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Abstract35

Purpose:36

Comparison of performance and explainability of a multi-task convolutional deep neuronal network to37

single-task networks for activity detection in neovascular age-dependent macular degeneration.38

Methods:39

From n = 70 patients (46 female, 24 male) who attended the University Eye Hospital Tübingen 3762 optical40

coherence tomography B-scans (right eye: 2011, left eye: 1751) were acquired with Heidelberg Spectralis,41

Heidelberg, Germany. B-scans were graded by a retina specialist and an ophthalmology resident, and42

then used to develop a multi-task deep learning model to predict disease activity in neovascular age-43

related macular degeneration along with the presence of sub- and intraretinal fluid. We used performance44

metrics for comparison to single-task networks and visualized the DNN-based decision with t-distributed45

stochastic neighbor embedding and clinically validated saliency mapping techniques.46

Results:47

The multi-task model surpassed single-task networks in accuracy for activity detection (94.2). Further-48

more, compared to single-task networks, visualizations via t-distributed stochastic neighbor embedding49

and saliency maps highlighted that multi-task networks’ decisions for activity detection in neovascular50

age-related macular degeneration were highly consistent with the presence of both sub- and intraretinal51

fluid.52

Conclusions:53

Multi-task learning increases the performance of neuronal networks for predicting disease activity, while54

providing clinicians with an easily accessible decision control, which resembles human reasoning.55

Translational Relevance:56

By improving nAMD activity detection performance and transparency of automated decisions, multi-task57

DNNs can support the translation of machine learning research into clinical decision support systems for58

nAMD activity detection.59
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1 Introduction60

Neovascular age-related macular degeneration (nAMD) is a sight-threatening disease and a common cause61

of vision loss worldwide.1–3 Among the basic features of nAMD are subretinal fluid (SRF) and intraretinal62

fluid (IRF), which serve as surrogate markers of nAMD activity and can be monitored using optical coher-63

ence tomography (OCT)4, 5 (Fig. 1).64

In nAMD, increased levels of vascular endothelial growth factor (VEGF) lead to formation of new ves-65

sels from the choroidal and/or retinal vasculature. If leakage from these vessels exceeds local clearance66

rates, fluid builds up, leading to IRF and SRF.4 IRF is assumed to originate from vascular leakage from in-67

traretinal neovasculaturisation and/or retinal vasculature or from diffusion through the outer retina due to68

changes within the external limiting membrane.4 In contrast, SRF formation likely results from malfunction69

of the retinal pigment epithelium with reduced removal rates.4 Due to the partially different pathophysi-70

ology, IRF and SRF can occur both simultaneously and independently from each other.4, 6 In addition, the71

characterisation of the lesion based on IRF and SRF could help to determine visual outcome.772

Treatment with intravitreal anti-VEGF agents efficiently restores the balance between fluid formation73

and retinal removal and is standard of care, when IRF or SRF in nAMD is detected via OCT.5 Prompt treat-74

ment initiation is necessary to prevent vision loss.8–10 Additionally, this chronic disease demands high-75

frequent therapy monitoring, which has put considerable burden on patients, their families and ophthal-76

mological care since its initial approval in 2006.11–14 Since the number of patients suffering from AMD is77

thought to rise from 196 million in 2020 to 288 million in 2040, the care needed will also rise.2 Hence,78

automated solutions making the diagnostic processes more efficient have considerable appeal. For exam-79

ple, deep neural networks (DNNs) have been used for automatic referral decisions15 and predicting disease80

conversion to nAMD.16 Automated algorithms could detect both SRF and IRF more reliably than retinal81

specialists especially in less conspicuous cases.17 Ideally, such automated tools serve to support retinal82

specialists in their decision making. In collaboration, a retina specialist assisted by an artificial intelligence83

(AI) tool can outperform the model alone, e.g., for the task of diabetic retinopathy grading.18 To this end,84

computational tools need to explain their decisions and communicate their uncertainty to the treating oph-85

thalmologist.19, 20
86

Here, we develop a convolutional deep learning model based on the concept of multi-task learning.21, 22
87

