.0\%			
BP User	54	50.5\%	0	0.0\%	NA		NA	0	0.0\%	NA		NA	0	0.0\%	NA		NA
BP Non-user	53	49.5\%	4	7.5\%	NA	NA		0	0.0\%	NA	NA		0	0.0\%	NA	NA	
Age 21-40	658	100.0\%	44	6.7\%				9	1.4\%				2	0.3\%			
BP User	329	50.0\%	10	3.0\%	0.27		<0.001	1	0.3\%	0.12		0.04	0	0.0\%	NA		NA
BP Non-user	329	50.0\%	34	10.3\%	0.13	0.56		8	2.4\%	0.02	0.98		2	0.6\%	NA	NA	
Age 41-50	2,158	100.0\%	124	5.7\%				21	1.0\%				5	0.2\%			
BP User	1,080	50.0\%	21	1.9\%	0.19		<0.001	2	0.2\%	0.10		<0.001	0	0.0\%	NA		NA
BP Non-user	1,078	50.0\%	103	9.6\%	0.12	0.30		19	1.8\%	0.02	0.45		5	0.5\%	NA	NA	
Age 51-60	18,480	100.0\%	835	4.5\%				264	1.4\%				43	0.2\%			
BP User	9,239	50.0\%	146	1.6\%	0.20		<0.001	46	0.5\%	0.21		<0.001	4	0.0\%	0.10		<0.001
BP Non-user	9,241	50.0\%	689	7.5\%	0.17	0.24		218	2.4\%	0.15	0.29		39	0.4\%	0.04	0.29	
Age 61-70	57,528	100.0\%	1,999	3.5\%				727	1.3\%				159	0.3\%			

BP User	28,761	50.0\%	300	1.0\%	0.17		<0.001	111	0.4\%	0.18		<0.001	19	0.1\%	0.14		<0.001
BP Non-user	28,767	50.0\%	1,699	5.9\%	0.15	0.19		616	2.1\%	0.14	0.22		140	0.5\%	0.08	0.22	
Age 71-80	57,396	100.0\%	1,677	2.9\%				775	1.4\%				208	0.4\%			
BP User	28,703	50.0\%	284	1.0\%	0.20		<0.001	118	0.4\%	0.18		<0.001	36	0.1\%	0.21		<0.001
BP Non-user	28,693	50.0\%	1,393	4.9\%	0.17	0.22		657	2.3\%	0.14	0.21		172	0.6\%	0.15	0.30	
Age ≥ 81	32,606	100.0\%	892	2.7\%				643	2.0\%				159	0.5\%			
BP User	16,304	50.0\%	148	0.9\%	0.19		<0.001	102	0.6\%	0.18		<0.001	33	0.2\%	0.26		<0.001
BP Non-user	16,302	50.0\%	744	4.6\%	0.16	0.23		541	3.3\%	0.15	0.23		126	0.8\%	0.18	0.38	
Male Patients	21,601	100.0\%	862	4.0\%				396	1.8\%				144	0.7\%			
BP User	10,797	50.0\%	175	1.6\%	0.24		<0.001	59	0.5\%	0.17		<0.001	21	0.2\%	0.17		<0.001
BP Non-user	10,804	50.0\%	687	6.4\%	0.21	0.29		337	3.1\%	0.13	0.23		123	1.1\%	0.11	0.27	
By Age																	
Age ≤ 20	192	100.0\%	5	2.6\%				1	0.5\%				0	0.0\%			
BP User	96	50.0\%	1	1.0\%	0.24		0.37	0	0.0\%	NA		NA	0	0.0\%	NA		NA
BP Non-user	96	50.0\%	4	4.2\%	0.03	2.21		1	1.0\%	NA	NA		0	0.0\%	NA	NA	
Age 21-40	457	100.0\%	23	5.0\%				9	2.0\%				1	0.2\%			
BP User	228	49.9\%	7	3.1\%	0.42		0.06	1	0.4\%	0.12		0.04	1	0.4\%	NA		NA
BP Non-user	229	50.1\%	16	7.0\%	0.17	1.05		8	3.5\%	0.02	0.98		0	0.0\%	NA	NA	
Age 41-50	648	100.0\%	23	3.5\%				12	1.9\%				5	0.8\%			
BP User	324	50.0\%	6	1.9\%	0.34		0.02	1	0.3\%	0.09		0.006	1	0.3\%	0.25		0.37
BP Non-user	324	50.0\%	17	5.2\%	0.13	0.88		11	3.4\%	0.01	0.69		4	1.2\%	0.03	2.23	
Age 51-60	2,281	100.0\%	117	5.1\%				40	1.8\%				11	0.5\%			
BP User	1,141	50.0\%	32	2.8\%	0.36		<0.001	7	0.6\%	0.21		<0.001	3	0.3\%	0.37		0.15
BP Non-user	1,140	50.0\%	85	7.5\%	0.24	0.54		33	2.9\%	0.09	0.47		8	0.7\%	0.10	1.41	
Age 61-70	5,270	100.0\%	229	4.3\%				101	1.9\%				37	0.7\%			
BP User	2,631	49.9\%	41	1.6\%	0.21		<0.001	7	0.3\%	0.07		<0.001	2	0.1\%	0.06		<0.001
BP Non-user	2,639	50.1\%	188	7.1\%	0.15	0.29		94	3.6\%	0.03	0.16		35	1.3\%	0.01	0.24	
Age 71-80	7,200	100.0\%	285	4.0\%				140	1.9\%				51	0.7\%			
BP User	3,600	50.0\%	52	1.4\%	0.21		<0.001	19	0.5\%	0.15		<0.001	7	0.2\%	0.16		<0.001
BP Non-user	3,600	50.0\%	233	6.5\%	0.16	0.29		121	3.4\%	0.09	0.25		44	1.2\%	0.07	0.35	
Age ≥ 81	5,553	100.0\%	180	3.2\%				93	1.7\%				39	0.7\%			
BP User	2,777	50.0\%	36	1.3\%	0.24		<0.001	24	0.9\%	0.34		<0.001	7	0.3\%	0.22		<0.001
BP Non-user	2,776	50.0\%	144	5.2\%	0.17	0.35		69	2.5\%	0.21	0.55		32	1.2\%	0.10	0.49	

BP: bisphosphonate; LL: lower 95\% confidence interval level; NA: not applicable; OR: odds ratio; UL: upper 95\% confidence interval level

Table S3f: Unadjusted COVID-19-Related Outcomes Stratified by Age, Sex, \& Age by Sex; Matched Primary Analysis Cohort, Region=New York State

	Region=New York State Matched																
	All		SARS-CoV-2 Test					COVID-19 Diagnosis					COVID-19 Hospitalization				
	N	\%	N	\%	OR		p-value	N	\%	OR		p-value	N	\%	OR		p-value
	N	\%	N	\%	LL	UL				LL	UL				LL	UL	
All Patients	99,724	100.0\%	3,598	3.6\%				3,607	3.6\%				622	0.6\%			
BP User	49,862	50.0\%	772	1.5\%	0.26		<0.001	811	1.6\%	0.28		<0.001	136	0.3\%	0.28		<0.001
BP Non-user	49,862	50.0\%	2,826	5.7\%	0.24	0.28		2,796	5.6\%	0.26	0.30		486	1.0\%	0.23	0.34	
By Age																	
Age ≤ 20	102	100.0\%	4	3.9\%				2	2.0\%				1	1.0\%			
BP User	50	49.0\%	2	4.0\%	1.04		1.00	1	2.0\%	1.04		1.00	1	2.0\%	NA		NA
BP Non-user	52	51.0\%	2	3.8\%	0.14	7.69		1	1.9\%	0.06	17.11		0	0.0\%	NA	NA	
Age 21-40	453	100.0\%	21	4.6\%				15	3.3\%				1	0.2\%			
BP User	228	50.3\%	3	1.3\%	0.15		<0.001	2	0.9\%	0.14		0.004	1	0.4\%	NA		NA
BP Non-user	225	49.7\%	18	8.0\%	0.04	0.53		13	5.8\%	0.03	0.65		0	0.0\%	NA	NA	
Age 41-50	1,311	100.0\%	77	5.9\%				36	2.7\%				4	0.3\%			
BP User	655	50.0\%	22	3.4\%	0.38		<0.001	8	1.2\%	0.28		<0.001	1	0.2\%	0.33		0.62
BP Non-user	656	50.0\%	55	8.4\%	0.23	0.63		28	4.3\%	0.13	0.61		3	0.5\%	0.03	3.21	
Age 51-60	12,732	100.0\%	688	5.4\%				527	4.1\%				58	0.5\%			
BP User	6,364	50.0\%	155	2.4\%	0.27		<0.001	118	1.9\%	0.28		<0.001	17	0.3\%	0.41		0.002
BP Non-user	6,368	50.0\%	533	8.4\%	0.23	0.33		409	6.4\%	0.22	0.34		41	0.6\%	0.23	0.73	
Age 61-70	32,265	100.0\%	1,294	4.0\%				1,150	3.6\%				141	0.4\%			
BP User	16,136	50.0\%	277	1.7\%	0.26		<0.001	267	1.7\%	0.29		<0.001	27	0.2\%	0.24		<0.001
BP Non-user	16,129	50.0\%	1,017	6.3\%	0.23	0.30		883	5.5\%	0.25	0.33		114	0.7\%	0.15	0.36	
Age 71-80	34,693	100.0\%	957	2.8\%				1,196	3.4\%				240	0.7\%			
BP User	17,341	50.0\%	204	1.2\%	0.26		<0.001	257	1.5\%	0.26		<0.001	45	0.3\%	0.23		<0.001
BP Non-user	17,352	50.0\%	753	4.3\%	0.22	0.31		939	5.4\%	0.23	0.30		195	1.1\%	0.17	0.32	
Age ≥ 81	18,168	100.0\%	557	3.1\%				681	3.7\%				177	1.0\%			
BP User	9,088	50.0\%	109	1.2\%	0.23		<0.001	158	1.7\%	0.29		<0.001	44	0.5\%	0.33		<0.001
BP Non-user	9,080	50.0\%	448	4.9\%	0.19	0.29		523	5.8\%	0.24	0.35		133	1.5\%	0.23	0.46	
Female Patients	90,567	100.0\%	3,255	3.6\%				3,235	3.6\%				537	0.6\%			
BP User	45,285	50.0\%	687	1.5\%	0.26		<0.001	726	1.6\%	0.28		<0.001	108	0.2\%	0.25		<0.001
BP Non-user	45,282	50.0\%	2,568	5.7\%	0.24	0.28		2,509	5.5\%	0.26	0.30		429	0.9\%	0.20	0.31	
By Age																	
Age ≤ 20	33	100.0\%	0	0.0\%				1	3.0\%				1	3.0\%			
BP User	16	48.5\%	0	0.0\%	NA		NA	1	6.3\%	NA		NA	1	6.3\%	NA		NA
BP Non-user	17	51.5\%	0	0.0\%	NA	NA		0	0.0\%	NA	NA		0	0.0\%	NA	NA	
Age 21-40	261	100.0\%	16	6.1\%				8	3.1\%				1	0.4\%			
BP User	132	50.6\%	2	1.5\%	0.13		0.002	2	1.5\%	0.32		0.17	1	0.8\%	NA		NA
BP Non-user	129	49.4\%	14	10.9\%	0.03	0.57		6	4.7\%	0.06	1.59		0	0.0\%	NA	NA	
Age 41-50	1,032	100.0\%	58	5.6\%				28	2.7\%				3	0.3\%			
BP User	516	50.0\%	18	3.5\%	0.43		0.003	7	1.4\%	0.32		0.007	0	0.0\%	NA		NA
BP Non-user	516	50.0\%	40	7.8\%	0.24	0.76		21	4.1\%	0.14	0.77		3	0.6\%	NA	NA	
Age 51-60	11,699	100.0\%	637	5.4\%				482	4.1\%				47	0.4\%			
BP User	5,849	50.0\%	138	2.4\%	0.26		<0.001	110	1.9\%	0.28		<0.001	14	0.2\%	0.42		0.006
BP Non-user	5,850	50.0\%	499	8.5\%	0.21	0.31		372	6.4\%	0.23	0.35		33	0.6\%	0.23	0.79	
Age 61-70	30,115	100.0\%	1,204	4.0\%				1,070	3.6\%				126	0.4\%			

BP User	15,060	50.0\%	257	1.7\%			<0.001	248	1.6\%	0.29		<0.001	23	0.2\%	0.22		<0.001
BP Non-user	15,055	50.0\%	947	6.3\%	0.22	0.30		822	5.5\%	0.25	0.33		103	0.7\%	0.14	0.35	
Age 71-80	31,385	100.0\%	858	2.7\%				1,052	3.4\%				208	0.7\%			
BP User	15,688	50.0\%	176	1.1\%	0.25		<0.001	221	1.4\%	0.26		<0.001	33	0.2\%	0.19		<0.001
BP Non-user	15,697	50.0\%	682	4.3\%	0.21	0.30		831	5.3\%	0.22	0.30		175	1.1\%	0.13	0.27	
Age ≥ 81	16,042	100.0\%	482	3.0\%				594	3.7\%				151	0.9\%			
BP User	8,024	50.0\%	96	1.2\%	0.24		<0.001	137	1.7\%	0.29		<0.001	36	0.4\%	0.31		<0.001
BP Non-user	8,018	50.0\%	386	4.8\%	0.19	0.30		457	5.7\%	0.24	0.35		115	1.4\%	0.21	0.45	
Male Patients	9,157	100.0\%	343	3.7\%				372	4.1\%				85	0.9\%			
BP User	4,577	50.0\%	85	1.9\%	0.32		<0.001	85	1.9\%	0.28		<0.001	28	0.6\%	0.49		0.002
BP Non-user	4,580	50.0\%	258	5.6\%	0.25	0.41		287	6.3\%	0.22	0.36		57	1.2\%	0.31	0.77	
By Age																	
Age ≤ 20	69	100.0\%	4	5.8\%				1	1.4\%				0	0.0\%			
BP User	34	49.3\%	2	5.9\%	1.03		1.00	0	0.0\%	NA		NA	0	0.0\%	NA		NA
BP Non-user	35	50.7\%	2	5.7\%	0.14	7.77		1	2.9\%	NA	NA		0	0.0\%	NA	NA	
Age 21-40	192	100.0\%	5	2.6\%				7	3.6\%				0	0.0\%			
BP User	96	50.0\%	1	1.0\%	0.24		0.37	0	0.0\%	NA		NA	0	0.0\%	NA		NA
BP Non-user	96	50.0\%	4	4.2\%	0.03	2.21		7	7.3\%	NA	NA		0	0.0\%	NA	NA	
Age 41-50	279	100.0\%	19	6.8\%				8	2.9\%				1	0.4\%			
BP User	139	49.8\%	4	2.9\%	0.25		0.02	1	0.7\%	0.14		0.07	1	0.7\%	NA		NA
BP Non-user	140	50.2\%	15	10.7\%	0.08	0.76		7	5.0\%	0.02	1.13		0	0.0\%	NA	NA	
Age 51-60	1,033	100.0\%	51	4.9\%				45	4.4\%				11	1.1\%			
BP User	515	49.9\%	17	3.3\%	0.49		0.02	8	1.6\%	0.21		<0.001	3	0.6\%	0.37		0.22
BP Non-user	518	50.1\%	34	6.6\%	0.27	0.88		37	7.1\%	0.09	0.44		8	1.5\%	0.10	1.42	
Age 61-70	2,150	100.0\%	90	4.2\%				80	3.7\%				15	0.7\%			
BP User	1,076	50.0\%	20	1.9\%	0.27		<0.001	19	1.8\%	0.30		<0.001	4	0.4\%	0.36		0.08
BP Non-user	1,074	50.0\%	70	6.5\%	0.16	0.45		61	5.7\%	0.18	0.50		11	1.0\%	0.11	1.14	
Age 71-80	3,308	100.0\%	99	3.0\%				144	4.4\%				32	1.0\%			
BP User	1,653	50.0\%	28	1.7\%	0.38		<0.001	36	2.2\%	0.32		<0.001	12	0.7\%	0.60		0.16
BP Non-user	1,655	50.0\%	71	4.3\%	0.25	0.60		108	6.5\%	0.22	0.47		20	1.2\%	0.29	1.23	
Age ≥ 81	2,126	100.0\%	75	3.5\%				87	4.1\%				26	1.2\%			
BP User	1,064	50.0\%	13	1.2\%	0.20		<0.001	21	2.0\%	0.30		<0.001	8	0.8\%	0.44		0.05
BP Non-user	1,062	50.0\%	62	5.8\%	0.11	0.37		66	6.2\%	0.18	0.50		18	1.7\%	0.19	1.02	

BP: bisphosphonate; LL: lower 95\% confidence interval level; NA: not applicable; OR: odds ratio; UL: upper 95\% confidence interval level

Table S4: ‘Bone-Rx’ Cohort Unadjusted/Adjusted Odds Ratio for COVID-19-Related Outcomes, Stratified by Region and New York State

		SARS-CoV-2 Test				COVID-19 Diagnosis				COVID-19 Hospitalization			
		OR	LL	UL	p value	OR	LL	UL	p value	OR	LL	UL	p value
All	Unadjusted	0.22	0.21	0.22	<0.001	0.22	0.21	0.23	<0.001	0.24	0.22	0.26	<0.001
	Adjusted	0.22	0.21	0.23	<0.001	0.23	0.22	0.24	<0.001	0.26	0.24	0.29	<0.001
Northeast	Unadjusted	0.22	0.21	0.24	<0.001	0.24	0.23	0.26	<0.001	0.26	0.23	0.30	<0.001
	Adjusted	0.23	0.21	0.24	<0.001	0.25	0.23	0.26	<0.001	0.29	0.26	0.33	<0.001
Midwest	Unadjusted	0.23	0.22	0.25	<0.001	0.22	0.20	0.25	<0.001	0.23	0.19	0.29	<0.001
	Adjusted	0.24	0.22	0.26	<0.001	0.24	0.22	0.27	<0.001	0.26	0.21	0.32	<0.001
South	Unadjusted	0.22	0.21	0.23	<0.001	0.21	0.19	0.23	<0.001	0.24	0.21	0.29	<0.001
	Adjusted	0.22	0.21	0.23	<0.001	0.22	0.20	0.24	<0.001	0.26	0.23	0.30	<0.001
West	Unadjusted	0.19	0.18	0.21	<0.001	0.18	0.16	0.20	<0.001	0.19	0.15	0.23	<0.001
	Adjusted	0.20	0.18	0.21	<0.001	0.19	0.17	0.21	<0.001	0.20	0.16	0.25	<0.001
New York	Unadjusted	0.26	0.24	0.28	<0.001	0.28	0.26	0.30	<0.001	0.28	0.23	0.34	<0.001
	Adjusted	0.26	0.24	0.28	<0.001	0.28	0.26	0.31	<0.001	0.33	0.27	0.40	<0.001

LL: lower 95\% confidence interval level; OR: odds ratio; UL: upper 95\% confidence interval level

Table S5a: Statin Use Sensitivity Analysis, Unadjusted/Adjusted Odds Ratio for COVID-19-Related Outcomes, Stratified by Region and New York State