Multi-task learning is a generalization of the widely used single-task learning, where models are trained88

for multiple input-output mappings simultaneously (Fig. 2). For instance, multi-task models can be used89

to capture different characteristics of dry AMD, such as drusen area, geographic atrophy, increased pig-90
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a b c d

Figure 1: Exemplary retinal images (B-scans) with neovascular age-related macular degeneration (nAMD).
Solid and dotted arrows indicate subretinal and intraretinal fluid, respectively. (a): no nAMD activity. (b):
nAMD activity due to subretinal fluid (SRF). (c): nAMD activity due to intraretinal fluid (IRF). (d): nAMD
activity due to both SRF and IRF.

ment, and depigmentation, to combine these outputs into final AMD diagnosis w.r.t. a 9-step severity91

scale.23 Multi-task learning has also shown prognostic value when applied to survival analysis via two si-92

multaneous prediction tasks: drusen and pigmentation grading.24 In a similar vein, our multi-task model93

detects SRF, IRF and nAMD activity in parallel. However, it generates distinct outputs for each of these94

tasks and offers well-calibrated uncertainty estimates for each of them, which is unique to our study. As95

the fluid compartment plays a decisive role in the treatment outcome25–27 with the simultaneous pres-96

ence of IRF and SRF being associated with the worst prognosis,9 we visualize the representation driving97

the DNN-based decisions using t-distributed stochastic neighbor embedding (t-SNE)28, 29 and investigate98

the model’s decisions using clinically validated saliency mapping techniques.30 Thus, together with well-99

calibrated uncertainty reports, our work provides an interpretable tool for the ophthalmologist to rapidly100

access the neural network’s decision process on both population-based and individual-patient levels as a101

prerequisite for clinical application.102

2 Methods103

2.1 Data Collection104

This study included 70 patients (46 females, 24 males) with nAMD at least in one eye, seen by an ophthal-105

mologist resident (AG) in the Macula clinic at the University Eye Hospital Tübingen. Exclusion criteria were106

any other cause of neovascularisation, any coexisting retinal pathology (e.g. epiretinal membrane, macular107

hole, diabetic retinopathy), glaucoma and media opacity preventing sufficient image quality.108

3762 B-scans (2011 right eye, 1751 left eye) of 440 x 512 pixels with Heidelberg Spectralis OCT (Heidelberg109

Engineering, Heidelberg, Germany) were included in the study. A retina specialist of the same hospital (IW)110

assessed disease activitiy and presence of IRF and SRF on each individual B-Scan. (Fig. 1). Disease activity111
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Table 1: OCT Data distribution of subretinal fluid (SRF), intraretinal fluid (IRF) and active nAMD in B-Scans
in training, validation and test sets, respectively. Absolute and relative numbers are shown.

Training Validation Test

Subretinal
fluid

Intraretinal
fluid

Active
nAMD

Subretinal
fluid

Intraretinal
fluid

Active
nAMD

Subretinal
fluid

Intraretinal
fluid

Active
nAMD

Ye
s 639 286 848 69 58 101 161 153 269

(0.232) (0.104) (0.308) (0.170) (0.143) (0.248) (0.267) (0.253) (0.445)

N
o 2112 2465 1903 338 349 306 443 451 335

(0.768) (0.896) (0.692) (0.830) (0.857) (0.752) (0.733) (0.747) (0.555)

Table 2: Agreement of task-specific labels across training, validation and test sets, measured via Cohen’s
kappa statistic, which is essentially a number between -1 and 1. While 1 indicates a full agreement, lower
scores mean less agreement. Negative scores indicate disagreement.