		SARS-CoV-2 Test				COVID-19 Diagnosis				COVID-19 Hospitalization			
		Statin Uses versus Non-users											
		OR	LL	UL	p value	OR	LL	UL	p value	OR	LL	UL	p value
All	Unadjusted	0.90	0.89	0.91	<0.001	0.91	0.90	0.92	<0.001	1.12	1.09	1.15	<0.001
	Adjusted	0.87	0.86	0.87	<0.001	0.79	0.78	0.81	<0.001	0.99	0.96	1.02	0.48
Northeast	Unadjusted	0.87	0.85	0.88	<0.001	0.88	0.86	0.90	<0.001	1.16	1.11	1.21	<0.001
	Adjusted	0.85	0.84	0.87	<0.001	0.77	0.75	0.78	<0.001	1.03	0.98	1.07	0.22
Midwest	Unadjusted	0.97	0.95	0.99	0.02	1.10	1.07	1.14	<0.001	1.27	1.19	1.36	<0.001
	Adjusted	0.92	0.90	0.94	<0.001	0.99	0.96	1.03	0.75	1.15	1.08	1.23	<0.001
South	Unadjusted	0.90	0.88	0.91	<0.001	0.90	0.88	0.93	<0.001	1.00	0.95	1.06	0.90
	Adjusted	0.85	0.84	0.87	<0.001	0.80	0.78	0.83	<0.001	0.88	0.83	0.94	<0.001
West	Unadjusted	0.88	0.86	0.90	<0.001	0.83	0.80	0.86	<0.001	1.02	0.95	1.10	0.58
	Adjusted	0.86	0.83	0.88	<0.001	0.71	0.68	0.74	<0.001	0.87	0.80	0.94	<0.001
New York	Unadjusted	0.91	0.89	0.93	<0.001	0.93	0.91	0.96	<0.001	1.21	1.14	1.29	<0.001
	Adjusted	0.92	0.90	0.95	<0.001	0.79	0.77	0.82	<0.001	1.05	0.98	1.13	0.15
		BP Users versus BP Non-users among Statin Users											
		OR	LL	UL	p value	OR	LL	UL	p value	OR	LL	UL	p value
All	Unadjusted	0.23	0.22	0.24	<0.001	0.26	0.25	0.28	<0.001	0.26	0.23	0.29	<0.001
	Adjusted	0.23	0.22	0.24	<0.001	0.27	0.25	0.29	<0.001	0.28	0.25	0.32	<0.001
Northeast	Unadjusted	0.25	0.23	0.27	<0.001	0.29	0.27	0.31	<0.001	0.28	0.24	0.34	<0.001
	Adjusted	0.25	0.23	0.27	<0.001	0.29	0.27	0.32	<0.001	0.32	0.26	0.38	<0.001
Midwest	Unadjusted	0.24	0.22	0.27	<0.001	0.22	0.19	0.25	<0.001	0.21	0.16	0.27	<0.001
	Adjusted	0.25	0.23	0.29	<0.001	0.23	0.22	0.25	<0.001	0.22	0.17	0.30	<0.001
South	Unadjusted	0.22	0.21	0.24	<0.001	0.26	0.23	0.29	<0.001	0.26	0.21	0.33	<0.001
	Adjusted	0.22	0.20	0.24	<0.001	0.27	0.24	0.31	<0.001	0.28	0.22	0.36	<0.001
West	Unadjusted	0.20	0.18	0.22	<0.001	0.22	0.19	0.25	<0.001	0.25	0.20	0.33	<0.001
	Adjusted	0.20	0.18	0.22	<0.001	0.23	0.20	0.27	<0.001	0.28	0.21	0.36	<0.001
New York	Unadjusted	0.27	0.24	0.30	<0.001	0.31	0.28	0.35	<0.001	0.30	0.23	0.39	<0.001
	Adjusted	0.28	0.25	0.32	<0.001	0.31	0.28	0.35	<0.001	0.33	0.25	0.44	<0.001
		BP Users versus BP Non-users among Statin Non-users											
		OR	LL	UL	p value	OR	LL	UL	p value	OR	LL	UL	p value
All	Unadjusted	0.23	0.21	0.24	<0.001	0.21	0.19	0.23	<0.001	0.21	0.17	0.25	<0.001
	Adjusted	0.24	0.22	0.25	<0.001	0.23	0.21	0.25	<0.001	0.25	0.21	0.30	<0.001
Northeast	Unadjusted	0.25	0.22	0.27	<0.001	0.22	0.20	0.25	<0.001	0.24	0.19	0.31	<0.001
	Adjusted	0.26	0.23	0.29	<0.001	0.25	0.22	0.28	<0.001	0.29	0.22	0.37	<0.001
Midwest	Unadjusted	0.24	0.21	0.28	<0.001	0.22	0.18	0.27	<0.001	0.21	0.14	0.31	<0.001
	Adjusted	0.24	0.20	0.28	<0.001	0.25	0.20	0.32	<0.001	0.26	0.17	0.39	<0.001
South	Unadjusted	0.23	0.21	0.25	<0.001	0.19	0.15	0.22	<0.001	0.18	0.12	0.27	<0.001
	Adjusted	0.24	0.21	0.27	<0.001	0.21	0.17	0.25	<0.001	0.22	0.15	0.33	<0.001
West	Unadjusted	0.19	0.17	0.22	<0.001	0.18	0.15	0.22	<0.001	0.16	0.11	0.25	<0.001
	Adjusted	0.20	0.17	0.23	<0.001	0.19	0.18	0.21	<0.001	0.18	0.11	0.29	<0.001
New York	Unadjusted	0.26	0.23	0.30	<0.001	0.26	0.22	0.30	<0.001	0.27	0.19	0.39	<0.001
	Adjusted	0.26	0.22	0.31	<0.001	0.25	0.21	0.30	<0.001	0.35	0.23	0.52	<0.001

LL: lower 95\% confidence interval level; OR: odds ratio; UL: upper 95\% confidence interval level

Table S5b: Antihypertensive Use Sensitivity Analysis, Unadjusted/Adjusted Odds Ratio for COVID-19-Related Outcomes, Stratified by Region and New York State

		Odds of SARS-CoV-2 Test				Odds of COVID-19 Diagnosis				Odds of COVID-19 Hospitalization			
		Antihypertensive Users versus Non-users											
		OR	LL	UL	p value	OR	LL	UL	p value	OR	LL	UL	p value
All	Unadjusted	0.91	0.90	0.92	<0.001	0.86	0.85	0.87	<0.001	1.13	1.10	1.17	<0.001
	Adjusted	0.87	0.86	0.88	<0.001	0.75	0.74	0.76	<0.001	0.98	0.95	1.00	0.10
Northeast	Unadjusted	0.86	0.84	0.87	<0.001	0.83	0.82	0.85	<0.001	1.20	1.15	1.25	<0.001
	Adjusted	0.82	0.81	0.83	<0.001	0.72	0.71	0.73	<0.001	1.04	0.99	1.08	0.10
Midwest	Unadjusted	1.00	0.98	1.02	0.98	1.06	1.03	1.10	<0.001	1.28	1.20	1.36	<0.001
	Adjusted	0.94	0.91	0.96	<0.001	0.94	0.90	0.97	<0.001	1.11	1.04	1.19	0.002
South	Unadjusted	0.93	0.92	0.94	<0.001	0.88	0.86	0.90	<0.001	1.02	0.96	1.07	0.58
	Adjusted	0.88	0.87	0.89	<0.001	0.78	0.76	0.80	<0.001	0.89	0.84	0.94	<0.001
West	Unadjusted	0.90	0.88	0.92	<0.001	0.75	0.73	0.78	<0.001	0.99	0.92	1.06	0.83
	Adjusted	0.87	0.85	0.89	<0.001	0.65	0.62	0.67	<0.001	0.84	0.78	0.90	<0.001
New York	Unadjusted	0.92	0.90	0.94	<0.001	0.90	0.87	0.92	<0.001	1.23	1.15	1.31	<0.001
	Adjusted	0.90	0.87	0.92	<0.001	0.75	0.73	0.77	<0.001	1.01	0.95	1.09	0.70
		BP Users versus BP Non-users among Antihypertensive Users											
		OR	LL	UL	p value	OR	LL	UL	p value	OR	LL	UL	p value
All	Unadjusted	0.23	0.22	0.24	<0.001	0.26	0.25	0.28	<0.001	0.26	0.23	0.29	<0.001
	Adjusted	0.23	0.22	0.24	<0.001	0.26	0.25	0.28	<0.001	0.27	0.24	0.30	<0.001
Northeast	Unadjusted	0.24	0.22	0.26	<0.001	0.28	0.26	0.31	<0.001	0.27	0.22	0.32	<0.001
	Adjusted	0.23	0.21	0.26	<0.001	0.28	0.26	0.31	<0.001	0.29	0.24	0.34	<0.001
Midwest	Unadjusted	0.26	0.23	0.29	<0.001	0.27	0.23	0.31	<0.001	0.27	0.21	0.35	<0.001
	Adjusted	0.27	0.24	0.30	<0.001	0.28	0.26	0.30	<0.001	0.27	0.20	0.35	<0.001
South	Unadjusted	0.23	0.21	0.25	<0.001	0.24	0.22	0.28	<0.001	0.26	0.20	0.32	<0.001
	Adjusted	0.23	0.21	0.25	<0.001	0.24	0.21	0.28	<0.001	0.25	0.20	0.32	<0.001
West	Unadjusted	0.20	0.18	0.22	<0.001	0.21	0.18	0.25	<0.001	0.24	0.18	0.31	<0.001
	Adjusted	0.20	0.18	0.22	<0.001	0.22	0.18	0.25	<0.001	0.24	0.18	0.33	<0.001
New York	Unadjusted	0.26	0.23	0.29	<0.001	0.30	0.26	0.33	<0.001	0.29	0.22	0.38	<0.001
	Adjusted	0.25	0.22	0.29	<0.001	0.30	0.26	0.34	<0.001	0.33	0.24	0.44	<0.001
		BP Users versus BP Non-users among Antihypertensive Non-users											
		OR	LL	UL	p value	OR	LL	UL	p value	OR	LL	UL	p value
All	Unadjusted	0.21	0.20	0.22	<0.001	0.20	0.18	0.22	<0.001	0.21	0.17	0.25	<0.001
	Adjusted	0.21	0.20	0.22	<0.001	0.22	0.20	0.24	<0.001	0.27	0.22	0.32	<0.001
Northeast	Unadjusted	0.21	0.19	0.23	<0.001	0.22	0.19	0.24	<0.001	0.23	0.18	0.31	<0.001
	Adjusted	0.22	0.20	0.25	<0.001	0.25	0.22	0.28	<0.001	0.30	0.22	0.40	<0.001
Midwest	Unadjusted	0.22	0.19	0.25	<0.001	0.16	0.12	0.20	<0.001	0.20	0.13	0.31	<0.001
	Adjusted	0.21	0.18	0.25	<0.001	0.18	0.14	0.23	<0.001	0.26	0.16	0.42	<0.001
South	Unadjusted	0.20	0.18	0.22	<0.001	0.19	0.16	0.22	<0.001	0.22	0.15	0.32	<0.001
	Adjusted	0.20	0.18	0.22	<0.001	0.21	0.17	0.25	<0.001	0.28	0.19	0.41	<0.001
West	Unadjusted	0.19	0.17	0.22	<0.001	0.18	0.15	0.22	<0.001	0.15	0.09	0.24	<0.001
	Adjusted	0.20	0.17	0.22	<0.001	0.20	0.16	0.25	<0.001	0.19	0.11	0.32	<0.001
New York	Unadjusted	0.26	0.23	0.31	<0.001	0.25	0.21	0.29	<0.001	0.23	0.15	0.36	<0.001
	Adjusted	0.27	0.23	0.32	<0.001	0.26	0.22	0.31	<0.001	0.26	0.16	0.43	<0.001

LL: lower 95\% confidence interval level; OR: odds ratio; UL: upper 95\% confidence interval level

Table S5c: Antidiabetic Use Sensitivity Analysis, Unadjusted/Adjusted Odds Ratio for COVID-19-Related Outcomes, Stratified by Region and New York State

		Odds of SARS-CoV-2 Test				Odds of COVID-19 Diagnosis				Odds of COVID-19 Hospitalization			
		Antidiabetic Users versus Non-users											
		OR	LL	UL	p value	OR	LL	UL	p value	OR	LL	UL	p value
All	Unadjusted	0.98	0.97	0.99	0.01	1.15	1.13	1.18	<0.001	1.50	1.45	1.56	<0.001
	Adjusted	0.92	0.90	0.93	<0.001	0.88	0.86	0.90	<0.001	1.13	1.08	1.18	<0.001
Northeast	Unadjusted	1.00	0.98	1.02	0.92	1.11	1.09	1.14	<0.001	1.55	1.47	1.64	<0.001
	Adjusted	0.94	0.92	0.97	<0.001	0.84	0.81	0.86	<0.001	1.18	1.11	1.27	<0.001
Midwest	Unadjusted	1.04	1.01	1.08	0.01	1.39	1.33	1.46	<0.001	1.61	1.47	1.76	<0.001
	Adjusted	0.95	0.91	0.99	0.01	1.11	1.04	1.17	<0.001	1.30	1.17	1.44	<0.001
South	Unadjusted	0.97	0.95	0.99	0.01	1.16	1.12	1.21	<0.001	1.39	1.29	1.50	<0.001
	Adjusted	0.90	0.88	0.93	<0.001	0.91	0.87	0.95	<0.001	1.04	0.95	1.14	0.40
West	Unadjusted	0.91	0.88	0.94	<0.001	1.07	1.01	1.12	0.01	1.43	1.30	1.58	<0.001
	Adjusted	0.86	0.82	0.89	<0.001	0.80	0.75	0.85	<0.001	0.97	0.86	1.09	0.60
New York	Unadjusted	1.06	1.03	1.10	<0.001	1.15	1.11	1.19	<0.001	1.59	1.46	1.72	<0.001
	Adjusted	1.06	1.02	1.10	0.007	0.87	0.83	0.90	<0.001	1.18	1.07	1.30	0.001
BP Users versus BP Non-users among Antidiabetic Users													
		OR	LL	UL	p value	OR	LL	UL	p value	OR	LL	UL	p value
All	Unadjusted	0.26	0.24	0.28	<0.001	0.29	0.27	0.32	<0.001	0.28	0.24	0.33	<0.001
	Adjusted	0.26	0.24	0.28	<0.001	0.29	0.27	0.32	<0.001	0.29	0.25	0.34	<0.001
Northeast	Unadjusted	0.28	0.24	0.32	<0.001	0.32	0.28	0.35	<0.001	0.29	0.23	0.36	<0.001
	Adjusted	0.28	0.24	0.32	<0.001	0.31	0.27	0.35	<0.001	0.30	0.24	0.39	<0.001
Midwest	Unadjusted	0.27	0.22	0.33	<0.001	0.30	0.24	0.38	<0.001	0.28	0.19	0.41	<0.001
	Adjusted	0.27	0.22	0.34	<0.001	0.32	0.26	0.41	<0.001	0.29	0.19	0.42	<0.001
South	Unadjusted	0.29	0.26	0.33	<0.001	0.31	0.26	0.36	<0.001	0.35	0.26	0.47	<0.001
	Adjusted	0.30	0.26	0.34	<0.001	0.30	0.25	0.36	<0.001	0.36	0.26	0.48	<0.001
West	Unadjusted	0.19	0.16	0.22	<0.001	0.20	0.17	0.25	<0.001	0.21	0.15	0.30	<0.001
	Adjusted	0.19	0.16	0.23	<0.001	0.21	0.17	0.26	<0.001	0.22	0.15	0.31	<0.001
New York	Unadjusted	0.33	0.27	0.40	<0.001	0.34	0.29	0.39	<0.001	0.35	0.26	0.49	<0.001
	Adjusted	0.32	0.26	0.40	<0.001	0.32	0.28	0.36	<0.001	0.40	0.28	0.56	<0.001
		BP Users versus BP Non-users among Antidiabetic Non-users											
		OR	LL	UL	p value	OR	LL	UL	p value	OR	LL	UL	p value
All	Unadjusted	0.24	0.23	0.26	<0.001	0.24	0.22	0.26	<0.001	0.24	0.20	0.29	<0.001
	Adjusted	0.25	0.23	0.27	<0.001	0.25	0.23	0.28	<0.001	0.27	0.22	0.33	<0.001
Northeast	Unadjusted	0.24	0.22	0.28	<0.001	0.26	0.22	0.29	<0.001	0.25	0.19	0.34	<0.001
	Adjusted	0.25	0.22	0.29	<0.001	0.27	0.24	0.32	<0.001	0.28	0.20	0.39	<0.001
Midwest	Unadjusted	0.27	0.22	0.32	<0.001	0.22	0.17	0.30	<0.001	0.26	0.16	0.42	<0.001
	Adjusted	0.28	0.24	0.31	<0.001	0.23	0.17	0.31	<0.001	0.26	0.16	0.45	<0.001
South	Unadjusted	0.24	0.21	0.27	<0.001	0.25	0.20	0.30	<0.001	0.29	0.20	0.43	<0.001
	Adjusted	0.24	0.21	0.27	<0.001	0.24	0.21	0.28	<0.001	0.33	0.22	0.49	<0.001
West	Unadjusted	0.23	0.20	0.27	<0.001	0.18	0.14	0.24	<0.001	0.13	0.07	0.23	<0.001
	Adjusted	0.23	0.20	0.28	<0.001	0.20	0.15	0.26	<0.001	0.15	0.08	0.28	<0.001
New York	Unadjusted	0.30	0.25	0.37	<0.001	0.30	0.25	0.36	<0.001	0.22	0.14	0.36	<0.001
	Adjusted	0.30	0.25	0.37	<0.001	0.31	0.25	0.37	<0.001	0.24	0.14	0.41	<0.001

LL: lower 95\% confidence interval level; OR: odds ratio; UL: upper 95\% confidence interval level

Table S5d: Antidepressant Use Sensitivity Analysis, Unadjusted/Adjusted Odds Ratio for COVID-19-Related Outcomes, Stratified by Region and New York State

		Odds of SARS-CoV-2 Test				Odds of COVID-19 Diagnosis				Odds of COVID-19 Hospitalization			
		Antidepressant Users versus Non-users											
		OR	LL	UL	p value	OR	LL	UL	p value	OR	LL	UL	p value
All	Unadjusted	1.04	1.03	1.05	<0.001	0.71	0.70	0.72	<0.001	0.81	0.78	0.83	<0.001
	Adjusted	1.00	0.99	1.01	0.61	0.65	0.64	0.66	<0.001	0.75	0.73	0.78	<0.001
Northeast	Unadjusted	1.01	0.99	1.02	0.54	0.71	0.69	0.72	<0.001	0.84	0.80	0.88	<0.001
	Adjusted	0.97	0.95	0.99	0.001	0.65	0.63	0.66	<0.001	0.77	0.73	0.82	<0.001
Midwest	Unadjusted	1.10	1.08	1.12	<0.001	0.75	0.72	0.78	<0.001	0.84	0.78	0.90	<0.001
	Adjusted	1.05	1.03	1.07	<0.001	0.69	0.66	0.71	<0.001	0.78	0.73	0.84	<0.001
South	Unadjusted	1.04	1.02	1.05	<0.001	0.68	0.66	0.70	<0.001	0.74	0.70	0.79	<0.001
	Adjusted	0.99	0.98	1.01	0.49	0.64	0.62	0.66	<0.001	0.72	0.68	0.77	<0.001
West	Unadjusted	1.04	1.02	1.06	0.00	0.70	0.67	0.73	<0.001	0.77	0.70	0.84	<0.001
	Adjusted	0.99	0.97	1.02	0.46	0.64	0.61	0.66	<0.001	0.70	0.64	0.77	<0.001
New York	Unadjusted	1.00	0.97	1.03	0.86	0.77	0.74	0.80	<0.001	0.83	0.76	0.91	<0.001
	Adjusted	0.98	0.95	1.01	0.27	0.72	0.70	0.75	<0.001	0.77	0.70	0.85	<0.001
		BP Users versus BP Non-users among Antidepressant Users											
		OR	LL	UL	p value	OR	LL	UL	p value	OR	LL	UL	p value
All	Unadjusted	0.27	0.26	0.28	<0.001	0.30	0.28	0.32	<0.001	0.31	0.27	0.36	<0.001
	Adjusted	0.27	0.25	0.28	<0.001	0.30	0.28	0.32	<0.001	0.33	0.28	0.38	<0.001
Northeast	Unadjusted	0.28	0.26	0.31	<0.001	0.33	0.30	0.37	<0.001	0.36	0.29	0.45	<0.001
	Adjusted	0.28	0.25	0.30	<0.001	0.32	0.29	0.36	<0.001	0.37	0.29	0.47	<0.001
Midwest	Unadjusted	0.30	0.27	0.34	<0.001	0.26	0.22	0.31	<0.001	0.25	0.18	0.34	<0.001
	Adjusted	0.30	0.26	0.34	<0.001	0.27	0.22	0.33	<0.001	0.26	0.18	0.36	<0.001
South	Unadjusted	0.26	0.24	0.29	<0.001	0.27	0.23	0.31	<0.001	0.32	0.24	0.41	<0.001
	Adjusted	0.26	0.24	0.28	<0.001	0.27	0.23	0.32	<0.001	0.32	0.24	0.43	<0.001
West	Unadjusted	0.25	0.22	0.28	<0.001	0.27	0.22	0.32	<0.001	0.29	0.20	0.41	<0.001
	Adjusted	0.24	0.21	0.27	<0.001	0.29	0.28	0.30	<0.001	0.33	0.23	0.48	<0.001
New York	Unadjusted	0.30	0.26	0.34	<0.001	0.33	0.28	0.38	<0.001	0.24	0.16	0.36	<0.001
	Adjusted	0.30	0.25	0.34	<0.001	0.31	0.27	0.37	<0.001	0.25	0.16	0.39	<0.001
		BP Users versus BP Non-users among Antidepressant Non-users											
		OR	LL	UL	p value	OR	LL	UL	p value	OR	LL	UL	p value
All	Unadjusted	0.20	0.19	0.22	<0.001	0.22	0.20	0.24	<0.001	0.24	0.20	0.28	<0.001
	Adjusted	0.21	0.19	0.22	<0.001	0.23	0.21	0.25	<0.001	0.27	0.22	0.32	<0.001
Northeast	Unadjusted	0.21	0.19	0.24	<0.001	0.23	0.20	0.26	<0.001	0.25	0.19	0.32	<0.001
	Adjusted	0.22	0.19	0.25	<0.001	0.24	0.22	0.25	<0.001	0.29	0.22	0.39	<0.001
Midwest	Unadjusted	0.22	0.19	0.26	<0.001	0.23	0.18	0.28	<0.001	0.28	0.19	0.39	<0.001
	Adjusted	0.21	0.18	0.25	<0.001	0.26	0.24	0.27	<0.001	0.32	0.22	0.47	<0.001
South	Unadjusted	0.20	0.18	0.22	<0.001	0.21	0.18	0.25	<0.001	0.21	0.15	0.30	<0.001
	Adjusted	0.20	0.18	0.23	<0.001	0.23	0.19	0.27	<0.001	0.22	0.16	0.32	<0.001
West	Unadjusted	0.18	0.16	0.21	<0.001	0.20	0.16	0.25	<0.001	0.20	0.13	0.30	<0.001
	Adjusted	0.19	0.16	0.22	<0.001	0.20	0.20	0.21	<0.001	0.22	0.14	0.35	<0.001
New York	Unadjusted	0.26	0.22	0.32	<0.001	0.27	0.23	0.32	<0.001	0.29	0.19	0.43	<0.001
	Adjusted	0.26	0.23	0.30	<0.001	0.26	0.22	0.32	<0.001	0.35	0.22	0.54	<0.001