Training Validation Test

Subretinal
fluid

Intraretinal
fluid

Active
nAMD

Subretinal
fluid

Intraretinal
fluid

Active
nAMD

Subretinal
fluid

Intraretinal
fluid

Active
nAMD

Subretinal
fluid

– -0.02 0.79 – 0.26 0.75 – -0.02 0.59

Intraretinal
fluid

-0.02 – 0.37 0.26 – 0.65 -0.02 – 0.57

was also graded by a resident (AG). B-scans were assigned to a training, validation or test set (Table 1). All112

images of one patient were assigned to one set to avoid information leakage. The study was conducted113

in accordance with the tenets of the Declaration of Helsinki and approved by the local institutional ethics114

committee of the University of Tübingen, which waived the requirement for patient consent due to the115

study’s retrospective character.116

2.2 Diagnostic Tasks, Network Architecture and Model Development117

We developed a multi-task DNN to detect the presence of SRF and IRF as well as the nAMD activity from118

OCT B-scans (Fig. 2). As backbone, we used the InceptionV3 architecture31 via Keras,32 which was pre-119

trained on ImageNet33 for 1000-way classification via a softmax function. We used the InceptionV3 DNN’s120

convolutional stack as is but linked max pooling and average pooling layers to the end of convolutional121

stack and concatenated their outputs to obtain 4096-dimensional feature vectors. These were followed122

by a dense layer, which yielded a shared representation with 1024 features. To this, we added task-specific123

heads with 256 units, which specialized into their respective tasks. Then, task-specific binary decisions124

were achieved by single units equipped with sigmoid functions. For training our DNNs in both single and125

multi-task scenarios, we resorted to the retina specialist’s set of labels.126
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Figure 2: A deep neural network for simultaneous detection of subretinal and intraretinal fluid as well as
the nAMD activity from OCT B-scans. Given a B-scan, convolutional stack of the InceptionV3 architecture
extracts 2048 feature maps. These are average and max pooled, and fed into a fully connected (dense)
layer with 1024 units for shared representation. Then, task-specific heads specialize into individual tasks
and single units with sigmoid function achieve binary classification based on 256 task-specific features.

We trained our networks with equally weighted cross-entropy losses for all tasks on the training images:127

D = {xn,yn}Nn=1, where yn was a vector of binary labels indicating nAMD activity and the presence of IRF128

or SRF in an image xn. Parameterized by θ, a DNN fθ(·) was optimized with respect to the total cross-129

entropy on the training data:130

L(D, fθ(·)) =
1

N

N∑
n=1

l(yn, fθ(xn)), where (1)

l(yn, fθ(xn)) = −
T∑

t=1

yn,tlog pn,t + (1− yn,t)log (1− pn,t), (2)

pn,t was a probability estimated via the sigmoid function for a task indicated by t, and T was the total131

number of tasks. For T = 1, multi-task learning was reduced to single-task learning based on the same132

architecture but with only one task head. We also developed a 2-task model to perform the SRF and IRF133

detection tasks (T = 2), while eliminating the redundancy of the nAMD activity detection task, which is, in134

principle, a function of the former two.135

To address the class imbalance (Table 1), we used random oversampling (see Section 2.2.2 for de-136

tails). We trained the DNN using Stochastic Gradient Descent (SGD) with Nesterov’s Accelerated Gradients137

(NAG),34, 35 minibatch size of eight, a momentum coefficient of 0.9, an initial learning rate of 5 ·10−4, a decay138

rate of 10−6 and a regularization constant of 10−5 for 120 or 150 epochs (see Section 2.2.1 for longer training).139

During the first five epochs, the convolutional stack was frozen and only dense layers were trained. Then,140
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all layers were fine-tuned to all tasks. The best models were selected based on total validation loss after141

each epoch and used for inference on the test set.142

2.2.1 Data augmentation and preprocessing143

We used mixup36 for data augmentation during training. Mixup generates artificial examples through the144

convex combinations of randomly sampled data points. We adapted mixup to our multi-task learning145

scenario as follows:146

x̂ = λxi + (1− λ)xj , ŷ = λyi + (1− λ)yj , λ ∈ [0, 1]. (3)

Mixing was controlled by λ ∼ Beta(α, α), where α ∈ (0,∞). For α = 0, λ is either 0 or 1, and there is147

no mixing. We used 0, 0.05 0.1, and 0.2 for α and trained networks for 120 epochs when not mixing and148

150 epochs when mixing. Also, to allow for a warm-up period when mixing,36 we set α = 0 for the first149

five epochs.150

In addition, we applied common data augmentation operations such as adjustment of brightness within151