LL: lower 95\% confidence interval level; OR: odds ratio; UL: upper 95\% confidence interval level

Table S6a: "Bone-Rx" Cohort (All Regions), Patient Characteristics Pre/Post Match

	"Bone-Rx" Cohort / All Observations Unmatched							"Bone-Rx" Cohort / All Observations Matched						
	All		BP Non-user		BP User		p-value	All		BP Non-user		BP User		p-value
	N	\%	N	\%	N	\%		N	\%	N	\%	N	\%	
All Patients	502,895	100.0\%	50,844	10.1\%	452,051	89.9\%		100,996	100.0\%	50,498	50.0\%	50,498	50.0\%	
Age														
≤ 20	1,164	0.2\%	36	0.1\%	1,128	0.2\%	<0.001	67	0.1\%	36	0.1\%	31	0.1\%	0.97
21-40	3,501	0.7\%	410	0.8\%	3,091	0.7\%		790	0.8\%	403	0.8\%	387	0.8\%	
41-50	9,631	1.9\%	1,080	2.1\%	8,551	1.9\%		2,107	2.1\%	1,069	2.1\%	1,038	2.1\%	
51-60	72,139	14.3\%	6,418	12.6\%	65,721	14.5\%		12,777	12.7\%	6,395	12.7\%	6,382	12.6\%	
61-70	171,687	34.1\%	14,809	29.1\%	156,878	34.7\%		29,509	29.2\%	14,751	29.2\%	14,758	29.2\%	
71-80	157,877	31.4\%	16,152	31.8\%	141,725	31.4\%		32,129	31.8\%	16,055	31.8\%	16,074	31.8\%	
≥ 81	86,896	17.3\%	11,939	23.5\%	74,957	16.6\%		23,617	23.4\%	11,789	23.3\%	11,828	23.4\%	
Gender														
Female	451,790	89.8\%	44,354	87.2\%	407,436	90.1\%	<0.001	88,552	87.7\%	44,235	87.6\%	44,317	87.8\%	0.43
Male	51,105	10.2\%	6,490	12.8\%	44,615	9.9\%		12,444	12.3\%	6,263	12.4\%	6,181	12.2\%	
Region														
Midwest	85,391	17.0\%	9,424	18.5\%	75,967	16.8\%	<0.001	18,720	18.5\%	9,360	18.5\%	9,360	18.5\%	1.00
Northeast	135,867	27.0\%	16,139	31.7\%	119,728	26.5\%		31,986	31.7\%	15,993	31.7\%	15,993	31.7\%	
South	178,118	35.4\%	17,232	33.9\%	160,886	35.6\%		34,280	33.9\%	17,140	33.9\%	17,140	33.9\%	
West	103,519	20.6\%	8,049	15.8\%	95,470	21.1\%		16,010	15.9\%	8,005	15.9\%	8,005	15.9\%	
Insurance														
Commercial	164,150	32.6\%	17,092	33.6\%	147,058	32.5\%	<0.001	33,977	33.6\%	16,963	33.6\%	17,014	33.7\%	0.91
Dual	33,969	6.8\%	2,562	5.0\%	31,407	6.9\%		5,056	5.0\%	2,547	5.0\%	2,509	5.0\%	
Medicaid	84,514	16.8\%	7,034	13.8\%	77,480	17.1\%		13,925	13.8\%	6,986	13.8\%	6,939	13.7\%	
Medicare	220,262	43.8\%	24,156	47.5\%	196,106	43.4\%		48,038	47.6\%	24,002	47.5\%	24,036	47.6\%	
PCP Visit 2019														
No	181,996	36.2\%	18,130	35.7\%	163,866	36.2\%	0.009	35,943	35.6\%	17,979	35.6\%	17,964	35.6\%	0.92
Yes	320,899	63.8\%	32,714	64.3\%	288,185	63.8\%		65,053	64.4\%	32,519	64.4\%	32,534	64.4\%	
Continuous Outcomes														
	mean	SD	mean	SD	mean	SD	p-value	mean	SD	mean	SD	mean	SD	p-value
CCl	1.05	1.91	1.99	2.71	0.95	1.76	<0.001	1.93	2.59	1.93	2.60	1.92	2.59	0.76

BP: bisphosphonate; CCI: Charlson Comorbidity Index; PCP: primary care physician; SD: standard deviation

Table S6b: "Bone-Rx" Cohort (Region=Northeast), Patient Characteristics Pre/Post Match

	"Bone-Rx" Cohort / Region=Northeast Unmatched							"Bone-Rx" Cohort / Region=Northeast Matched						
	All		BP Non-user		BP User		p-value	All		BP Non-user		BP User		p-value
	N	\%	N	\%	N	\%		N	\%	N	\%	N	\%	
All Patients	135,867	100.0\%	16,139	11.9\%	119,728	88.1\%		31,986	100.0\%	15,993	50.0\%	15,993	50.0\%	
Age														
≤ 20	245	0.2\%	≤ 10	0.1\%	236	0.2\%	<0.001	15	0.0\%	≤ 10	0.1\%	≤ 10	0.0\%	0.99
21-40	891	0.7\%	127	0.8\%	764	0.6\%		250	0.8\%	124	0.8\%	126	0.8\%	
41-50	2,340	1.7\%	298	1.8\%	2,042	1.7\%		570	1.8\%	290	1.8\%	280	1.8\%	
51-60	20,069	14.8\%	2,059	12.8\%	18,010	15.0\%		4,088	12.8\%	2,049	12.8\%	2,039	12.7\%	
61-70	45,896	33.8\%	4,802	29.8\%	41,094	34.3\%		9,526	29.8\%	4,767	29.8\%	4,759	29.8\%	
71-80	42,828	31.5\%	5,267	32.6\%	37,561	31.4\%		10,465	32.7\%	5,226	32.7\%	5,239	32.8\%	
≥ 81	23,598	17.4\%	3,577	22.2\%	20,021	16.7\%		7,072	22.1\%	3,528	22.1\%	3,544	22.2\%	
Gender														
Female	122,485	90.2\%	14,115	87.5\%	108,370	90.5\%	<0.001	28,157	88.0\%	14,062	87.9\%	14,095	88.1\%	0.57
Male	13,382	9.8\%	2,024	12.5\%	11,358	9.5\%		3,829	12.0\%	1,931	12.1\%	1,898	11.9\%	
Insurance														
Commercial	37,810	27.8\%	4,517	28.0\%	33,293	27.8\%	<0.001	8,927	27.9\%	4,459	27.9\%	4,468	27.9\%	0.99
Dual	8,434	6.2\%	829	5.1\%	7,605	6.4\%		1,637	5.1\%	824	5.2\%	813	5.1\%	
Medicaid	25,296	18.6\%	2,082	12.9\%	23,214	19.4\%		4,122	12.9\%	2,067	12.9\%	2,055	12.8\%	
Medicare	64,327	47.3\%	8,711	54.0\%	55,616	46.5\%		17,300	54.1\%	8,643	54.0\%	8,657	54.1\%	
PCP Visit 2019														
No	56,593	41.7\%	6,726	41.7\%	49,867	41.7\%	0.95	13,307	41.6\%	6,654	41.6\%	6,653	41.6\%	0.99
Yes	79,274	58.3\%	9,413	58.3\%	69,861	58.3\%		18,679	58.4\%	9,339	58.4\%	9,340	58.4\%	
Continuous Outcomes														
	mean	SD	mean	SD	mean	SD	p-value	mean	SD	mean	SD	mean	SD	p-value
CCl	1.06	1.89	1.97	2.70	0.93	1.71	<0.001	1.89	2.57	1.89	2.58	1.89	2.57	0.91

BP: bisphosphonate; CCI: Charlson Comorbidity Index; PCP: primary care physician; SD: standard deviation

Table S6c: "Bone-Rx" Cohort (Region=Midwest), Patient Characteristics Pre/Post Match

	"Bone-Rx" Cohort / Region=Midwest Unmatched							"Bone-Rx" Cohort / Region=Midwest Matched						
	All		BP Non-user		BP User		p-value	All		BP Non-user		BP User		p-value
	N	\%	N	\%	N	\%		N	\%	N	\%	N	\%	
All Patients	85,391	100.0\%	9,424	11.0\%	75,967	89.0\%		18,720	100.0\%	9,360	50.0\%	9,360	50.0\%	
Age														
≤ 20	274	0.3\%	≤ 10	0.1\%	268	0.4\%	<0.001	13	0.1\%	≤ 10	0.1\%	≤ 10	0.1\%	1.00
21-40	672	0.8\%	79	0.8\%	593	0.8\%		154	0.8\%	78	0.8\%	76	0.8\%	
41-50	1,886	2.2\%	202	2.1\%	1,684	2.2\%		389	2.1\%	200	2.1\%	189	2.0\%	
51-60	13,522	15.8\%	1,284	13.6\%	12,238	16.1\%		2,559	13.7\%	1,280	13.7\%	1,279	13.7\%	
61-70	31,256	36.6\%	2,760	29.3\%	28,496	37.5\%		5,512	29.4\%	2,754	29.4\%	2,758	29.5\%	
71-80	23,887	28.0\%	2,766	29.4\%	21,121	27.8\%		5,492	29.3\%	2,748	29.4\%	2,744	29.3\%	
≥ 81	13,894	16.3\%	2,327	24.7\%	11,567	15.2\%		4,601	24.6\%	2,294	24.5\%	2,307	24.6\%	
Gender														
Female	76,696	89.8\%	8,118	86.1\%	68,578	90.3\%	<0.001	16,223	86.7\%	8,102	86.6\%	8,121	86.8\%	0.68
Male	8,695	10.2\%	1,306	13.9\%	7,389	9.7\%		2,497	13.3\%	1,258	13.4\%	1,239	13.2\%	
Insurance														
Commercial	34,494	40.4\%	3,361	35.7\%	31,133	41.0\%	<0.001	6,699	35.8\%	3,345	35.7\%	3,354	35.8\%	0.96
Dual	4,042	4.7\%	436	4.6\%	3,606	4.7\%		852	4.6\%	429	4.6\%	423	4.5\%	
Medicaid	8,856	10.4\%	733	7.8\%	8,123	10.7\%		1,441	7.7\%	729	7.8\%	712	7.6\%	
Medicare	37,999	44.5\%	4,894	51.9\%	33,105	43.6\%		9,728	52.0\%	4,857	51.9\%	4,871	52.0\%	
PCP Visit 2019														
No	32,037	37.5\%	3,330	35.3\%	28,707	37.8\%	<0.001	6,628	35.4\%	3,312	35.4\%	3,316	35.4\%	0.95
Yes	53,354	62.5\%	6,094	64.7\%	47,260	62.2\%		12,092	64.6\%	6,048	64.6\%	6,044	64.6\%	
Continuous Outcomes														
	mean	SD	mean	SD	mean	SD	p-value	mean	SD	mean	SD	mean	SD	p-value
CCl	1.12	2.02	2.12	2.83	0.99	1.86	<0.001	2.05	2.72	2.06	2.72	2.05	2.72	0.91

BP: bisphosphonate; CCI: Charlson Comorbidity Index; PCP: primary care physician; SD: standard deviation

Table S6d: "Bone-Rx" Cohort (Region=South), Patient Characteristics Pre/Post Match

	"Bone-Rx" Cohort / Region=South Unmatched							"Bone-Rx" Cohort / Region=South Matched						
	All		BP Non-user		BP User		p -value	All		BP Non-user		BP User		p -value
	N	\%	N	\%	N	\%		N	\%	N	\%	N	\%	
All Patients	178,118	100.0\%	17,232	9.7\%	160,886	90.3\%		34,280	100.0\%	17,140	50.0\%	17,140	50.0\%	
Age														
≤ 20	490	0.3\%	16	0.1\%	474	0.3\%	<0.001	31	0.1\%	16	0.1\%	15	0.1\%	1.00
21-40	1,313	0.7\%	136	0.8\%	1,177	0.7\%		262	0.8\%	134	0.8\%	128	0.7\%	
41-50	3,866	2.2\%	445	2.6\%	3,421	2.1\%		884	2.6\%	444	2.6\%	440	2.6\%	
51-60	27,389	15.4\%	2,296	13.3\%	25,093	15.6\%		4,574	13.3\%	2,290	13.4\%	2,284	13.3\%	
61-70	61,038	34.3\%	5,142	29.8\%	55,896	34.7\%		10,271	30.0\%	5,129	29.9\%	5,142	30.0\%	
71-80	56,126	31.5\%	5,521	32.0\%	50,605	31.5\%		10,990	32.1\%	5,493	32.0\%	5,497	32.1\%	
≥ 81	27,896	15.7\%	3,676	21.3\%	24,220	15.1\%		7,268	21.2\%	3,634	21.2\%	3,634	21.2\%	
Gender														
Female	160,994	90.4\%	15,179	88.1\%	145,815	90.6\%	<0.001	30,322	88.5\%	15,149	88.4\%	15,173	88.5\%	0.69
Male	17,124	9.6\%	2,053	11.9\%	15,071	9.4\%		3,958	11.5\%	1,991	11.6\%	1,967	11.5\%	
Insurance														
Commercial	66,332	37.2\%	7,042	40.9\%	59,290	36.9\%	<0.001	14,052	41.0\%	7,007	40.9\%	7,045	41.1\%	0.95
Dual	14,829	8.3\%	769	4.5\%	14,060	8.7\%		1,523	4.4\%	769	4.5\%	754	4.4\%	
Medicaid	23,492	13.2\%	1,843	10.7\%	21,649	13.5\%		3,639	10.6\%	1,829	10.7\%	1,810	10.6\%	
Medicare	73,465	41.2\%	7,578	44.0\%	65,887	41.0\%		15,066	43.9\%	7,535	44.0\%	7,531	43.9\%	
PCP Visit 2019														
No	60,253	33.8\%	5,785	33.6\%	54,468	33.9\%	0.454	11,462	33.4\%	5,736	33.5\%	5,726	33.4\%	0.91
Yes	117,865	66.2\%	11,447	66.4\%	106,418	66.1\%		22,818	66.6\%	11,404	66.5\%	11,414	66.6\%	
Continuous Outcomes														
	mean	SD	mean	SD	mean	SD	p-value	mean	SD	mean	SD	mean	SD	p-value
CCl	0.95	1.84	1.86	2.65	0.86	1.70	<0.001	1.80	2.54	1.80	2.54	1.79	2.53	0.78

BP: bisphosphonate; CCI: Charlson Comorbidity Index; PCP: primary care physician; SD: standard deviation

Table S6e: "Bone-Rx" Cohort (Region=West), Patient Characteristics Pre/Post Match

	"Bone-Rx" Cohort / Region=West Unmatched							"Bone-Rx" Cohort / Region=West Matched						
	All		BP Non-user		BP User		p-value	All		BP Non-user		BP User		p-value
	N	\%	N	\%	N	\%		N	\%	N	\%	N	\%	
All Patients	103,519	100.0\%	8,049	7.8\%	95,470	92.2\%		16,010	100.0\%	8,005	50.0\%	8,005	50.0\%	
Age														
≤ 20	155	0.1\%	≤ 10	0.1\%	150	0.2\%	<0.001	≤ 10	0.0\%	≤ 10	0.1\%	≤ 10	0.0\%	0.96
21-40	625	0.6\%	68	0.8\%	557	0.6\%		124	0.8\%	67	0.8\%	57	0.7\%	
41-50	1,539	1.5\%	135	1.7\%	1,404	1.5\%		264	1.6\%	135	1.7\%	129	1.6\%	
51-60	11,159	10.8\%	779	9.7\%	10,380	10.9\%		1,556	9.7\%	776	9.7\%	780	9.7\%	
61-70	33,497	32.4\%	2,105	26.2\%	31,392	32.9\%		4,200	26.2\%	2,101	26.2\%	2,099	26.2\%	
71-80	35,036	33.8\%	2,598	32.3\%	32,438	34.0\%		5,182	32.4\%	2,588	32.3\%	2,594	32.4\%	
≥ 81	21,508	20.8\%	2,359	29.3\%	19,149	20.1\%		4,676	29.2\%	2,333	29.1\%	2,343	29.3\%	
Gender														
Female	91,615	88.5\%	6,942	86.2\%	84,673	88.7\%	<0.001	13,850	86.5\%	6,922	86.5\%	6,928	86.5\%	0.89
Male	11,904	11.5\%	1,107	13.8\%	10,797	11.3\%		2,160	13.5\%	1,083	13.5\%	1,077	13.5\%	
Insurance														
Commercial	25,514	24.6\%	2,172	27.0\%	23,342	24.4\%	<0.001	4,299	26.9\%	2,152	26.9\%	2,147	26.8\%	1.00
Dual	6,664	6.4\%	528	6.6\%	6,136	6.4\%		1,044	6.5\%	525	6.6\%	519	6.5\%	
Medicaid	26,870	26.0\%	2,376	29.5\%	24,494	25.7\%		4,723	29.5\%	2,361	29.5\%	2,362	29.5\%	
Medicare	44,471	43.0\%	2,973	36.9\%	41,498	43.5\%		5,944	37.1\%	2,967	37.1\%	2,977	37.2\%	
PCP Visit 2019														
No	33,113	32.0\%	2,289	28.4\%	30,824	32.3\%	<0.001	4,546	28.4\%	2,277	28.4\%	2,269	28.3\%	0.89
Yes	70,406	68.0\%	5,760	71.6\%	64,646	67.7\%		11,464	71.6\%	5,728	71.6\%	5,736	71.7\%	
Continuous Outcomes														
	mean	SD	mean	SD	mean	SD	p-value	mean	SD	mean	SD	mean	SD	p-value
CCI	1.17	1.94	2.17	2.67	1.08	1.84	<0.001	2.12	2.59	2.12	2.59	2.12	2.59	0.93