±10%, horizontal and vertical flipping, up and down scaling within ±10%, translation of pixels horizontally152

and vertically within ±30 positions and random rotation within ±45 degrees. After all data augmentation153

operations, we used an appropriate preprocessing function1 from the Keras API.32
154

2.2.2 Quantification of uncertainty via mixup and Deep Ensembles155

DNNs often do not generate well-calibrated and reliable uncertainty estimates for their decision.37–41 How-156

ever, quantification of diagnostic uncertainty is crucial for treatment decisions since proper management157

can minimize diagnostic errors, delays or excess healthcare utilization.42 mixup36 improves the calibration158

of DNN outputs by smoothing labels through their convex combinations (Eq. 3).43 In addition, we used Deep159

Ensembles39 consisting of multiple DNNs with different random initializations.39, 44 This can improve upon160

the single network performance both in accuracy and calibration, even with small numbers of DNNs.39, 44–46
161

We used ensembles with three DNNs, for which we enforced diversity by a specialized oversampling strat-162

egy: for each DNN, we oversampled training images with respect to one of the task’s labels. This enabled163

DNNs to train on a balanced dataset while also learning about other tasks, even though the data were not164

balanced for these. We then used the ensemble’s mean output for predictions and quantified uncertainty165

1keras.applications.inception_v3.preprocess_input
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Table 3: Accuracy of ensembles for various degrees of mixing (indicated by α). Gray row indicates the
ensemble of choice for further analysis based on the validation performance for the activity detection task.
In the 2-task scenario, the average validation accuracy of SRF and IRF detection tasks was used for model
selection.

Single task

Training Validation Test

Subretinal
fluid

Intraretinal
fluid

Active
nAMD

Subretinal
fluid

Intraretinal
fluid

Active
nAMD

Subretinal
fluid

Intraretinal
fluid

Active
nAMD

α = 0 1.000 1.000 1.000 0.988 0.971 0.958 0.924 0.950 0.914
α = 0.05 0.983 0.994 0.975 0.971 0.963 0.951 0.906 0.919 0.909
α = 0.1 0.978 0.994 0.948 0.948 0.919 0.929 0.868 0.891 0.856
α = 0.2 0.983 0.991 0.851 0.975 0.946 0.853 0.881 0.909 0.702

Multiple tasks

SRF and IRF

α = 0 0.999 1.000 - 0.968 0.961 - 0.902 0.937 -
α = 0.05 1.000 0.999 - 0.983 0.966 - 0.927 0.919 -
α = 0.1 0.999 0.999 - 0.983 0.973 - 0.911 0.924 -
α = 0.2 0.999 1.000 - 0.983 0.963 - 0.917 0.932 -

SRF, IRF and nAMD activity

α = 0 1.000 0.995 0.998 0.973 0.973 0.961 0.914 0.935 0.940
α = 0.05 0.999 0.998 1.000 0.971 0.971 0.966 0.917 0.937 0.942
α = 0.1 1.000 0.997 0.998 0.983 0.968 0.966 0.916 0.957 0.939
α = 0.2 1.000 0.998 1.000 0.971 0.966 0.966 0.894 0.937 0.906

in terms of entropy, given the average predictive probabilities.166

2.3 Low-dimensional embedding of images167

We used t-SNE28 to obtain further insights into the decision-making process of our ensemble model. t-168

SNE is a non-linear dimensionality reduction method, that embeds high-dimensional data points into a169

low-dimensional space. We concatenated features from ensemble members’ predetermined read-out170

layers and performed t-SNE based on them, embedding each B-scan into the two-dimensional plane. We171

used openTSNE47 with PCA initialization to better preserve the global structure of the data and improve the172

reproducibility.29 A perplexity of 200 for 1500 iterations with an early exaggeration coefficient of 12 for the173

first 500 iterations was used according to best-practice strategies.29 Similarities between data points were174

measured by Euclidean distance in the feature space.175

9
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Figure 3: Performance curves of the selected models on the test images. Area under the curve (AUC) values
given for models also summarize the overall performance into one number (higher is better). (a) Receiver
Operating Characteristics (ROC) curves. (b) Precision-recall curves.

10

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 23, 2022. ; https://doi.org/10.1101/2022.06.13.22276315doi: medRxiv preprint 

https://doi.org/10.1101/2022.06.13.22276315
http://creativecommons.org/licenses/by-nc-nd/4.0/


2.4 Saliency Maps176

We used Layer-wise Relevance Propagation (LRP)48 to compute saliency maps highlighting the regions in177

the OCT images which contributed to the DNN decisions, as it provides most clinically relevant tasks.30
178

We created three saliency maps for each OCT slice: subretinal (cyan), intraretinal (magenta) and diesease179

activity in nAMD (yellow) (Fig. 5). To improve the visualization of the salient regions, saliency maps were180

postprocessed.30 Saliency maps were only shown for predictions with an estimated probability greater181

than 0.5 since previous work has shown, that especially in absence of disease, saliency maps can lead182

physicans to overdiagnosis.18183

3 Results184

We developed an ensemble of three multi-task DNNs to simultaneously detect SRF, IRF and activity of185

nAMD on OCT B-scans (Fig. 1). Each DNN consisted of a shared convolutional core combined with pool-186

ing operations and a fully connected (dense) layer (Fig. 2). The resulting shared representation served as187

the basis for the decisions of the three task-specific heads. The idea behind this approach is that the DNN188

can benefit from the shared representation induced by combining information from different tasks. We189

compared the performance of the multi-task model with more specialized single-task models, where we190

constructed three DNNs for each task, which did not share any representation but were trained indepen-191

dently. In addition, we also used a 2-task model that simultaneously detected only SRF and IRF, without192

the nAMD activity detection head.193

All DNNs were trained on the same dataset (see Table 1 and Methods), which was graded according194

to the nAMD activity by a retina specialist (IW) and and an ophthalmologist resident (AG) with high inter-195

grader agreement on disease activity (Cohen’s kappa = 0.86). In a second step, the retina specialist further196

examined the data for the presence of IRF and SRF. The two retinal fluid types occurred largely indepen-197

dently, while there was natural overlap of both with the active AMD label (Table 2).198

We selected the 3-task model with the best accuracy for the activity detection task on the validation199

set and report accuracy values computed on an independent test set (Table 3). The 3-task model was well200

calibrated on the test set (Adaptive expected calibration error41 of 0.0147 for SRF, 0.0104 for IRF and 0.0263201

for active nAMD).202

We found that the performance of the 3-task model surpassed the single-task model performance203

11
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Figure 4: Visualization of data via t-SNE of ensemble-based representations. Only the test data are
shown. (a) Low dimensional embedding of images based on the 1024-dimensional features from the pre-
penultimate layers of single-task networks. Colored with respect to the task-specific labels. (b) Same as in
(a) but w.r.t. 1024 features from the shared representation layer of multi-task networks. (c) Same map as in
(b) but colored w.r.t. correct and wrong predictions. (d) Same map as in (b) but colored w.r.t. uncertainty
min-max normalized to [0, 1].
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in disease activity detection, reaching an accuracy of 94.2 % for the multi-task model vs. 91.4% for the204

single task model (Table 3, Fig. 3). This 3-task model optimized for AMD activity detection performed205

slightly worse than the single-task models for SRF and IRF detection (SRF: accuracy of 0.917 vs. 0.924 for206

multi-task vs. single-task; IRF: 0.937 vs. 0.950). For the 2-task scenario, we selected the model with the207

highest average validation accuracy across the SRF and IRF detection tasks. Interestingly, the 2-task model208

performed worse than the single-task and 3-task models. This highlights the importance of the explicit209

nAMD activity detection head in the 3-task model.210

We then further studied the representations learned by the models to gain insight into their decision211

making-process. To this end, we extracted the representations of individual OCT scans from both single-212

task and multi-task models and created two-dimensional embeddings of these via t-SNE (Fig. 4. In these213

visualizations, each point represents an individual OCT scan. Scans which are similar to each other accord-214

ing to the learned representation are mapped to nearby points. Of note, distances and in particular the size215

of white space between clusters in t-SNE plots should be carefully interpreted.29, 49
216