BP: bisphosphonate; CCI : Charlson Comorbidity Index; PCP: primary care physician; SD: standard deviation

Table S6f: "Bone-Rx" Cohort (Region=New York State), Patient Characteristics Pre/Post Match

	"Bone-Rx" Cohort / Region=New York State Unmatched							"Bone-Rx" Cohort / Region=New York State Matched						
	All		BP Non-user		BP User		p-value	All		BP Non-user		BP User		p-value
	N	\%	N	\%	N	\%		N	\%	N	\%	N	\%	
All Patients	57,397	100.0\%	7,362	12.8\%	50,035	87.2\%		14,508	100.0\%	7,254	50.0\%	7,254	50.0\%	
Age														
≤ 20	56	0.1\%	≤ 10	0.1\%	50	0.1\%	<0.001	11	0.1\%	≤ 10	0.1\%	≤ 10	0.1\%	0.96
21-40	272	0.5\%	44	0.6\%	228	0.5\%		76	0.5\%	42	0.6\%	34	0.5\%	
41-50	775	1.4\%	120	1.6\%	655	1.3\%		207	1.4\%	107	1.5\%	100	1.4\%	
51-60	7,249	12.6\%	885	12.0\%	6,364	12.7\%		1,744	12.0\%	871	12.0\%	873	12.0\%	
61-70	18,433	32.1\%	2,297	31.2\%	16,136	32.2\%		4,540	31.3\%	2,264	31.2\%	2,276	31.4\%	
71-80	19,944	34.7\%	2,482	33.7\%	17,462	34.9\%		4,934	34.0\%	2,455	33.8\%	2,479	34.2\%	
≥ 81	10,668	18.6\%	1,528	20.8\%	9,140	18.3\%		2,996	20.7\%	1,509	20.8\%	1,487	20.5\%	
Gender														
Female	52,047	90.7\%	6,589	89.5\%	45,458	90.9\%	<. 001	13,106	90.3\%	6,526	90.0\%	6,580	90.7\%	0.13
Male	5,350	9.3\%	773	10.5\%	4,577	9.1\%		1,402	9.7\%	728	10.0\%	674	9.3\%	
Insurance														
Commercial	12,309	21.4\%	1,894	25.7\%	10,415	20.8\%	<0.001	3,706	25.5\%	1,850	25.5\%	1,856	25.6\%	1.00
Dual	1,750	3.0\%	154	2.1\%	1,596	3.2\%		307	2.1\%	153	2.1\%	154	2.1\%	
Medicaid	10,191	17.8\%	1,016	13.8\%	9,175	18.3\%		1,968	13.6\%	987	13.6\%	981	13.5\%	
Medicare	33,147	57.8\%	4,298	58.4\%	28,849	57.7\%		8,527	58.8\%	4,264	58.8\%	4,263	58.8\%	
PCP Visit 2019														
No	21,462	37.4\%	2,789	37.9\%	18,673	37.3\%	0.35	5,468	37.7\%	2,744	37.8\%	2,724	37.6\%	0.73
Yes	35,935	62.6\%	4,573	62.1\%	31,362	62.7\%		9,040	62.3\%	4,510	62.2\%	4,530	62.4\%	
Continuous Outcomes														
	mean	SD	mean	SD	mean	SD	p-value	mean	SD	mean	SD	mean	SD	p-value
CCl	1.06	1.84	1.81	2.56	0.95	1.68	<0.001	1.69	2.35	1.69	2.36	1.69	2.35	0.98

BP: bisphosphonate; CCI: Charlson Comorbidity Index; PCP: primary care physician; SD: standard deviation

Table S7: "Osteo-Dx-Rx" Cohort, Patient Characteristics Pre/Post Match

	"Osteo-Dx-Rx" Cohort / All Observations Unmatched							"Osteo-Dx-Rx" Cohort / All Observations Matched						
	All		BP Non-user		BP User		p-value	All		BP Non-user		BP User		p-value
	N	\%	N	\%	N	\%		N	\%	N	\%	N	\%	
All Patients	60,043	100.0\%	8,392	14.0\%	51,651	86.0\%		15,898	100.0\%	7,949	50.0\%	7,949	50.0\%	
Age														
51-60	6,443	10.7\%	753	9.0\%	5,690	11.0\%	<0.001	1,430	9.0\%	723	9.1\%	707	8.9\%	0.95
61-70	20,187	33.6\%	2,492	29.7\%	17,695	34.3\%		4,821	30.3\%	2,397	30.2\%	2,424	30.5\%	
71-80	21,545	35.9\%	2,964	35.3\%	18,581	36.0\%		5,677	35.7\%	2,841	35.7\%	2,836	35.7\%	
≥ 81	11,868	19.8\%	2,183	26.0\%	9,685	18.8\%		3,970	25.0\%	1,988	25.0\%	1,982	24.9\%	
State														
CA	24,489	40.8\%	2,558	30.5\%	21,931	42.5\%	<0.001	4,886	30.7\%	2,443	30.7\%	2,443	30.7\%	1.00
FL	11,904	19.8\%	1,767	21.1\%	10,137	19.6\%		3,256	20.5\%	1,628	20.5\%	1,628	20.5\%	
IL	4,447	7.4\%	678	8.1\%	3,769	7.3\%		1,168	7.3\%	584	7.3\%	584	7.3\%	
NY	19,203	32.0\%	3,389	40.4\%	15,814	30.6\%		6,588	41.4\%	3,294	41.4\%	3,294	41.4\%	
Insurance														
Commercial	12,990	21.6\%	2,048	24.4\%	10,942	21.2\%	<0.001	3,736	23.5\%	1,868	23.5\%	1,868	23.5\%	1.00
Dual	3,652	6.1\%	313	3.7\%	3,339	6.5\%		554	3.5\%	277	3.5\%	277	3.5\%	
Medicaid	13,698	22.8\%	1,785	21.3\%	11,913	23.1\%		3,392	21.3\%	1,696	21.3\%	1,696	21.3\%	
Medicare	29,703	49.5\%	4,246	50.6\%	25,457	49.3\%		8,216	51.7\%	4,108	51.7\%	4,108	51.7\%	
PCP Visit 2019														
No	14,089	23.5\%	2,427	28.9\%	11,662	22.6\%	<0.001	4,487	28.2\%	2,243	28.2\%	2,244	28.2\%	0.99
Yes	45,954	76.5\%	5,965	71.1\%	39,989	77.4\%		11,411	71.8\%	5,706	71.8\%	5,705	71.8\%	
Cancer Dx														
No	52,301	87.1\%	6,765	80.6\%	45,536	88.2\%	<0.001	13,116	82.5\%	6,548	82.4\%	6,568	82.6\%	0.68
Yes	7,742	12.9\%	1,627	19.4\%	6,115	11.8\%		2,782	17.5\%	1,401	17.6\%	1,381	17.4\%	
COPD Dx														
No	53,446	89.0\%	7,035	83.8\%	46,411	89.9\%	<0.001	13,705	86.2\%	6,834	86.0\%	6,871	86.4\%	0.39
Yes	6,597	11.0\%	1,357	16.2\%	5,240	10.1\%		2,193	13.8\%	1,115	14.0\%	1,078	13.6\%	
Heart Failure Dx														
No	56,005	93.3\%	7,492	89.3\%	48,513	93.9\%	<0.001	14,475	91.0\%	7,218	90.8\%	7,257	91.3\%	0.28
Yes	4,038	6.7\%	900	10.7\%	3,138	6.1\%		1,423	9.0\%	731	9.2\%	692	8.7\%	
Hypertension Dx														
No	24,966	41.6\%	3,281	39.1\%	21,685	42.0\%	<0.001	6,268	39.4\%	3,137	39.5\%	3,131	39.4\%	0.92
Yes	35,077	58.4\%	5,111	60.9\%	29,966	58.0\%		9,630	60.6\%	4,812	60.5\%	4,818	60.6\%	
Dyslipidemia Dx														
No	24,095	40.1\%	3,295	39.3\%	20,800	40.3\%	0.08	6,187	38.9\%	3,101	39.0\%	3,086	38.8\%	0.81
Yes	35,948	59.9\%	5,097	60.7\%	30,851	59.7\%		9,711	61.1\%	4,848	61.0\%	4,863	61.2\%	
Obesity Dx														
No	53,453	89.0\%	7,583	90.4\%	45,870	88.8\%	<0.001	14,468	91.0\%	7,217	90.8\%	7,251	91.2\%	0.35
Yes	6,590	11.0\%	809	9.6\%	5,781	11.2\%		1,430	9.0\%	732	9.2\%	698	8.8\%	
Type 2 Diabetes Dx														
No	44,565	74.2\%	6,132	73.1\%	38,433	74.4\%	0.009	11,759	74.0\%	5,859	73.7\%	5,900	74.2\%	0.46
Yes	15,478	25.8\%	2,260	26.9\%	13,218	25.6\%		4,139	26.0\%	2,090	26.3\%	2,049	25.8\%	
Depression Dx														
No	51,609	86.0\%	7,114	84.8\%	44,495	86.1\%	0.001	13,697	86.2\%	6,844	86.1\%	6,853	86.2\%	0.84
Yes	8,434	14.0\%	1,278	15.2\%	7,156	13.9\%		2,201	13.8\%	1,105	13.9\%	1,096	13.8\%	

BP: bisphosphonate; CCI: Charlson Comorbidity Index; CA: California; Dx: diagnosis; FL: Florida; IL: Illinois; NY: New York; PCP: primary care physician

Table S8a: Statin Cohort (All Regions), Patient Characteristics Pre/Post Match

	All Observations by Statin Use: Unmatched							All Observations by Statin Use: Matched						
	All		Statin Non-users		Statin Users		p-value	All		Statin Non-users		Statin Users		p-value
	N	\%	N	\%	N	\%		N	\%	N	\%	N	\%	
All Patients	7,906,603	100.0\%	6,403,208	81.0\%	1,503,395	19.0\%		2,872,600	100.0\%	1,436,300	50.0\%	1,436,300	50.0\%	
Age														
≤ 20	1,840,050	23.3\%	1,838,665	28.7\%	1,385	0.1\%	<0.001	2,772	0.1\%	1,387	0.1\%	1,385	0.1\%	0.11
21-40	1,446,999	18.3\%	1,402,606	21.9\%	44,393	3.0\%		88,760	3.1\%	44,371	3.1\%	44,389	3.1\%	
41-50	925,309	11.7\%	789,385	12.3\%	135,924	9.0\%		271,615	9.5\%	135,748	9.5\%	135,867	9.5\%	
51-60	1,250,190	15.8\%	888,510	13.9\%	361,680	24.1\%		710,481	24.7\%	354,449	24.7\%	356,032	24.8\%	
61-70	1,181,261	14.9\%	728,702	11.4\%	452,559	30.1\%		857,269	29.8\%	428,326	29.8\%	428,943	29.9\%	
71-80	783,775	9.9\%	452,267	7.1\%	331,508	22.1\%		605,360	21.1\%	303,279	21.1\%	302,081	21.0\%	
≥ 81	479,019	6.1\%	303,073	4.7\%	175,946	11.7\%		336,343	11.7\%	168,740	11.7\%	167,603	11.7\%	
Gender														
Female	4,670,960	59.1\%	3,785,061	59.1\%	885,899	58.9\%	<0.001	1,682,354	58.6\%	839,207	58.4\%	843,147	58.7\%	<0.001
Male	3,235,643	40.9\%	2,618,147	40.9\%	617,496	41.1\%		1,190,246	41.4\%	597,093	41.6\%	593,153	41.3\%	
Region														
Midwest	1,467,802	18.6\%	1,188,569	18.6\%	279,233	18.6\%	<0.001	542,638	18.9\%	271,319	18.9\%	271,319	18.9\%	1.00
Northeast	2,152,560	27.2\%	1,706,021	26.6\%	446,539	29.7\%		847,868	29.5\%	423,934	29.5\%	423,934	29.5\%	
South	3,042,604	38.5\%	2,490,630	38.9\%	551,974	36.7\%		1,046,224	36.4\%	523,112	36.4\%	523,112	36.4\%	
West	1,243,637	15.7\%	1,017,988	15.9\%	225,649	15.0\%		435,870	15.2\%	217,935	15.2\%	217,935	15.2\%	
Insurance														
Commercial	3,938,603	49.8\%	3,350,332	52.3\%	588,271	39.1\%	<0.001	1,175,472	40.9\%	587,847	40.9\%	587,625	40.9\%	0.34
Dual	156,497	2.0\%	73,532	1.1\%	82,965	5.5\%		110,207	3.8\%	54,851	3.8\%	55,356	3.9\%	
Medicaid	2,594,500	32.8\%	2,254,531	35.2\%	339,969	22.6\%		641,345	22.3\%	320,434	22.3\%	320,911	22.3\%	
Medicare	1,217,003	15.4\%	724,813	11.3\%	492,190	32.7\%		945,576	32.9\%	473,168	32.9\%	472,408	32.9\%	
PCP Visit 2019														
No	4,283,697	54.2\%	3,773,784	58.9\%	509,913	33.9\%	<0.001	1,016,313	35.4\%	508,587	35.4\%	507,726	35.3\%	0.29
Yes	3,622,906	45.8\%	2,629,424	41.1\%	993,482	66.1\%		1,856,287	64.6\%	927,713	64.6\%	928,574	64.7\%	
Continuous Outcomes														
	mean	SD	mean	SD	mean	SD	p-value	mean	SD	mean	SD	mean	SD	p-value
CCI	0.62	1.38	0.49	1.23	1.15	1.79	<0.001	1.11	1.77	1.12	1.79	1.11	1.75	<0.001

CCI: Charlson Comorbidity Index; PCP: primary care physician; SD: standard deviation

Table S8b: Statin Cohort (Region=New York State), Patient Characteristics Pre/Post Match

	Region=NY by Statin Use: Unmatched							Region=NY by Statin Use: Matched						
	All		Statin Non-users		Statin Users		p-value	All		Statin Non-users		Statin Users		p-value
	N	\%	N	\%	N	\%		N	\%	N	\%	N	\%	
All Patients	968,296	100.0\%	761,995	78.7\%	206,301	21.3\%		371,072	100.0\%	185,536	50.0\%	185,536	50.0\%	
Age														
≤ 20	133,178	13.8\%	133,111	17.5\%	67	0.0\%	<0.001	134	0.0\%	67	0.0\%	67	0.0\%	1.00
21-40	192,959	19.9\%	188,446	24.7\%	4,513	2.2\%		9,019	2.4\%	4,508	2.4\%	4,511	2.4\%	
41-50	127,794	13.2\%	112,342	14.7\%	15,452	7.5\%		30,860	8.3\%	15,420	8.3\%	15,440	8.3\%	
51-60	172,444	17.8\%	128,472	16.9\%	43,972	21.3\%		86,136	23.2\%	43,068	23.2\%	43,068	23.2\%	
61-70	159,912	16.5\%	100,884	13.2\%	59,028	28.6\%		106,460	28.7\%	53,233	28.7\%	53,227	28.7\%	
71-80	120,117	12.4\%	64,549	8.5\%	55,568	26.9\%		91,337	24.6\%	45,675	24.6\%	45,662	24.6\%	
≥ 81	61,892	6.4\%	34,191	4.5\%	27,701	13.4\%		47,126	12.7\%	23,565	12.7\%	23,561	12.7\%	
Gender														
Female	573,610	59.2\%	454,050	59.6\%	119,560	58.0\%	<0.001	215,375	58.0\%	107,420	57.9\%	107,955	58.2\%	0.08
Male	394,686	40.8\%	307,945	40.4\%	86,741	42.0\%		155,697	42.0\%	78,116	42.1\%	77,581	41.8\%	
Insurance														
Commercial	500,918	51.7\%	442,990	58.1\%	57,928	28.1\%	<0.001	116,123	31.3\%	58,206	31.4\%	57,917	31.2\%	0.57
Dual	6,814	0.7\%	2,410	0.3\%	4,404	2.1\%		4,447	1.2\%	2,190	1.2\%	2,257	1.2\%	
Medicaid	252,366	26.1\%	206,109	27.0\%	46,257	22.4\%		83,550	22.5\%	41,703	22.5\%	41,847	22.6\%	
Medicare	208,198	21.5\%	110,486	14.5\%	97,712	47.4\%		166,952	45.0\%	83,437	45.0\%	83,515	45.0\%	
No	521,282	53.8\%	446,929	58.7\%	74,353	36.0\%	<0.001	146,967	39.6\%	73,675	39.7\%	73,292	39.5\%	0.20
Yes	447,014	46.2\%	315,066	41.3\%	131,948	64.0\%		224,105	60.4\%	111,861	60.3\%	112,244	60.5\%	
Continuous Outcomes														
	mean	SD	mean	SD	mean	SD	p-value	mean	SD	mean	SD	mean	SD	p-value
CCI	0.65	1.39	0.51	1.24	1.17	1.77	<0.001	1.07	1.73	1.08	1.76	1.06	1.70	<0.001

CCI: Charlson Comorbidity Index; PCP: primary care physician; SD: standard deviation

Table S8c: Statin User Cohort (All Regions) by BP Use, Patient Characteristics Pre/Post Match of BP Users/Non-users

	All Statin Users by BP: Unmatched							All Statin Users by BP: Matched						
	All		BP Non-user		BP User		p-value	All		BP Non-user		BP User		p-value
	N	\%	N	\%	N	\%		N	\%	N	\%	N	\%	
All Patients	1,436,300	100.0\%	1,218,319	84.8\%	217,981	15.2\%		426,960	100.0\%	213,480	50.0\%	213,480	50.0\%	
Age														
≤ 20	1,385	0.1\%	1,365	0.1\%	20	0.0\%	<0.001	42	0.0\%	22	0.0\%	20	0.0\%	1.00
21-40	44,389	3.1\%	44,042	3.6\%	347	0.2\%		704	0.2\%	357	0.2\%	347	0.2\%	
41-50	135,867	9.5\%	133,850	11.0\%	2,017	0.9\%		4,033	0.9\%	2,016	0.9\%	2,017	0.9\%	
51-60	356,032	24.8\%	333,325	27.4\%	22,707	10.4\%		45,439	10.6\%	22,732	10.6\%	22,707	10.6\%	
61-70	428,943	29.9\%	356,208	29.2\%	72,735	33.4\%		144,861	33.9\%	72,341	33.9\%	72,520	34.0\%	
71-80	302,081	21.0\%	223,651	18.4\%	78,430	36.0\%		150,527	35.3\%	75,316	35.3\%	75,211	35.2\%	
≥ 81	167,603	11.7\%	125,878	10.3\%	41,725	19.1\%		81,354	19.1\%	40,696	19.1\%	40,658	19.0\%	
Gender														
Female	843,147	58.7\%	646,846	53.1\%	196,301	90.1\%	<0.001	383,586	89.8\%	191,786	89.8\%	191,800	89.8\%	0.94
Male	593,153	41.3\%	571,473	46.9\%	21,680	9.9\%		43,374	10.2\%	21,694	10.2\%	21,680	10.2\%	
Region														
Midwest	271,319	18.9\%	237,718	19.5\%	33,601	15.4\%	<0.001	67,050	15.7\%	33,525	15.7\%	33,525	15.7\%	1.00
Northeast	423,934	29.5\%	366,936	30.1\%	56,998	26.1\%		113,308	26.5\%	56,654	26.5\%	56,654	26.5\%	
South	523,112	36.4\%	442,996	36.4\%	80,116	36.8\%		157,838	37.0\%	78,919	37.0\%	78,919	37.0\%	
West	217,935	15.2\%	170,669	14.0\%	47,266	21.7\%		88,764	20.8\%	44,382	20.8\%	44,382	20.8\%	
Insurance														
Commercial	587,625	40.9\%	533,843	43.8\%	53,782	24.7\%	<0.001	107,552	25.2\%	53,774	25.2\%	53,778	25.2\%	1.00
Dual	55,356	3.9\%	42,041	3.5\%	13,315	6.1\%		24,380	5.7\%	12,183	5.7\%	12,197	5.7\%	
Medicaid	320,911	22.3\%	280,799	23.0\%	40,112	18.4\%		76,121	17.8\%	38,050	17.8\%	38,071	17.8\%	
Medicare	472,408	32.9\%	361,636	29.7\%	110,772	50.8\%		218,907	51.3\%	109,473	51.3\%	109,434	51.3\%	
PCP Visit 2019														
No	507,726	35.3\%	430,446	35.3\%	77,280	35.5\%	0.27	151,395	35.5\%	75,614	35.4\%	75,781	35.5\%	0.59
Yes	928,574	64.7\%	787,873	64.7\%	140,701	64.5\%		275,565	64.5\%	137,866	64.6\%	137,699	64.5\%	
Continuous Outcomes														
	mean	SD	mean	SD	mean	SD	p-value	mean	SD	mean	SD	mean	SD	p-value
CCl	1.11	1.75	1.13	1.77	0.95	1.66	<0.001	0.97	1.66	0.97	1.66	0.97	1.67	0.79

BP: bisphosphonate; CCI: Charlson Comorbidity Index; PCP: primary care physician; SD: standard deviation

Table S8d: Statin User Cohort (Region=New York State) by BP Use, Patient Characteristics Pre/Post Match of BP Users/Nonusers

	Region=NY Statin Users by BP: Unmatched							Region=NY Statin Users by BP: Matched						
	All		BP Non-user		BP User		p-value	All		BP Non-user		BP User		p-value
	N	\%	N	\%	N	\%		N	\%	N	\%	N	\%	
All Patients	185,536	100.0\%	161,673	87.1\%	23,863	12.9\%		47,472	100.0\%	23,736	50.0\%	23,736	50.0\%	
Age														
≤ 20	67	0.0\%	67	0.0\%	0	0.0\%	<0.001	52	0.1\%	26	0.1\%	26	0.1\%	1.00
21-40	4,511	2.4\%	4,485	2.8\%	26	0.1\%		304	0.6\%	152	0.6\%	152	0.6\%	
41-50	15,440	8.3\%	15,288	9.5\%	152	0.6\%		4,381	9.2\%	2,192	9.2\%	2,189	9.2\%	
51-60	43,068	23.2\%	40,879	25.3\%	2,189	9.2\%		14,717	31.0\%	7,358	31.0\%	7,359	31.0\%	
61-70	53,227	28.7\%	45,861	28.4\%	7,366	30.9\%		18,189	38.3\%	9,092	38.3\%	9,097	38.3\%	
71-80	45,662	24.6\%	36,474	22.6\%	9,188	38.5\%		9,829	20.7\%	4,916	20.7\%	4,913	20.7\%	
≥ 81	23,561	12.7\%	18,619	11.5\%	4,942	20.7\%		0	0.0\%		0.0\%		0.0\%	
Gender														
Female	107,955	58.2\%	86,194	53.3\%	21,761	91.2\%	<0.001	43,265	91.1\%	21,631	91.1\%	21,634	91.1\%	0.96
Male	77,581	41.8\%	75,479	46.7\%	2,102	8.8\%		4,207	8.9\%	2,105	8.9\%	2,102	8.9\%	
Insurance														
Commercial	57,917	31.2\%	54,411	33.7\%	3,506	14.7\%	<0.001	7,008	14.8\%	3,502	14.8\%	3,506	14.8\%	1.00
Dual	2,257	1.2\%	1,664	1.0\%	593	2.5\%		1,128	2.4\%	564	2.4\%	564	2.4\%	
Medicaid	41,847	22.6\%	37,926	23.5\%	3,921	16.4\%		7,644	16.1\%	3,821	16.1\%	3,823	16.1\%	
Medicare	83,515	45.0\%	67,672	41.9\%	15,843	66.4\%		31,692	66.8\%	15,849	66.8\%	15,843	66.7\%	
PCP Visit 2019														
No	73,292	39.5\%	63,797	39.5\%	9,495	39.8\%	0.33	18,870	39.7\%	9,434	39.7\%	9,436	39.8\%	0.99
Yes	112,244	60.5\%	97,876	60.5\%	14,368	60.2\%		28,602	60.3\%	14,302	60.3\%	14,300	60.2\%	
Continuous Outcomes														
	mean	SD	mean	SD	mean	SD	p-value	mean	SD	mean	SD	mean	SD	p -value
CCl	1.06	1.70	1.08	1.71	0.92	1.59	<0.001	0.92	1.58	0.92	1.57	0.93	1.59	0.64

BP: bisphosphonate; CCI: Charlson Comorbidity Index; PCP: primary care physician; SD: standard deviation

Table S8e: Statin Non-user Cohort (All Regions) by BP Use, Patient Characteristics Pre/Post Match of BP Users/Non-users

	All Statin Non-users by BP Use: Unmatched							All Statin Non-users by BP: Matched						
	All		BP Non-users		BP Users		p-value	All		BP Non-users		BP Users		p-value
	N	\%	N	\%	N	\%		N	\%	N	\%	N	\%	
All Patients	1,436,300	100.0\%	1,311,457	91.3\%	124,843	8.7\%		249,432	100.0\%	124,716	50.0\%	124,716	50.0\%	
Age														
≤ 20	1,387	0.1\%	1,383	0.1\%	4	0.0\%	<0.001	6	0.0\%	2	0.0\%	4	0.0\%	0.99
21-40	44,371	3.1\%	44,170	3.4\%	201	0.2\%		413	0.2\%	212	0.2\%	201	0.2\%	
41-50	135,748	9.5\%	134,305	10.2\%	1,443	1.2\%		2,880	1.2\%	1,437	1.2\%	1,443	1.2\%	
51-60	354,449	24.7\%	336,779	25.7\%	17,670	14.2\%		35,335	14.2\%	17,665	14.2\%	17,670	14.2\%	
61-70	428,326	29.8\%	381,936	29.1\%	46,390	37.2\%		92,791	37.2\%	46,401	37.2\%	46,390	37.2\%	
71-80	303,279	21.1\%	264,157	20.1\%	39,122	31.3\%		78,077	31.3\%	39,037	31.3\%	39,040	31.3\%	
≥ 81	168,740	11.7\%	148,727	11.3\%	20,013	16.0\%		39,930	16.0\%	19,962	16.0\%	19,968	16.0\%	
Gender														
Female	839,207	58.4\%	727,324	55.5\%	111,883	89.6\%	<0.001	223,501	89.6\%	111,745	89.6\%	111,756	89.6\%	0.94
Male	597,093	41.6\%	584,133	44.5\%	12,960	10.4\%		25,931	10.4\%	12,971	10.4\%	12,960	10.4\%	
Region														
Midwest	271,319	18.9\%	249,383	19.0\%	21,936	17.6\%	<0.001	43,870	17.6\%	21,935	17.6\%	21,935	17.6\%	1.00
Northeast	423,934	29.5\%	390,134	29.7\%	33,800	27.1\%		67,594	27.1\%	33,797	27.1\%	33,797	27.1\%	
South	523,112	36.4\%	480,680	36.7\%	42,432	34.0\%		84,618	33.9\%	42,309	33.9\%	42,309	33.9\%	
West	217,935	15.2\%	191,260	14.6\%	26,675	21.4\%		53,350	21.4\%	26,675	21.4\%	26,675	21.4\%	
Insurance														
Commercial	587,847	40.9\%	552,487	42.1\%	35,360	28.3\%	<0.001	70,725	28.4\%	35,365	28.4\%	35,360	28.4\%	1.00
Dual	54,851	3.8\%	46,371	3.5\%	8,480	6.8\%		16,696	6.7\%	8,342	6.7\%	8,354	6.7\%	
Medicaid	320,434	22.3\%	296,591	22.6\%	23,843	19.1\%		47,674	19.1\%	23,832	19.1\%	23,842	19.1\%	
Medicare	473,168	32.9\%	416,008	31.7\%	57,160	45.8\%		114,337	45.8\%	57,177	45.8\%	57,160	45.8\%	
PCP Visit 2019														
No	508,587	35.4\%	473,241	36.1\%	35,346	28.3\%	<0.001	70,689	28.3\%	35,343	28.3\%	35,346	28.3\%	0.99
Yes	927,713	64.6\%	838,216	63.9\%	89,497	71.7\%		178,743	71.7\%	89,373	71.7\%	89,370	71.7\%	
Continuous Outcomes														
	mean	SD	mean	SD	mean	SD	p-value	mean	SD	mean	SD	mean	SD	p-value
CCl	1.12	1.79	1.13	1.79	1.02	1.86	<0.001	1.02	1.85	1.02	1.84	1.02	1.86	0.49

BP: bisphosphonate; CCI: Charlson Comorbidity Index; PCP: primary care physician; SD: standard deviation

Table S8f: Statin Non-user Cohort (Region=New York State) by BP Use, Patient Characteristics Pre/Post Match of BP Users/Nonusers

	Region=NY Statin Non-users by BP: Unmatched							Region=NY Statin Non-users by BP: Matched						
	All		BP Non-users		BP Users		p-value	All		BP Non-users		BP Users		p -value
	N	\%	N	\%	N	\%		N	\%	N	\%	N	\%	
All Patients	185,536	100.0\%	170,990	92.2\%	14,546	7.8\%		29,042	100.0\%	14,521	50.0\%	14,521	50.0\%	
Age														
≤ 20	67	0.0\%	67	0.0\%	0	0.0\%	<0.001	0	0.0\%	0	0.0\%	0	0.0\%	1.00
21-40	4,508	2.4\%	4,498	2.6\%	10	0.1\%		23	0.1\%	13	0.1\%	10	0.1\%	
41-50	15,420	8.3\%	15,314	9.0\%	106	0.7\%		211	0.7\%	105	0.7\%	106	0.7\%	
51-60	43,068	23.2\%	41,317	24.2\%	1,751	12.0\%		3,502	12.1\%	1,751	12.1\%	1,751	12.1\%	
61-70	53,233	28.7\%	48,148	28.2\%	5,085	35.0\%		10,174	35.0\%	5,089	35.0\%	5,085	35.0\%	
71-80	45,675	24.6\%	40,731	23.8\%	4,944	34.0\%		9,877	34.0\%	4,937	34.0\%	4,940	34.0\%	
≥ 81	23,565	12.7\%	20,915	12.2\%	2,650	18.2\%		5,255	18.1\%	2,626	18.1\%	2,629	18.1\%	
Gender														
Female	107,420	57.9\%	94,242	55.1\%	13,178	90.6\%	<0.001	26,304	90.6\%	13,151	90.6\%	13,153	90.6\%	0.97
Male	78,116	42.1\%	76,748	44.9\%	1,368	9.4\%		2,738	9.4\%	1,370	9.4\%	1,368	9.4\%	
Insurance														
Commercial	58,206	31.4\%	56,313	32.9\%	1,893	13.0\%	<0.001	3,785	13.0\%	1,892	13.0\%	1,893	13.0\%	0.96
Dual	2,190	1.2\%	1,754	1.0\%	436	3.0\%		883	3.0\%	449	3.1\%	434	3.0\%	
Medicaid	41,703	22.5\%	38,177	22.3\%	3,526	24.2\%		6,994	24.1\%	3,491	24.0\%	3,503	24.1\%	
Medicare	83,437	45.0\%	74,746	43.7\%	8,691	59.7\%		17,380	59.8\%	8,689	59.8\%	8,691	59.9\%	
PCP Visit 2019														
No	73,675	39.7\%	69,382	40.6\%	4,293	29.5\%	<0.001	8,564	29.5\%	4,280	29.5\%	4,284	29.5\%	0.96
Yes	111,861	60.3\%	101,608	59.4\%	10,253	70.5\%		20,478	70.5\%	10,241	70.5\%	10,237	70.5\%	
Continuous Outcomes														
	mean	SD	mean	SD	mean	SD	p-value	mean	SD	mean	SD	mean	SD	p-value
CCI	1.08	1.76	1.09	1.76	0.95	1.75	<0.001	0.95	1.74	0.95	1.73	0.95	1.75	0.82

BP: bisphosphonate; CCI: Charlson Comorbidity Index; PCP: primary care physician; SD: standard deviation

Table S9a: Antihypertensive Cohort (All Regions), Patient Characteristics Pre/Post Match

	All Observations by Antihypertensive Use: Unmatched							All Observations by Antihypertensive Use: Matched						
	All		HTN Non-users		HTN Users		p-value	All		HTN Non-users		HTN Users		p-value
	N	\%	N	\%	N	\%		N	\%	N	\%	N	\%	
All Patients	7,906,603	100.0\%	5,805,483	73.4\%	2,101,120	26.6\%		3,572,002	100.0\%	1,786,001	50.0\%	1,786,001	50.0\%	
Age														
≤ 20	1,840,050	23.3\%	1,823,229	31.4\%	16,821	0.8\%	<0.001	33,574	0.9\%	16,785	0.9\%	16,789	0.9\%	0.44
21-40	1,446,999	18.3\%	1,299,520	22.4\%	147,479	7.0\%		293,445	8.2\%	146,712	8.2\%	146,733	8.2\%	
41-50	925,309	11.7\%	685,931	11.8\%	239,378	11.4\%		463,130	13.0\%	231,312	13.0\%	231,818	13.0\%	
51-60	1,250,190	15.8\%	759,987	13.1\%	490,203	23.3\%		870,549	24.4\%	434,995	24.4\%	435,554	24.4\%	
61-70	1,181,261	14.9\%	626,235	10.8\%	555,026	26.4\%		918,823	25.7\%	459,192	25.7\%	459,631	25.7\%	
71-80	783,775	9.9\%	381,957	6.6\%	401,818	19.1\%		619,578	17.3\%	309,898	17.4\%	309,680	17.3\%	
≥ 81	479,019	6.1\%	228,624	3.9\%	250,395	11.9\%		372,903	10.4\%	187,107	10.5\%	185,796	10.4\%	
Gender														
Female	4,670,960	59.1\%	3,402,357	58.6\%	1,268,603	60.4\%	<0.001	2,159,365	60.5\%	1,079,468	60.4\%	1,079,897	60.5\%	0.64
Male	3,235,643	40.9\%	2,403,126	41.4\%	832,517	39.6\%		1,412,637	39.5\%	706,533	39.6\%	706,104	39.5\%	
Region														
Midwest	1,467,802	18.6\%	1,065,772	18.4\%	402,030	19.1\%	<0.001	694,206	19.4\%	347,103	19.4\%	347,103	19.4\%	1.00
Northeast	2,152,560	27.2\%	1,568,239	27.0\%	584,321	27.8\%		997,132	27.9\%	498,566	27.9\%	498,566	27.9\%	
South	3,042,604	38.5\%	2,240,163	38.6\%	802,441	38.2\%		1,338,570	37.5\%	669,285	37.5\%	669,285	37.5\%	
West	1,243,637	15.7\%	931,309	16.0\%	312,328	14.9\%		542,094	15.2\%	271,047	15.2\%	271,047	15.2\%	
Insurance														
Commercial	3,938,603	49.8\%	3,060,354	52.7\%	878,249	41.8\%	<0.001	1,695,516	47.5\%	848,106	47.5\%	847,410	47.4\%	0.80
Dual	156,497	2.0\%	55,827	1.0\%	100,670	4.8\%		93,467	2.6\%	46,774	2.6\%	46,693	2.6\%	
Medicaid	2,594,500	32.8\%	2,091,349	36.0\%	503,151	23.9\%		812,737	22.8\%	406,012	22.7\%	406,725	22.8\%	
Medicare	1,217,003	15.4\%	597,953	10.3\%	619,050	29.5\%		970,282	27.2\%	485,109	27.2\%	485,173	27.2\%	
PCP Visit 2019														
No	4,283,697	54.2\%	3,531,914	60.8\%	751,783	35.8\%	<0.001	1,438,005	40.3\%	719,756	40.3\%	718,249	40.2\%	0.10
Yes	3,622,906	45.8\%	2,273,569	39.2\%	1,349,337	64.2\%		2,133,997	59.7\%	1,066,245	59.7\%	1,067,752	59.8\%	
Continuous Outcomes														
	mean	SD	mean	SD	mean	SD	p-value	mean	SD	mean	SD	mean	SD	p-value
CCI	0.62	1.38	0.43	1.14	1.13	1.80	<0.001	0.95	1.65	0.96	1.66	0.95	1.64	<0.05

CCI: Charlson Comorbidity Index; HTN: antihypertensive; PCP: primary care physician; SD: standard deviation

Table S9b: Antihypertensive Cohort (Region=New York State), Patient Characteristics Pre/Post Match

	Region=NY by Antihypertensive Use: Unmatched							Region=NY by Antihypertensive Use: Matched						
	All		HTN Non-users		HTN Users		p-value	All		HTN Non-users		HTN Users		p-value
	N	\%	N	\%	N	\%		N	\%	N	\%	N	\%	
All Patients	968,296	100.0\%	709,644	73.3\%	258,652	26.7\%		407,248	100.0\%	203,624	50.0\%	203,624	50.0\%	
Age														
≤ 20	133,178	13.8\%	132,352	18.7\%	826	0.3\%	<0.001	1,622	0.4\%	811	0.4\%	811	0.4\%	1.00
21-40	192,959	19.9\%	181,447	25.6\%	11,512	4.5\%		22,930	5.6\%	11,465	5.6\%	11,465	5.6\%	
41-50	127,794	13.2\%	105,490	14.9\%	22,304	8.6\%		43,846	10.8\%	21,923	10.8\%	21,923	10.8\%	
51-60	172,444	17.8\%	119,643	16.9\%	52,801	20.4\%		96,318	23.7\%	48,159	23.7\%	48,159	23.7\%	
61-70	159,912	16.5\%	92,103	13.0\%	67,809	26.2\%		109,858	27.0\%	54,929	27.0\%	54,929	27.0\%	
71-80	120,117	12.4\%	54,076	7.6\%	66,041	25.5\%		88,734	21.8\%	44,367	21.8\%	44,367	21.8\%	
≥ 81	61,892	6.4\%	24,533	3.5\%	37,359	14.4\%		43,940	10.8\%	21,970	10.8\%	21,970	10.8\%	
Gender														
Female	573,610	59.2\%	419,901	59.2\%	153,709	59.4\%	0.02	240,930	59.2\%	120,465	59.2\%	120,465	59.2\%	1.00
Male	394,686	40.8\%	289,743	40.8\%	104,943	40.6\%		166,318	40.8\%	83,159	40.8\%	83,159	40.8\%	
Insurance														
Commercial	500,918	51.7\%	425,181	59.9\%	75,737	29.3\%	<0.001	150,918	37.1\%	75,459	37.1\%	75,459	37.1\%	1.00
Dual	6,814	0.7\%	1,659	0.2\%	5,155	2.0\%		2,986	0.7\%	1,493	0.7\%	1,493	0.7\%	
Medicaid	252,366	26.1\%	193,207	27.2\%	59,159	22.9\%		95,032	23.3\%	47,516	23.3\%	47,516	23.3\%	
Medicare	208,198	21.5\%	89,597	12.6\%	118,601	45.9\%		158,312	38.9\%	79,156	38.9\%	79,156	38.9\%	
PCP Visit 2019														
No	521,282	53.8\%	423,952	59.7\%	97,330	37.6\%	<0.001	181,234	44.5\%	90,617	44.5\%	90,617	44.5\%	1.00
Yes	447,014	46.2\%	285,692	40.3\%	161,322	62.4\%		226,014	55.5\%	113,007	55.5\%	113,007	55.5\%	
Continuous Outcomes														
	mean	SD	mean	SD	mean	SD	p-value	mean	SD	mean	SD	mean	SD	p-value
CCl	0.65	1.39	0.46	1.16	1.17	1.80	<0.001	0.95	1.60	0.95	1.60	0.95	1.60	1.00

CCI: Charlson Comorbidity Index; HTN: antihypertensive; PCP: primary care physician; SD: standard deviation

Table S9c: Antihypertensive User Cohort (All Regions) by BP Use, Patient Characteristics Pre/Post Match of BP Users/Non-users