We labeled individual points according the evidence for SRF or IRF and overall AMD activity. In the217

single-taks DNNs, well-separated clusters were found, indicating only the learned task-label (Fig. 4a). For218

example, OCT scans with SRF present formed a single cluster, clearly distinct from the OCT scans without219

this label. In contrast, in the multi-task network subclusters within the active nAMD data points were220

observed (Fig. 4a, b): OCT scans labeled with SRF formed a well-separated cluster at the bottom right, as221

did scans with IRF labels at the top right (Fig. 4b). Interestingly, there was a small cluster in between these222

two which contained scans labeled with both. This suggests that multi-task DNNs learned a representation223

which could differentiate between the two fluid types. The few incorrectly classified OCT scans could be224

found within their clusters to be placed close towards other clusters (Fig. 4c) in areas where we also found225

examples with high classifier uncertainty (Fig. 4d).226

We next studied how the multi-task representations emerged through processing in the network (Ap-227

pendix, Fig. 7). While in the initial layers data points representing active nAMD were still uniformly dis-228

tributed (Fig. 7, a-c), a clear separation of active nAMD cases developed gradually in later layers of the229

DNN (Fig. 7, d-g), leading to best separation in the shared representation (Fig. 7, h). The decision head for230

active AMD refined this representation only very little (Fig. 7, i).231

We finally analyzed the saliency maps of the multi-task DNNs and asked whether the saliency maps for232

the subtasks of SRF and IRF detection obtained from the multi-task model allowed reasoning about evi-233

dence specific to these tasks. We generated saliency maps on four exemplary OCT scans using LRP48 (Fig-234

ure 5). For an OCT scan with clearly active AMD and both SRF and IRF present (Figure 5a), we found that the235
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active AMD saliency map focused on intraretinal fluids, which were also clearly visible in the task-specific236

saliency map, and faintly highlighted regions with SRF. The SRF saliency map, however, clearly highlighted237

SRF. In two further example scans with either IRF or SRF, respectively, active AMD saliency maps clearly238

corresponded to the individual task maps (Figure 5b,c). We also identified a rare failure case of the ob-239

tained saliency maps (Fig. 5d), where an OCT scan was falsely classified positive for SRF with a confidence240

of 0.614 due to the misclassification of IRF to SRF. We hypothesize that the DNN misclassified the superior241

border of the IRF as photoreceptor layer detached from the retinal pigment epithelium. The assumption242

that the DNN primarily recognizes contrast-rich interfaces such as SRF and IRF is further supported by the243

false labeling of cystoid spaces within choroid in Fig. 5b and d, while in a smoother, lower-contrast choroid244

saliency maps do not highlight any structures (Fig. 5. Comparision with salinecy maps from the single-task245

DNNs (Fig.6) to those generated from the multi-task models shows that those single-task saliency maps246

appear slightly more defined, but generally highlight similar areas.247

4 Discussion248

In this study, we developed a multi-task learning model to simultaneously detect SRF, IRF as well as disease249

activity in OCT B-scans of nAMD patients. We showed that a 3-task model, which takes the presence of IRF250

and SRF into account to detect disease activity in nAMD, surpassed a single task model regarding accuracy251

in the activity detection task. Furthermore, our visualization of the multi-task model’s decision-making252

process via t-SNE showed that inactive and active nAMD B-scans formed different clusters. Among active253

AMD B-scans, three distinct clusters were observed, which contained OCT B-scans with either SRF, IRF or254

both fluid types. This separation could not be seen in the single-task models. Saliency maps of exemplary255

B-scans further corroborate that task-relevant information can be extracted from the multi-task networks.256

Thus, multi-task DNN could serve as a basis for an explainable clinical decision support system for257

nAMD activity, providing support for clinicians in detecting active AMD, but would also allow clinicians to258

identify evidence in the relevant sub-tasks of finding SRF and IRF. A recent meta-analysis has provided evi-259

dence of varying influences of SRF and IRF on the visual outcome in nAMD patients.50 Stable SRF might not260

affect visual outcome, while fluctuations in IRF during treatment seem to negatively influence visual acu-261

ity.50 For this reason, treatment decisions in nAMD solely on a yes/no basis may not meet future treatment262

guidelines, which might rather require a sophisticated decision depending on the present fluid type and its263

variation in volume for or against an anti-VEGF injection.264

Ophthalmology has recently seen a development of various artificial intelligence systems, yet their use in265
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Active AMD due to 
subretinal and intraretinal fluid Subretinal fluid: 0.953 Intraretinal fluid: 0.998Active AMD: 1.000