	All Antihypertensive Users by BP: Unmatched							All Antihypertensive Users by BP: Matched						
	All		BP Non-user		BP User		p-value	All		BP Non-user		BP User		p-value
	N	\%	N	\%	N	\%		N	\%	N	\%	N	\%	
All Patients	1,786,001	100.0\%	1,579,388	88.4\%	206,613	11.6\%		408,792	100.0\%	204,396	50.0\%	204,396	50.0\%	
Age														
≤ 20	16,789	0.9\%	16,586	1.1\%	203	0.1\%	<0.001	411	0.1\%	208	0.1\%	203	0.1\%	1.00
21-40	146,733	8.2\%	145,872	9.2\%	861	0.4\%		1,728	0.4\%	868	0.4\%	860	0.4\%	
41-50	231,818	13.0\%	229,150	14.5\%	2,668	1.3\%		5,333	1.3\%	2,667	1.3\%	2,666	1.3\%	
51-60	435,554	24.4\%	413,155	26.2\%	22,399	10.8\%		44,796	11.0\%	22,399	11.0\%	22,397	11.0\%	
61-70	459,631	25.7\%	390,664	24.7\%	68,967	33.4\%		137,730	33.7\%	68,862	33.7\%	68,868	33.7\%	
71-80	309,680	17.3\%	237,749	15.1\%	71,931	34.8\%		140,882	34.5\%	70,439	34.5\%	70,443	34.5\%	
≥ 81	185,796	10.4\%	146,212	9.3\%	39,584	19.2\%		77,912	19.1\%	38,953	19.1\%	38,959	19.1\%	
Gender														
Female	1,079,897	60.5\%	894,472	56.6\%	185,425	89.7\%	<0.001	366,424	89.6\%	183,212	89.6\%	183,212	89.6\%	1.00
Male	706,104	39.5\%	684,916	43.4\%	21,188	10.3\%		42,368	10.4\%	21,184	10.4\%	21,184	10.4\%	
Region														
Midwest	347,103	19.4\%	313,523	19.9\%	33,580	16.3\%	<0.001	67,058	16.4\%	33,529	16.4\%	33,529	16.4\%	1.00
Northeast	498,566	27.9\%	444,828	28.2\%	53,738	26.0\%		107,150	26.2\%	53,575	26.2\%	53,575	26.2\%	
South	669,285	37.5\%	595,410	37.7\%	73,875	35.8\%		146,890	35.9\%	73,445	35.9\%	73,445	35.9\%	
West	271,047	15.2\%	225,627	14.3\%	45,420	22.0\%		87,694	21.5\%	43,847	21.5\%	43,847	21.5\%	
Insurance														
Commercial	847,410	47.4\%	787,519	49.9\%	59,891	29.0\%	<0.001	119,737	29.3\%	59,863	29.3\%	59,874	29.3\%	1.00
Dual	46,693	2.6\%	37,153	2.4\%	9,540	4.6\%		17,884	4.4\%	8,945	4.4\%	8,939	4.4\%	
Medicaid	406,725	22.8\%	369,893	23.4\%	36,832	17.8\%		70,769	17.3\%	35,387	17.3\%	35,382	17.3\%	
Medicare	485,173	27.2\%	384,823	24.4\%	100,350	48.6\%		200,402	49.0\%	100,201	49.0\%	100,201	49.0\%	
PCP Visit 2019														
No	718,249	40.2\%	633,042	40.1\%	85,207	41.2\%	<0.001	168,255	41.2\%	84,128	41.2\%	84,127	41.2\%	1.00
Yes	1,067,752	59.8\%	946,346	59.9\%	121,406	58.8\%		240,537	58.8\%	120,268	58.8\%	120,269	58.8\%	
Continuous Outcomes														
	mean	SD	mean	SD	mean	SD	p-value	mean	SD	mean	SD	mean	SD	p-value
CCl	0.95	1.64	0.95	1.64	0.94	1.68	0.02	0.95	1.67	0.95	1.67	0.95	1.68	0.68

BP: bisphosphonate; CCI: Charlson Comorbidity Index; PCP: primary care physician; SD: standard deviation

Table S9d: Antihypertensive User Cohort (Region=New York State) by BP Use, Patient Characteristics Pre/Post Match of BP Users/Non-users

	Region=NY Antihypertensive Users by BP: Unmatched							Region=NY Antihypertensive Users by BP: Matched						
	All		BP Non-user		BP User		p-value	All		BP Non-user		BP User		p-value
	N	\%	N	\%	N	\%		N	\%	N	\%	N	\%	
All Patients	203,624	100.0\%	182,411	89.6\%	21,213	10.4\%		42,252	100.0\%	21,126	50.0\%	21,126	50.0\%	
Age														
≤ 20	811	0.4\%	798	0.4\%	13	0.1\%	<0.001	27	0.1\%	14	0.1\%	13	0.1\%	1.00
21-40	11,465	5.6\%	11,396	6.2\%	69	0.3\%		137	0.3\%	68	0.3\%	69	0.3\%	
41-50	21,923	10.8\%	21,747	11.9\%	176	0.8\%		354	0.8\%	178	0.8\%	176	0.8\%	
51-60	48,159	23.7\%	46,047	25.2\%	2,112	10.0\%		4,218	10.0\%	2,108	10.0\%	2,110	10.0\%	
61-70	54,929	27.0\%	48,022	26.3\%	6,907	32.6\%		13,804	32.7\%	6,902	32.7\%	6,902	32.7\%	
71-80	44,367	21.8\%	36,409	20.0\%	7,958	37.5\%		15,777	37.3\%	7,886	37.3\%	7,891	37.4\%	
≥ 81	21,970	10.8\%	17,992	9.9\%	3,978	18.8\%		7,935	18.8\%	3,970	18.8\%	3,965	18.8\%	
Gender														
Female	120,465	59.2\%	101,190	55.5\%	19,275	90.9\%	<0.001	38,380	90.8\%	19,190	90.8\%	19,190	90.8\%	1.00
Male	83,159	40.8\%	81,221	44.5\%	1,938	9.1\%		3,872	9.2\%	1,936	9.2\%	1,936	9.2\%	
Insurance														
Commercial	75,459	37.1\%	71,460	39.2\%	3,999	18.9\%	<0.001	7,993	18.9\%	3,997	18.9\%	3,996	18.9\%	1.00
Dual	1,493	0.7\%	1,151	0.6\%	342	1.6\%		643	1.5\%	322	1.5\%	321	1.5\%	
Medicaid	47,516	23.3\%	44,248	24.3\%	3,268	15.4\%		6,414	15.2\%	3,207	15.2\%	3,207	15.2\%	
Medicare	79,156	38.9\%	65,552	35.9\%	13,604	64.1\%		27,202	64.4\%	13,600	64.4\%	13,602	64.4\%	
PCP Visit 2019														
No	90,617	44.5\%	80,739	44.3\%	9,878	46.6\%	<0.001	19,672	46.6\%	9,837	46.6\%	9,835	46.6\%	0.98
Yes	113,007	55.5\%	101,672	55.7\%	11,335	53.4\%		22,580	53.4\%	11,289	53.4\%	11,291	53.4\%	
Continuous Outcomes														
	mean	SD	mean	SD	mean	SD	p-value	mean	SD	mean	SD	mean	SD	p-value
CCI	0.95	1.60	0.95	1.61	0.88	1.54	<0.001	0.87	1.53	0.87	1.52	0.87	1.53	0.87

BP: bisphosphonate; CCI: Charlson Comorbidity Index; PCP: primary care physician; SD: standard deviation

Table S9e: Antihypertensive Non-user Cohort (All Regions) by BP Use, Patient Characteristics Pre/Post Match of BP Users/Nonusers

	All Antihypertensive Non-users by BP: Unmatched							All Antihypertensive Non-users by BP: Matched						
	All		BP Non-user		BP User		p-value	All		BP Non-user		BP User		p-value
	N	\%	N	\%	N	\%		N	\%	N	\%	N	\%	
All Patients	1,786,001	100.0\%	1,649,985	92.4\%	136,016	7.6\%		271,448	100.0\%	135,724	50.0\%	135,724	50.0\%	
Age														
≤ 20	16,785	0.9\%	16,767	1.0\%	18	0.0\%	<0.001	34	0.0\%	16	0.0\%	18	0.0\%	1.00
21-40	146,712	8.2\%	146,210	8.9\%	502	0.4\%		1,009	0.4\%	507	0.4\%	502	0.4\%	
41-50	231,312	13.0\%	228,725	13.9\%	2,587	1.9\%		5,163	1.9\%	2,577	1.9\%	2,586	1.9\%	
51-60	434,995	24.4\%	410,636	24.9\%	24,359	17.9\%		48,700	17.9\%	24,349	17.9\%	24,351	17.9\%	
61-70	459,192	25.7\%	404,445	24.5\%	54,747	40.3\%		109,415	40.3\%	54,711	40.3\%	54,704	40.3\%	
71-80	309,898	17.4\%	271,617	16.5\%	38,281	28.1\%		76,139	28.0\%	38,070	28.0\%	38,069	28.0\%	
≥ 81	187,107	10.5\%	171,585	10.4\%	15,522	11.4\%		30,988	11.4\%	15,494	11.4\%	15,494	11.4\%	
Gender														
Female	1,079,468	60.4\%	956,403	58.0\%	123,065	90.5\%	<0.001	245,537	90.5\%	122,762	90.4\%	122,775	90.5\%	0.93
Male	706,533	39.6\%	693,582	42.0\%	12,951	9.5\%		25,911	9.5\%	12,962	9.6\%	12,949	9.5\%	
Region														
Midwest	347,103	19.4\%	321,267	19.5\%	25,836	19.0\%	<0.001	51,638	19.0\%	25,819	19.0\%	25,819	19.0\%	1.00
Northeast	498,566	27.9\%	463,273	28.1\%	35,293	25.9\%		70,544	26.0\%	35,272	26.0\%	35,272	26.0\%	
South	669,285	37.5\%	622,064	37.7\%	47,221	34.7\%		93,980	34.6\%	46,990	34.6\%	46,990	34.6\%	
West	271,047	15.2\%	243,381	14.8\%	27,666	20.3\%		55,286	20.4\%	27,643	20.4\%	27,643	20.4\%	
Insurance														
Commercial	848,106	47.5\%	798,579	48.4\%	49,527	36.4\%	<0.001	99,039	36.5\%	49,523	36.5\%	49,516	36.5\%	1.00
Dual	46,774	2.6\%	40,212	2.4\%	6,562	4.8\%		12,645	4.7\%	6,319	4.7\%	6,326	4.7\%	
Medicaid	406,012	22.7\%	381,472	23.1\%	24,540	18.0\%		49,025	18.1\%	24,516	18.1\%	24,509	18.1\%	
Medicare	485,109	27.2\%	429,722	26.0\%	55,387	40.7\%		110,739	40.8\%	55,366	40.8\%	55,373	40.8\%	
PCP Visit 2019														
No	719,756	40.3\%	676,255	41.0\%	43,501	32.0\%	<0.001	86,956	32.0\%	43,478	32.0\%	43,478	32.0\%	1.00
Yes	1,066,245	59.7\%	973,730	59.0\%	92,515	68.0\%		184,492	68.0\%	92,246	68.0\%	92,246	68.0\%	
Continuous Outcomes														
	mean	SD	mean	SD	mean	SD	p-value	mean	SD	mean	SD	mean	SD	p-value
CCl	0.96	1.66	0.96	1.65	0.88	1.76	<0.001	0.88	1.75	0.88	1.74	0.88	1.75	0.76

BP: bisphosphonate; CCI: Charlson Comorbidity Index; PCP: primary care physician; SD: standard deviation

Table S9f: Antihypertensive Non-user Cohort (Region=New York State) by BP Use, Patient Characteristics Pre/Post Match of BP Users/Non-users

	Region=NY Antihypertensive Non-Users by BP: Unmatched							Region=NY Antihypertensive Non-users by BP: Matched						
	All		BP Non-user		BP User		p-value	All		BP Non-user		BP User		p-value
	N	\%	N	\%	N	\%		N	\%	N	\%	N	\%	
All Patients	203,624	100.0\%	189,573	93.1\%	14,051	6.9\%		27,966	100.0\%	13,983	50.0\%	13,983	50.0\%	
Age														
≤ 20	811	0.4\%	810	0.4\%	1	0.0\%	<0.001	2	0.0\%	1	0.0\%	1	0.0\%	1.00
21-40	11,465	5.6\%	11,451	6.0\%	14	0.1\%		28	0.1\%	14	0.1\%	14	0.1\%	
41-50	21,923	10.8\%	21,762	11.5\%	161	1.1\%		324	1.2\%	163	1.2\%	161	1.2\%	
51-60	48,159	23.7\%	46,035	24.3\%	2,124	15.1\%		4,245	15.2\%	2,121	15.2\%	2,124	15.2\%	
61-70	54,929	27.0\%	49,409	26.1\%	5,520	39.3\%		11,027	39.4\%	5,512	39.4\%	5,515	39.4\%	
71-80	44,367	21.8\%	39,789	21.0\%	4,578	32.6\%		9,054	32.4\%	4,528	32.4\%	4,526	32.4\%	
≥ 81	21,970	10.8\%	20,317	10.7\%	1,653	11.8\%		3,286	11.7\%	1,644	11.8\%	1,642	11.7\%	
Gender														
Female	120,465	59.2\%	107,632	56.8\%	12,833	91.3\%	<0.001	25,530	91.3\%	12,764	91.3\%	12,766	91.3\%	0.97
Male	83,159	40.8\%	81,941	43.2\%	1,218	8.7\%		2,436	8.7\%	1,219	8.7\%	1,217	8.7\%	
Insurance														
Commercial	75,459	37.1\%	73,115	38.6\%	2,344	16.7\%	<0.001	4,683	16.7\%	2,342	16.7\%	2,341	16.7\%	1.00
Dual	1,493	0.7\%	1,211	0.6\%	282	2.0\%		554	2.0\%	277	2.0\%	277	2.0\%	
Medicaid	47,516	23.3\%	43,809	23.1\%	3,707	26.4\%		7,295	26.1\%	3,648	26.1\%	3,647	26.1\%	
Medicare	79,156	38.9\%	71,438	37.7\%	7,718	54.9\%		15,434	55.2\%	7,716	55.2\%	7,718	55.2\%	
PCP Visit 2019														
No	90,617	44.5\%	85,875	45.3\%	4,742	33.7\%	<0.001	9,461	33.8\%	4,728	33.8\%	4,733	33.8\%	0.95
Yes	113,007	55.5\%	103,698	54.7\%	9,309	66.3\%		18,505	66.2\%	9,255	66.2\%	9,250	66.2\%	
Continuous Outcomes														
	mean	SD	mean	SD	mean	SD	p-value	mean	SD	mean	SD	mean	SD	p-value
CCI	0.95	1.60	0.96	1.60	0.81	1.60	<0.001	0.81	1.59	0.81	1.58	0.81	1.59	0.92

BP: bisphosphonate; CCI: Charlson Comorbidity Index; PCP: primary care physician; SD: standard deviation

Table S10a: Antidiabetic Cohort (All Regions), Patient Characteristics Pre/Post Match

	All Observations by Antidiabetic Use: Unmatched							All Observations by Antidiabetic Use: Matched						
	All		DIAB Non-users		DIAB Users		p-value	All		DIAB Non-users		DIAB Users		p-value
	N	\%	N	\%	N	\%		N	\%	N	\%	N	\%	
All Patients	7,906,603	100.0\%	7,151,351	90.4\%	755,252	9.6\%		1,509,106	100.0\%	754,553	50.0\%	754,553	50.0\%	
Age														
≤ 20	1,840,050	23.3\%	1,833,838	25.6\%	6,212	0.8\%	<0.001	12,422	0.8\%	6,211	0.8\%	6,211	0.8\%	1.00
21-40	1,446,999	18.3\%	1,389,243	19.4\%	57,756	7.6\%		115,448	7.7\%	57,723	7.6\%	57,725	7.7\%	
41-50	925,309	11.7\%	833,333	11.7\%	91,976	12.2\%		183,810	12.2\%	91,905	12.2\%	91,905	12.2\%	
51-60	1,250,190	15.8\%	1,058,878	14.8\%	191,312	25.3\%		382,390	25.3\%	191,196	25.3\%	191,194	25.3\%	
61-70	1,181,261	14.9\%	973,670	13.6\%	207,591	27.5\%		414,869	27.5\%	207,435	27.5\%	207,434	27.5\%	
71-80	783,775	9.9\%	645,256	9.0\%	138,519	18.3\%		276,619	18.3\%	138,310	18.3\%	138,309	18.3\%	
≥ 81	479,019	6.1\%	417,133	5.8\%	61,886	8.2\%		123,548	8.2\%	61,773	8.2\%	61,775	8.2\%	
Gender														
Female	4,670,960	59.1\%	4,212,086	58.9\%	458,874	60.8\%	<0.001	916,914	60.8\%	458,455	60.8\%	458,459	60.8\%	0.99
Male	3,235,643	40.9\%	2,939,265	41.1\%	296,378	39.2\%		592,192	39.2\%	296,098	39.2\%	296,094	39.2\%	
Region														
Midwest	1,467,802	18.6\%	1,333,631	18.6\%	134,171	17.8\%	<0.001	268,044	17.8\%	134,022	17.8\%	134,022	17.8\%	1.00
Northeast	2,152,560	27.2\%	1,935,311	27.1\%	217,249	28.8\%		434,080	28.8\%	217,040	28.8\%	217,040	28.8\%	
South	3,042,604	38.5\%	2,752,618	38.5\%	289,986	38.4\%		579,562	38.4\%	289,781	38.4\%	289,781	38.4\%	
West	1,243,637	15.7\%	1,129,791	15.8\%	113,846	15.1\%		227,420	15.1\%	113,710	15.1\%	113,710	15.1\%	
Insurance														
Commercial	3,938,603	49.8\%	3,631,514	50.8\%	307,089	40.7\%	<0.001	614,045	40.7\%	307,022	40.7\%	307,023	40.7\%	1.00
Dual	156,497	2.0\%	113,496	1.6\%	43,001	5.7\%		85,209	5.6\%	42,603	5.6\%	42,606	5.6\%	
Medicaid	2,594,500	32.8\%	2,387,519	33.4\%	206,981	27.4\%		413,743	27.4\%	206,875	27.4\%	206,868	27.4\%	
Medicare	1,217,003	15.4\%	1,018,822	14.2\%	198,181	26.2\%		396,109	26.2\%	198,053	26.2\%	198,056	26.2\%	
PCP Visit 2019														
No	4,283,697	54.2\%	4,030,804	56.4\%	252,893	33.5\%	<0.001	505,500	33.5\%	252,752	33.5\%	252,748	33.5\%	0.99
Yes	3,622,906	45.8\%	3,120,547	43.6\%	502,359	66.5\%		1,003,606	66.5\%	501,801	66.5\%	501,805	66.5\%	
Continuous Outcomes														
	mean	SD	mean	SD	mean	SD	p-value	mean	SD	mean	SD	mean	SD	p-value
CCl	0.62	1.38	0.55	1.30	1.25	1.84	<0.001	1.24	1.82	1.24	1.82	1.24	1.82	0.99

CCI : Charlson Comorbidity Index; DIAB: antidiabetic; PCP: primary care physician; SD: standard deviation

Table S10b: Antidiabetic Cohort (Region=New York State), Patient Characteristics Pre/Post Match

CCI: Charlson Comorbidity Index; DIAB: antidiabetic; PCP: primary care physician; SD: standard deviation

Table S10c: Antidiabetic User Cohort (All Regions) by BP Use, Patient Characteristics Pre/Post Match of BP Users/Non-users

	All Antidiabetic Users by BP: Unmatched							All Antidiabetic Users by BP: Matched						
	All		BP Non-user		BP User		p-value	All		BP Non-user		BP User		p-value
	N	\%	N	\%	N	\%		N	\%	N	\%	N	\%	
All Patients	754,553	100.0\%	674,024	89.3\%	80,529	10.7\%		159,000	100.0\%	79,500	50.0\%	79,500	50.0\%	
Age														
≤ 20	6,211	0.8\%	6,169	0.9\%	42	0.1\%	<0.001	83	0.1\%	41	0.1\%	42	0.1\%	1.00
21-40	57,725	7.7\%	57,535	8.5\%	190	0.2\%		380	0.2\%	190	0.2\%	190	0.2\%	
41-50	91,905	12.2\%	90,952	13.5\%	953	1.2\%		1,905	1.2\%	952	1.2\%	953	1.2\%	
51-60	191,194	25.3\%	182,922	27.1\%	8,272	10.3\%		16,536	10.4\%	8,268	10.4\%	8,268	10.4\%	
61-70	207,434	27.5\%	180,895	26.8\%	26,539	33.0\%		53,028	33.4\%	26,512	33.3\%	26,516	33.4\%	
71-80	138,309	18.3\%	107,467	15.9\%	30,842	38.3\%		60,240	37.9\%	30,121	37.9\%	30,119	37.9\%	
≥ 81	61,775	8.2\%	48,084	7.1\%	13,691	17.0\%		26,828	16.9\%	13,416	16.9\%	13,412	16.9\%	
Gender														
Female	458,459	60.8\%	386,400	57.3\%	72,059	89.5\%	<0.001	142,068	89.4\%	71,027	89.3\%	71,041	89.4\%	0.91
Male	296,094	39.2\%	287,624	42.7\%	8,470	10.5\%		16,932	10.6\%	8,473	10.7\%	8,459	10.6\%	
Region														
Midwest	134,022	17.8\%	123,909	18.4\%	10,113	12.6\%	<0.001	20,168	12.7\%	10,084	12.7\%	10,084	12.7\%	1.00
Northeast	217,040	28.8\%	196,723	29.2\%	20,317	25.2\%		40,446	25.4\%	20,223	25.4\%	20,223	25.4\%	
South	289,781	38.4\%	257,599	38.2\%	32,182	40.0\%		63,740	40.1\%	31,870	40.1\%	31,870	40.1\%	
West	113,710	15.1\%	95,793	14.2\%	17,917	22.2\%		34,646	21.8\%	17,323	21.8\%	17,323	21.8\%	
Insurance														
Commercial	307,023	40.7\%	290,957	43.2\%	16,066	20.0\%	<0.001	32,086	20.2\%	16,043	20.2\%	16,043	20.2\%	1.00
Dual	42,606	5.6\%	32,797	4.9\%	9,809	12.2\%		18,653	11.7\%	9,321	11.7\%	9,332	11.7\%	
Medicaid	206,868	27.4\%	188,638	28.0\%	18,230	22.6\%		35,513	22.3\%	17,759	22.3\%	17,754	22.3\%	
Medicare	198,056	26.2\%	161,632	24.0\%	36,424	45.2\%		72,748	45.8\%	36,377	45.8\%	36,371	45.7\%	
PCP Visit 2019														
No	252,748	33.5\%	228,203	33.9\%	24,545	30.5\%	<0.001	48,374	30.4\%	24,184	30.4\%	24,190	30.4\%	0.97
Yes	501,805	66.5\%	445,821	66.1\%	55,984	69.5\%		110,626	69.6\%	55,316	69.6\%	55,310	69.6\%	
Continuous Outcomes														
	mean	SD	mean	SD	mean	SD	p-value	mean	SD	mean	SD	mean	SD	p-value
CCl	1.24	1.82	1.23	1.81	1.32	1.90	<0.001	1.31	1.88	1.31	1.87	1.32	1.88	0.75

BP: bisphosphonate; CCI: Charlson Comorbidity Index; PCP: primary care physician; SD: standard deviation

Table S10d: Antidiabetic User Cohort (Region=New York State) by BP Use, Patient Characteristics Pre/Post Match of BP Users/Non-users

	Region=NY Antidiabetic Users by BP: Unmatched							Region=NY Antidiabetic Users by BP: Matched						
	All		BP Non-user		BP User		p-value	All		BP Non-user		BP User		p-value
	N	\%	N	\%	N	\%		N	\%	N	\%	N	\%	
All Patients	104,691	100.0\%	95,162	90.9\%	9,529	9.1\%		18,912	100.0\%	9,456	50.0\%	9,456	50.0\%	
Age														
≤ 20	455	0.4\%	454	0.5\%	1	0.0\%	<0.001	2	0.0\%	1	0.0\%	1	0.0\%	1.00
21-40	6,164	5.9\%	6,152	6.5\%	12	0.1\%		25	0.1\%	13	0.1\%	12	0.1\%	
41-50	10,440	10.0\%	10,363	10.9\%	77	0.8\%		151	0.8\%	75	0.8\%	76	0.8\%	
51-60	24,366	23.3\%	23,532	24.7\%	834	8.8\%		1,665	8.8\%	831	8.8\%	834	8.8\%	
61-70	28,819	27.5\%	25,939	27.3\%	2,880	30.2\%		5,741	30.4\%	2,870	30.4\%	2,871	30.4\%	
71-80	24,314	23.2\%	20,338	21.4\%	3,976	41.7\%		7,880	41.7\%	3,941	41.7\%	3,939	41.7\%	
≥ 81	10,133	9.7\%	8,384	8.8\%	1,749	18.4\%		3,448	18.2\%	1,725	18.2\%	1,723	18.2\%	
Gender														
Female	60,470	57.8\%	51,884	54.5\%	8,586	90.1\%	<0.001	17,022	90.0\%	8,509	90.0\%	8,513	90.0\%	0.92
Male	44,221	42.2\%	43,278	45.5\%	943	9.9\%		1,890	10.0\%	947	10.0\%	943	10.0\%	
Insurance														
Commercial	32,100	30.7\%	31,172	32.8\%	928	9.7\%	<0.001	1,849	9.8\%	924	9.8\%	925	9.8\%	1.00
Dual	2,193	2.1\%	1,693	1.8\%	500	5.2\%		978	5.2\%	490	5.2\%	488	5.2\%	
Medicaid	27,928	26.7\%	25,978	27.3\%	1,950	20.5\%		3,793	20.1\%	1,897	20.1\%	1,896	20.1\%	
Medicare	42,470	40.6\%	36,319	38.2\%	6,151	64.6\%		12,292	65.0\%	6,145	65.0\%	6,147	65.0\%	
PCP Visit 2019														
No	37,109	35.4\%	33,894	35.6\%	3,215	33.7\%	<. 001	6,363	33.6\%	3,182	33.7\%	3,181	33.6\%	0.99
Yes	67,582	64.6\%	61,268	64.4\%	6,314	66.3\%		12,549	66.4\%	6,274	66.3\%	6,275	66.4\%	
Continuous Outcomes														
	mean	SD	mean	SD	mean	SD	p-value	mean	SD	mean	SD	mean	SD	p-value
CCl	1.32	1.79	1.31	1.79	1.46	1.87	<0.001	1.44	1.83	1.44	1.82	1.45	1.84	0.75

BP: bisphosphonate; CCI: Charlson Comorbidity Index; PCP: primary care physician; SD: standard deviation

Table S10e: Antidiabetic Non-user Cohort (All Regions) by BP Use, Patient Characteristics Pre/Post Match of BP Users/Non-users

	All Antidiabetic Non-users by BP: Unmatched							All Antidiabetic Non-users by BP: Matched						
	All		BP Non-user		BP User		p-value	All		BP Non-user		BP User		p-value
	N	\%	N	\%	N	\%		N	\%	N	\%	N	\%	
All Patients	754,553	100.0\%	681,380	90.3\%	73,173	9.7\%		145,028	100.0\%	72,514	50.0\%	72,514	50.0\%	
Age														
≤ 20	6,211	0.8\%	6,199	0.9\%	12	0.0\%	<0.001	24	0.0\%	12	0.0\%	12	0.0\%	1.00
21-40	57,723	7.6\%	57,497	8.4\%	226	0.3\%		455	0.3\%	229	0.3\%	226	0.3\%	
41-50	91,905	12.2\%	90,693	13.3\%	1,212	1.7\%		2,421	1.7\%	1,209	1.7\%	1,212	1.7\%	
51-60	191,196	25.3\%	180,332	26.5\%	10,864	14.8\%		21,721	15.0\%	10,860	15.0\%	10,861	15.0\%	
61-70	207,435	27.5\%	180,825	26.5\%	26,610	36.4\%		53,115	36.6\%	26,558	36.6\%	26,557	36.6\%	
71-80	138,310	18.3\%	114,018	16.7\%	24,292	33.2\%		47,723	32.9\%	23,861	32.9\%	23,862	32.9\%	
≥ 81	61,773	8.2\%	51,816	7.6\%	9,957	13.6\%		19,569	13.5\%	9,785	13.5\%	9,784	13.5\%	
Gender														
Female	458,455	60.8\%	393,376	57.7\%	65,079	88.9\%	<0.001	128,836	88.8\%	64,411	88.8\%	64,425	88.8\%	0.91
Male	296,098	39.2\%	288,004	42.3\%	8,094	11.1\%		16,192	11.2\%	8,103	11.2\%	8,089	11.2\%	
Region														
Midwest	134,022	17.8\%	123,283	18.1\%	10,739	14.7\%	<0.001	21,390	14.7\%	10,695	14.7\%	10,695	14.7\%	1.00
Northeast	217,040	28.8\%	197,710	29.0\%	19,330	26.4\%		38,510	26.6\%	19,255	26.6\%	19,255	26.6\%	
South	289,781	38.4\%	261,382	38.4\%	28,399	38.8\%		55,812	38.5\%	27,906	38.5\%	27,906	38.5\%	
West	113,710	15.1\%	99,005	14.5\%	14,705	20.1\%		29,316	20.2\%	14,658	20.2\%	14,658	20.2\%	
Insurance														
Commercial	307,022	40.7\%	289,018	42.4\%	18,004	24.6\%	<0.001	35,983	24.8\%	17,988	24.8\%	17,995	24.8\%	1.00
Dual	42,603	5.6\%	33,444	4.9\%	9,159	12.5\%		17,221	11.9\%	8,611	11.9\%	8,610	11.9\%	
Medicaid	206,875	27.4\%	190,166	27.9\%	16,709	22.8\%		33,264	22.9\%	16,636	22.9\%	16,628	22.9\%	
Medicare	198,053	26.2\%	168,752	24.8\%	29,301	40.0\%		58,560	40.4\%	29,279	40.4\%	29,281	40.4\%	
PCP Visit 2019														
No	252,752	33.5\%	233,775	34.3\%	18,977	25.9\%	<0.001	37,812	26.1\%	18,903	26.1\%	18,909	26.1\%	0.97
Yes	501,801	66.5\%	447,605	65.7\%	54,196	74.1\%		107,216	73.9\%	53,611	73.9\%	53,605	73.9\%	
Continuous Outcomes														
	mean	SD	mean	SD	mean	SD	p-value	mean	SD	mean	SD	mean	SD	p-value
CCl	1.24	1.82	1.24	1.81	1.24	1.89	0.92	1.24	1.87	1.24	1.87	1.25	1.88	0.63

BP: bisphosphonate; CCI: Charlson Comorbidity Index; PCP: primary care physician; SD: standard deviation

Table S10f: Antidiabetic Non-user Cohort (Region=New York State) by BP Use, Patient Characteristics Pre/Post Match of BP Users/Non-users

	Region=NY Antidiabetic Non-users by BP: Unmatched							Region=NY Antidiabetic Non-users by BP: Matched						
	All		BP Non-user		BP User		p-value	All		BP Non-user		BP User		p-value
	N	\%	N	\%	N	\%		N	\%	N	\%	N	\%	
All Patients	104,691	100.0\%	95,416	91.1\%	9,275	8.9\%		18,288	100.0\%	9,144	50.0\%	9,144	50.0\%	
Age														
≤ 20	455	0.4\%	455	0.5\%	0	0.0\%	<0.001	0	0.0\%	0	0.0\%	0	0.0\%	1.00
21-40	6,164	5.9\%	6,146	6.4\%	18	0.2\%		36	0.2\%	18	0.2\%	18	0.2\%	
41-50	10,440	10.0\%	10,367	10.9\%	73	0.8\%		147	0.8\%	74	0.8\%	73	0.8\%	
51-60	24,369	23.3\%	23,304	24.4\%	1,065	11.5\%		2,128	11.6\%	1,064	11.6\%	1,064	11.6\%	
61-70	28,819	27.5\%	25,720	27.0\%	3,099	33.4\%		6,190	33.8\%	3,097	33.9\%	3,093	33.8\%	
71-80	24,311	23.2\%	20,826	21.8\%	3,485	37.6\%		6,839	37.4\%	3,419	37.4\%	3,420	37.4\%	
≥ 81	10,133	9.7\%	8,598	9.0\%	1,535	16.5\%		2,948	16.1\%	1,472	16.1\%	1,476	16.1\%	
Gender														
Female	60,467	57.8\%	52,194	54.7\%	8,273	89.2\%	<0.001	16,291	89.1\%	8,146	89.1\%	8,145	89.1\%	0.98
Male	44,224	42.2\%	43,222	45.3\%	1,002	10.8\%		1,997	10.9\%	998	10.9\%	999	10.9\%	
Insurance														
Commercial	32,100	30.7\%	31,095	32.6\%	1,005	10.8\%	<0.001	2,002	10.9\%	1,000	10.9\%	1,002	11.0\%	1.00
Dual	2,196	2.1\%	1,675	1.8\%	521	5.6\%		1,006	5.5\%	502	5.5\%	504	5.5\%	
Medicaid	27,925	26.7\%	25,530	26.8\%	2,395	25.8\%		4,575	25.0\%	2,289	25.0\%	2,286	25.0\%	
Medicare	42,470	40.6\%	37,116	38.9\%	5,354	57.7\%		10,705	58.5\%	5,353	58.5\%	5,352	58.5\%	
PCP Visit 2019														
No	37,106	35.4\%	34,553	36.2\%	2,553	27.5\%	<0.001	5,039	27.6\%	2,518	27.5\%	2,521	27.6\%	0.96
Yes	67,585	64.6\%	60,863	63.8\%	6,722	72.5\%		13,249	72.4\%	6,626	72.5\%	6,623	72.4\%	
Continuous Outcomes														
	mean	SD	mean	SD	mean	SD	p-value	mean	SD	mean	SD	mean	SD	p-value
CCl	1.32	1.79	1.32	1.79	1.37	1.81	0.007	1.37	1.78	1.36	1.78	1.37	1.79	0.92

BP: bisphosphonate; CCI: Charlson Comorbidity Index; PCP: primary care physician; SD: standard deviation

Table S11a: Antidepressant Cohort (All Regions), Patient Characteristics Pre/Post Match

	All Observations by Antidepressant Use: Unmatched							All Observations by Antidepressant Use: Matched						
	All		DEPR Non-users		DEPR Users		p-value	All		DEPR Non-users		DEPR Users		p-value
	N	\%	N	\%	N	\%		N	\%	N	\%	N	\%	
All Patients	7,906,603	100.0\%	6,335,598	80.1\%	1,571,005	19.9\%		3,072,096	100.0\%	1,536,048	50.0\%	1,536,048	50.0\%	
Age														
≤ 20	1,840,050	23.3\%	1,750,435	27.6\%	89,615	5.7\%	<0.001	179,136	5.8\%	89,565	5.8\%	89,571	5.8\%	1.00
21-40	1,446,999	18.3\%	1,128,316	17.8\%	318,683	20.3\%		631,186	20.5\%	315,593	20.5\%	315,593	20.5\%	
41-50	925,309	11.7\%	683,455	10.8\%	241,854	15.4\%		466,681	15.2\%	233,336	15.2\%	233,345	15.2\%	
51-60	1,250,190	15.8\%	899,512	14.2\%	350,678	22.3\%		667,305	21.7\%	333,650	21.7\%	333,655	21.7\%	
61-70	1,181,261	14.9\%	879,560	13.9\%	301,701	19.2\%		592,345	19.3\%	296,182	19.3\%	296,163	19.3\%	
71-80	783,775	9.9\%	613,922	9.7\%	169,853	10.8\%		338,594	11.0\%	169,295	11.0\%	169,299	11.0\%	
≥ 81	479,019	6.1\%	380,398	6.0\%	98,621	6.3\%		196,849	6.4\%	98,427	6.4\%	98,422	6.4\%	
Gender														
Female	4,670,960	59.1\%	3,527,859	55.7\%	1,143,101	72.8\%	<0.001	2,219,179	72.2\%	1,109,580	72.2\%	1,109,599	72.2\%	0.98
Male	3,235,643	40.9\%	2,807,739	44.3\%	427,904	27.2\%		852,917	27.8\%	426,468	27.8\%	426,449	27.8\%	
Region														
Midwest	1,467,802	18.6\%	1,120,969	17.7\%	346,833	22.1\%	<0.001	671,016	21.8\%	335,508	21.8\%	335,508	21.8\%	1.00
Northeast	2,152,560	27.2\%	1,765,134	27.9\%	387,426	24.7\%		766,046	24.9\%	383,023	24.9\%	383,023	24.9\%	
South	3,042,604	38.5\%	2,428,383	38.3\%	614,221	39.1\%		1,192,058	38.8\%	596,029	38.8\%	596,029	38.8\%	
West	1,243,637	15.7\%	1,021,112	16.1\%	222,525	14.2\%		442,976	14.4\%	221,488	14.4\%	221,488	14.4\%	
Insurance														
Commercial	3,938,603	49.8\%	3,230,475	51.0\%	708,128	45.1\%	<0.001	1,415,351	46.1\%	707,675	46.1\%	707,676	46.1\%	1.00
Dual	156,497	2.0\%	94,682	1.5\%	61,815	3.9\%		109,676	3.6\%	54,836	3.6\%	54,840	3.6\%	
Medicaid	2,594,500	32.8\%	2,083,688	32.9\%	510,812	32.5\%		972,897	31.7\%	486,446	31.7\%	486,451	31.7\%	
Medicare	1,217,003	15.4\%	926,753	14.6\%	290,250	18.5\%		574,172	18.7\%	287,091	18.7\%	287,081	18.7\%	
PCP Visit 2019														
No	4,283,697	54.2\%	3,672,879	58.0\%	610,818	38.9\%	<0.001	1,210,520	39.4\%	605,256	39.4\%	605,264	39.4\%	0.99
Yes	3,622,906	45.8\%	2,662,719	42.0\%	960,187	61.1\%		1,861,576	60.6\%	930,792	60.6\%	930,784	60.6\%	
Continuous Outcomes														
	mean	SD	mean	SD	mean	SD	p-value	mean	SD	mean	SD	mean	SD	p-value
CCl	0.62	1.38	0.55	1.29	0.90	1.65	<0.001	0.87	1.60	0.87	1.60	0.87	1.60	0.98

CCI: Charlson Comorbidity Index; DEPR: antidepressant; PCP: primary care physician; SD: standard deviation

Table S11b: Antidepressant Cohort (Region=New York State), Patient Characteristics Pre/Post Match

	Region=NY by Antidepressant Use: Unmatched							Region=NY by Antidepressant Use: Matched						
	All		DEPR Non-users		DEPR Users		p-value	All		DEPR Non-users		DEPR Users		p-value
	N	\%	N	\%	N	\%		N	\%	N	\%	N	\%	
All Patients	968,296	100.0\%	832,215	85.9\%	136,081	14.1\%		271,032	100.0\%	135,516	50.0\%	135,516	50.0\%	
Age														
≤ 20	133,178	13.8\%	128,810	15.5\%	4,368	3.2\%	<0.001	8,728	3.2\%	4,365	3.2\%	4,363	3.2\%	1.00
21-40	192,959	19.9\%	170,076	20.4\%	22,883	16.8\%		45,666	16.8\%	22,832	16.8\%	22,834	16.8\%	
41-50	127,794	13.2\%	109,184	13.1\%	18,610	13.7\%		36,965	13.6\%	18,483	13.6\%	18,482	13.6\%	
51-60	172,444	17.8\%	142,702	17.1\%	29,742	21.9\%		58,966	21.8\%	29,481	21.8\%	29,485	21.8\%	
61-70	159,912	16.5\%	132,317	15.9\%	27,595	20.3\%		55,083	20.3\%	27,543	20.3\%	27,540	20.3\%	
71-80	120,117	12.4\%	99,040	11.9\%	21,077	15.5\%		42,076	15.5\%	21,038	15.5\%	21,038	15.5\%	
≥ 81	61,892	6.4\%	50,086	6.0\%	11,806	8.7\%		23,548	8.7\%	11,774	8.7\%	11,774	8.7\%	
Gender														
Female	573,610	59.2\%	476,684	57.3\%	96,926	71.2\%	<0.001	192,930	71.2\%	96,468	71.2\%	96,462	71.2\%	0.98
Male	394,686	40.8\%	355,531	42.7\%	39,155	28.8\%		78,102	28.8\%	39,048	28.8\%	39,054	28.8\%	
Insurance														
Commercial	500,918	51.7\%	449,071	54.0\%	51,847	38.1\%	<0.001	103,658	38.2\%	51,829	38.2\%	51,829	38.2\%	1.00
Dual	6,814	0.7\%	5,072	0.6\%	1,742	1.3\%		3,191	1.2\%	1,591	1.2\%	1,600	1.2\%	
Medicaid	252,366	26.1\%	213,705	25.7\%	38,661	28.4\%		77,136	28.5\%	38,569	28.5\%	38,567	28.5\%	
Medicare	208,198	21.5\%	164,367	19.8\%	43,831	32.2\%		87,047	32.1\%	43,527	32.1\%	43,520	32.1\%	
PCP Visit 2019														
No	521,282	53.8\%	467,739	56.2\%	53,543	39.3\%	<0.001	106,797	39.4\%	53,397	39.4\%	53,400	39.4\%	0.99
Yes	447,014	46.2\%	364,476	43.8\%	82,538	60.7\%		164,235	60.6\%	82,119	60.6\%	82,116	60.6\%	
Continuous Outcomes														
	mean	SD	mean	SD	mean	SD	p-value	mean	SD	mean	SD	mean	SD	p-value
CCl	0.65	1.39	0.59	1.32	0.98	1.71	<0.001	0.96	1.68	0.96	1.68	0.96	1.68	0.99

CCI: Charlson Comorbidity Index; DEPR: antidepressant; PCP: primary care physician; SD: standard deviation

Table S11c: Antidepressant User Cohort (All Regions) by BP Use, Patient Characteristics Pre/Post Match of BP Users/Non-users

	All Antidepressant Users by BP: Unmatched							All Antidepressant Users by BP: Matched						
	All		BP Non-user		BP User		p-value	All		BP Non-user		BP User		p-value
	N	\%	N	\%	N	\%		N	\%	N	\%	N	\%	
All Patients	1,536,048	100.0\%	1,390,939	90.6\%	145,109	9.4\%		288,564	100.0\%	144,282	50.0\%	144,282	50.0\%	
Age														
≤ 20	89,571	5.8\%	89,415	6.4\%	156	0.1\%	<0.001	313	0.1\%	157	0.1\%	156	0.1\%	1.00
21-40	315,593	20.5\%	314,429	22.6\%	1,164	0.8\%		2,326	0.8\%	1,162	0.8\%	1,164	0.8\%	
41-50	233,345	15.2\%	229,878	16.5\%	3,467	2.4\%		6,933	2.4\%	3,467	2.4\%	3,466	2.4\%	
51-60	333,655	21.7\%	310,316	22.3\%	23,339	16.1\%		46,674	16.2\%	23,339	16.2\%	23,335	16.2\%	
61-70	296,163	19.3\%	244,247	17.6\%	51,916	35.8\%		103,798	36.0\%	51,905	36.0\%	51,893	36.0\%	
71-80	169,299	11.0\%	126,089	9.1\%	43,210	29.8\%		85,292	29.6\%	42,643	29.6\%	42,649	29.6\%	
≥ 81	98,422	6.4\%	76,565	5.5\%	21,857	15.1\%		43,228	15.0\%	21,609	15.0\%	21,619	15.0\%	
Gender														
Female	1,109,599	72.2\%	976,214	70.2\%	133,385	91.9\%	<0.001	265,123	91.9\%	132,553	91.9\%	132,570	91.9\%	0.91
Male	426,449	27.8\%	414,725	29.8\%	11,724	8.1\%		23,441	8.1\%	11,729	8.1\%	11,712	8.1\%	
Region														
Midwest	335,508	21.8\%	309,597	22.3\%	25,911	17.9\%	<0.001	51,754	17.9\%	25,877	17.9\%	25,877	17.9\%	1.00
Northeast	383,023	24.9\%	347,944	25.0\%	35,079	24.2\%		70,010	24.3\%	35,005	24.3\%	35,005	24.3\%	
South	596,029	38.8\%	540,382	38.9\%	55,647	38.3\%		110,518	38.3\%	55,259	38.3\%	55,259	38.3\%	
West	221,488	14.4\%	193,016	13.9\%	28,472	19.6\%		56,282	19.5\%	28,141	19.5\%	28,141	19.5\%	
Insurance														
Commercial	707,676	46.1\%	664,625	47.8\%	43,051	29.7\%	<0.001	86,053	29.8\%	43,023	29.8\%	43,030	29.8\%	1.00
Dual	54,840	3.6\%	43,171	3.1\%	11,669	8.0\%		22,384	7.8\%	11,193	7.8\%	11,191	7.8\%	
Medicaid	486,451	31.7\%	457,656	32.9\%	28,795	19.8\%		56,959	19.7\%	28,479	19.7\%	28,480	19.7\%	
Medicare	287,081	18.7\%	225,487	16.2\%	61,594	42.4\%		123,168	42.7\%	61,587	42.7\%	61,581	42.7\%	
PCP Visit 2019														
No	605,264	39.4\%	553,886	39.8\%	51,378	35.4\%	<0.001	102,148	35.4\%	51,064	35.4\%	51,084	35.4\%	0.94
Yes	930,784	60.6\%	837,053	60.2\%	93,731	64.6\%		186,416	64.6\%	93,218	64.6\%	93,198	64.6\%	
Continuous Outcomes														
	mean	SD	mean	SD	mean	SD	p-value	mean	SD	mean	SD	mean	SD	p-value
CCl	0.87	1.60	0.84	1.58	1.09	1.81	<0.001	1.09	1.79	1.08	1.78	1.09	1.79	0.56

BP: bisphosphonate; CCI: Charlson Comorbidity Index; PCP: primary care physician; SD: standard deviation

Table S11d: Antidepressant User Cohort (Region=New York State) by BP Use, Patient Characteristics Pre/Post Match of BP Users/Non-users

	Region=NY Antidepressant Users by BP: Unmatched							Region=NY Antidepressant Users by BP: Matched						
	All		BP Non-user		BP User		p-value	All		BP Non-user		BP User		p-value
	N	\%	N	\%	N	\%		N	\%	N	\%	N	\%	
All Patients	135,516	100.0\%	122,566	90.4\%	12,950	9.6\%		25,718	100.0\%	12,859	50.0\%	12,859	50.0\%	
Age														
≤ 20	4,363	3.2\%	4,357	3.6\%	6	0.0\%	<0.001	12	0.0\%	6	0.0\%	6	0.0\%	1.00
21-40	22,834	16.8\%	22,770	18.6\%	64	0.5\%		126	0.5\%	62	0.5\%	64	0.5\%	
41-50	18,482	13.6\%	18,263	14.9\%	219	1.7\%		440	1.7\%	221	1.7\%	219	1.7\%	
51-60	29,485	21.8\%	27,702	22.6\%	1,783	13.8\%		3,570	13.9\%	1,788	13.9\%	1,782	13.9\%	
61-70	27,540	20.3\%	23,385	19.1\%	4,155	32.1\%		8,292	32.2\%	4,146	32.2\%	4,146	32.2\%	
71-80	21,038	15.5\%	16,548	13.5\%	4,490	34.7\%		8,863	34.5\%	4,430	34.5\%	4,433	34.5\%	
≥ 81	11,774	8.7\%	9,541	7.8\%	2,233	17.2\%		4,415	17.2\%	2,206	17.2\%	2,209	17.2\%	
Gender														
Female	96,462	71.2\%	84,469	68.9\%	11,993	92.6\%	<0.001	23,810	92.6\%	11,906	92.6\%	11,904	92.6\%	0.96
Male	39,054	28.8\%	38,097	31.1\%	957	7.4\%		1,908	7.4\%	953	7.4\%	955	7.4\%	
Insurance														
Commercial	51,829	38.2\%	49,332	40.2\%	2,497	19.3\%	<0.001	4,991	19.4\%	2,495	19.4\%	2,496	19.4\%	1.00
Dual	1,600	1.2\%	1,221	1.0\%	379	2.9\%		710	2.8\%	356	2.8\%	354	2.8\%	
Medicaid	38,567	28.5\%	36,366	29.7\%	2,201	17.0\%		4,269	16.6\%	2,131	16.6\%	2,138	16.6\%	
Medicare	43,520	32.1\%	35,647	29.1\%	7,873	60.8\%		15,748	61.2\%	7,877	61.3\%	7,871	61.2\%	
PCP Visit 2019														
No	53,400	39.4\%	48,911	39.9\%	4,489	34.7\%	<0.001	8,901	34.6\%	4,449	34.6\%	4,452	34.6\%	0.97
Yes	82,116	60.6\%	73,655	60.1\%	8,461	65.3\%		16,817	65.4\%	8,410	65.4\%	8,407	65.4\%	
Continuous Outcomes														
	mean	SD	mean	SD	mean	SD	p-value	mean	SD	mean	SD	mean	SD	p-value
CCl	0.96	1.68	0.95	1.66	1.13	1.78	<0.001	1.12	1.76	1.12	1.75	1.12	1.77	0.86

BP: bisphosphonate; CCI: Charlson Comorbidity Index; PCP: primary care physician; SD: standard deviation

Table S11e: Antidepressant Non-user Cohort (All Regions) by BP Use, Patient Characteristics Pre/Post Match of BP Users/Nonusers

	All Antidepressant Non-users by BP: Unmatched							All Antidepressant Non-users by BP: Matched						
	All		BP Non-user		BP User		p-value	All		BP Non-user		BP User		p-value
	N	\%	N	\%	N	\%		N	\%	N	\%	N	\%	
All Patients	1,536,048	100.0\%	1,422,938	92.6\%	113,110	7.4\%		224,804	100.0\%	112,402	50.0\%	112,402	50.0\%	
Age														
≤ 20	89,565	5.8\%	89,486	6.3\%	79	0.1\%	<0.001	155	0.1\%	76	0.1\%	79	0.1\%	1.00
21-40	315,593	20.5\%	314,815	22.1\%	778	0.7\%		1,562	0.7\%	784	0.7\%	778	0.7\%	
41-50	233,336	15.2\%	230,961	16.2\%	2,375	2.1\%		4,746	2.1\%	2,371	2.1\%	2,375	2.1\%	
51-60	333,650	21.7\%	314,109	22.1\%	19,541	17.3\%		39,072	17.4\%	19,536	17.4\%	19,536	17.4\%	
61-70	296,182	19.3\%	254,286	17.9\%	41,896	37.0\%		83,664	37.2\%	41,834	37.2\%	41,830	37.2\%	
71-80	169,295	11.0\%	136,746	9.6\%	32,549	28.8\%		64,163	28.5\%	32,073	28.5\%	32,090	28.5\%	
≥ 81	98,427	6.4\%	82,535	5.8\%	15,892	14.1\%		31,442	14.0\%	15,728	14.0\%	15,714	14.0\%	
Gender														
Female	1,109,580	72.2\%	1,004,112	70.6\%	105,468	93.2\%	<0.001	209,510	93.2\%	104,743	93.2\%	104,767	93.2\%	0.84
Male	426,468	27.8\%	418,826	29.4\%	7,642	6.8\%		15,294	6.8\%	7,659	6.8\%	7,635	6.8\%	
Region														
Midwest	335,508	21.8\%	315,179	22.1\%	20,329	18.0\%	<0.001	40,548	18.0\%	20,274	18.0\%	20,274	18.0\%	1.00
Northeast	383,023	24.9\%	356,184	25.0\%	26,839	23.7\%		53,590	23.8\%	26,795	23.8\%	26,795	23.8\%	
South	596,029	38.8\%	552,754	38.8\%	43,275	38.3\%		85,440	38.0\%	42,720	38.0\%	42,720	38.0\%	
West	221,488	14.4\%	198,821	14.0\%	22,667	20.0\%		45,226	20.1\%	22,613	20.1\%	22,613	20.1\%	
Insurance														
Commercial	707,675	46.1\%	672,990	47.3\%	34,685	30.7\%	<0.001	69,354	30.9\%	34,675	30.8\%	34,679	30.9\%	1.00
Dual	54,836	3.6\%	44,281	3.1\%	10,555	9.3\%		19,871	8.8\%	9,927	8.8\%	9,944	8.8\%	
Medicaid	486,446	31.7\%	463,857	32.6\%	22,589	20.0\%		45,057	20.0\%	22,537	20.1\%	22,520	20.0\%	
Medicare	287,091	18.7\%	241,810	17.0\%	45,281	40.0\%		90,522	40.3\%	45,263	40.3\%	45,259	40.3\%	
PCP Visit 2019														
No	605,256	39.4\%	572,701	40.2\%	32,555	28.8\%	<0.001	64,959	28.9\%	32,483	28.9\%	32,476	28.9\%	0.97
Yes	930,792	60.6\%	850,237	59.8\%	80,555	71.2\%		159,845	71.1\%	79,919	71.1\%	79,926	71.1\%	
Continuous Outcomes														
	mean	SD	mean	SD	mean	SD	p-value	mean	SD	mean	SD	mean	SD	p-value
CCl	0.87	1.60	0.85	1.58	1.06	1.84	<0.001	1.06	1.82	1.05	1.81	1.06	1.83	0.57

BP: bisphosphonate; CCI: Charlson Comorbidity Index; PCP: primary care physician; SD: standard deviation

Table S11f: Antidepressant Non-user Cohort (Region=New York State) by BP Use, Patient Characteristics Pre/Post Match of BP Users/Non-users

	Region=NY Antidepressant Non-users by BP: Unadjusted							Region=NY Antidepressant Non-users by BP: Matched						
	All		BP Non-user		BP User		p-value	All		BP Non-user		BP User		p-value
	N	\%	N	\%	N	\%		N	\%	N	\%	N	\%	
All Patients	135,516	100.0\%	125,342	92.5\%	10,174	7.5\%		20,182	100.0\%	10,091	50.0\%	10,091	50.0\%	
Age														
≤ 20	4,365	3.2\%	4,364	3.5\%	1	0.0\%	<0.001	2	0.0\%	1	0.0\%	1	0.0\%	1.00
21-40	22,832	16.8\%	22,799	18.2\%	33	0.3\%		66	0.3\%	33	0.3\%	33	0.3\%	
41-50	18,483	13.6\%	18,350	14.6\%	133	1.3\%		267	1.3\%	134	1.3\%	133	1.3\%	
51-60	29,481	21.8\%	28,038	22.4\%	1,443	14.2\%		2,879	14.3\%	1,440	14.3\%	1,439	14.3\%	
61-70	27,543	20.3\%	24,197	19.3\%	3,346	32.9\%		6,686	33.1\%	3,345	33.1\%	3,341	33.1\%	
71-80	21,038	15.5\%	17,695	14.1\%	3,343	32.9\%		6,589	32.6\%	3,294	32.6\%	3,295	32.7\%	
≥ 81	11,774	8.7\%	9,899	7.9\%	1,875	18.4\%		3,693	18.3\%	1,844	18.3\%	1,849	18.3\%	
Gender														
Female	96,468	71.2\%	86,945	69.4\%	9,523	93.6\%	<0.001	18,892	93.6\%	9,446	93.6\%	9,446	93.6\%	1.00
Male	39,048	28.8\%	38,397	30.6\%	651	6.4\%		1,290	6.4\%	645	6.4\%	645	6.4\%	
Insurance														
Commercial	51,829	38.2\%	50,405	40.2\%	1,424	14.0\%	<0.001	2,848	14.1\%	1,425	14.1\%	1,423	14.1\%	1.00
Dual	1,591	1.2\%	1,210	1.0\%	381	3.7\%		690	3.4\%	345	3.4\%	345	3.4\%	
Medicaid	38,569	28.5\%	36,303	29.0\%	2,266	22.3\%		4,449	22.0\%	2,226	22.1\%	2,223	22.0\%	
Medicare	43,527	32.1\%	37,424	29.9\%	6,103	60.0\%		12,195	60.4\%	6,095	60.4\%	6,100	60.4\%	
PCP Visit 2019														
No	53,397	39.4\%	50,515	40.3\%	2,882	28.3\%	<0.001	5,723	28.4\%	2,863	28.4\%	2,860	28.3\%	0.96
Yes	82,119	60.6\%	74,827	59.7\%	7,292	71.7\%		14,459	71.6\%	7,228	71.6\%	7,231	71.7\%	
Continuous Outcomes														
	mean	SD	mean	SD	mean	SD	p-value	mean	SD	mean	SD	mean	SD	p-value
CCI	0.96	1.68	0.95	1.66	1.13	1.81	<0.001	1.11	1.77	1.11	1.76	1.12	1.78	0.78

BP: bisphosphonate; CCI: Charlson Comorbidity Index; PCP: primary care physician; SD: standard deviation

Table S12a: Patient Count Distribution Inclusive of Deceased Enrollees

	All Observations		All Bone Health Rx Users ("Bone-Rx")	
	BP Users	BP Non-users	BP Users	BP Non-users
Total (N)	672,913	$10,978,373$	645,118	75,195
Deceased (N) [any reason]	7,364	101,282	6,922	2,450
COVID-19 Dx (N)	7,927	519,387	7,527	3,201
COVID-19 Dx (\%)	1.2%	4.7%	1.2%	4.3%
COVID-19 Dx \& Deceased (N)	431	15,470	410	215
COVID-19 Dx \& Deceased (\%)	5.4%	3.0%	5.4%	6.7%

Dx: diagnosis
Table S12b: Unadjusted Chi-Square Comparison Inclusive of Deceased Patients

	All Observations (with deceased)		"Bone-Rx" Observations (with deceased)	
	COVID-19 Dx	No COVID-19 Dx	COVID-19 Dx	No COVID-19 Dx
BP users	7,927	664,986	7,527	637,591
BP Non-users	519,387	$10,458,986$	2,450	71,994
	Odds Ratio	0.24	Odds Ratio	0.35
	95% Cl:	0.2347 to 0.2455	95% Cl:	0.3312 to 0.3633
	p-value	$\mathrm{P}<0.0001$	p-value	$\mathrm{P}<0.0001$

BP: bisphosphonate; CI: confidence interval; Dx: diagnosis
Table S12c: Unadjusted Chi-Square Comparison with Deceased Patients Removed

	All Observations (without deceased)		"Bone-Rx" Observations (without deceased)	
	COVID-19 Dx	No COVID-19 Dx	COVID-19 Dx	No COVID-19 Dx
BP users	7,496	657,622	7,117	630,669
BP Non-users	503,917	$10,357,704$	2,986	69,544
	Odds Ratio	0.23	Odds Ratio	0.26
	95% CI:	0.2290 to 0.2397	95% CI:	0.2516 to 0.2745
	p-value	P <0.0001	p-value	P <0.0001

Table S12d: Unadjusted Chi-Square Comparison Assuming all Deceased Patients had COVID19

	All Observations (assume deceased = COVID-19)		"Bone-Rx" Observations (assume deceased = COVID-19)	
	COVID-19 Dx	No COVID-19 Dx	COVID-19 Dx	No COVID-19 Dx
BP users	14,860	658,053	14,039	631,079
BP Non-users	605,199	$10,373,174$	5,436	69,759
	Odds Ratio	0.39	Odds Ratio	0.29
	95% CI:	0.3807 to 0.3935	95% CI:	0.2764 to 0.2948
	p-value	P <0.0001	p-value	P 0.0001

BP: bisphosphonate; CI: confidence interval; Dx: diagnosis
Table S12e: Unadjusted Chi-Square Comparison to Yield Odds Ratio = 1.00 (no difference)

	All Observations (assume deceased = COVID-19)		"Bone-Rx" Observations (assume deceased = COVID-19)	
	COVID-19 Dx	No COVID-19 Dx	COVID-19 Dx	No COVID-19 Dx
BP users	37,095	635,818	46,637	598,481
BP Non-users	605,199	10,373,174	5,436	69,759
	Odds Ratio	1.00	Odds Ratio	1.00
	95 \% CI:	0.9893 to 1.0108	95 \% CI:	0.9713 to 1.0296
	p -value	$\mathrm{P}=0.9987$	p -value	$\mathrm{P}=0.9999$