Active AMD due to 
intraretinal fluid Subretinal fluid: 0.373 Intraretinal fluid: 0.976Active AMD: 0.950

Active AMD due to 
subretinal fluid Subretinal fluid: 0.987 Intraretinal fluid: 0.005Active AMD: 0.992

Active AMD due to 
intraretinal fluid Subretinal fluid: 0.614 Intraretinal fluid: 0.890Active AMD: 0.721

a

b

c

d

Figure 5: Exemplary saliency maps for four optical coherence tomography (OCT) images. The first column
displays the OCT B-scan with the corresponding labeling of a retinal specialist. Second to fourth column
show saliency maps and the network’s confidence for active nAMD (yellow), subretinal fluid (SRF) (cyan)
and intraretinal fluid (IRF) (magenta). Note, that saliency maps are only shown in case of confidence > 0.5.
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Active AMD due to 
subretinal and intraretinal fluid Subretinal fluid: 0.998 Intraretinal fluid: 1.000Active AMD: 0.995

Active AMD due to 
intraretinal fluid Subretinal fluid: 0.205 Intraretinal fluid: 1.000Active AMD: 0.951

Active AMD due to 
subretinal fluid Subretinal fluid: 1.000 Intraretinal fluid: 0.000Active AMD: 1.000

Active AMD due to 
intraretinal fluid Subretinal fluid: 0.161 Intraretinal fluid: 0.993Active AMD: 0.361

a

b

c

d

Figure 6: Exemplary saliency maps as in Fig. 5 but results were obtained from single-task models.
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clinical routine remains rare with only few systems available on the market.51, 52 One big barrier is potential266

harm of the patient-physician relationship going hand in hand with the lack of trust in those systems.53
267

Here, we combined multi-task DNNs with different visualization methods to give an insight into the DNNs’268

reasoning and increase transparency. First, we used t-SNE as visualization method for high-dimensional269

data28, 29 (Fig. 4) to present the decision-making process of the model. This form of visualization provides270

an intuitively interpretable rationale for how OCT B-scans were graded by visualizing which other B-scans271

are similar. The results visualization may also increase an ophthalmologist’s confidence in the model since272

it illustrates shows that model’s decision making reasoning resembles their own (Fig. 7). In the future, the273

multi-task system could be extended for other signs of active nAMD such as hard exsudates, pigment274

epithelial detachment, subretinal hyperreflective materia or hyperreflective foci.4275

We further analyzed the multi-task model’s decision on saliency maps of individual OCT-scans. Saliency276

maps highlight critical regions for the model’s decision and thus allow a quick visual control of its reasoning.277

This may be important in cases of advanced AMD, where fluid is due to degeneration rather than exudation278

to avoid overtreatment. However, different methods of saliency map agree to differing degrees with clinical279

annotations30, 54, 55 and saliency maps can lead to overdiagnosis.18 Therefore we used the saliency map280

technique with the best clinical relevance for AMD activity30 and displayed saliency maps in case of a281

confidence of the algorithm > 0.5. Compared to saliency maps of single task DNNs, multi-task saliency282

maps seem to draw slightly less sharp contours, however, we found good overlap between regions used283

for active AMD detection and those for SRF and IRF.284

Future studies will need to assess how well these multi-task learning results transfer from this data285

sample acquired at a tertiary center in Germany. It would be desirable to perform similar analysis with286

larger and more diverse data sets, to thest also the generalization to other populations, different recording287

qualities as well as OCT devices (including mobile devices). Further, performance could be potentially288

increased by combining the multi-task network with a a segmentation layer,15 which could reduce false289

positive cases. Additionally, in clinical routine, activity decision is made on a whole volume not a single290

B-scan, which could technically be implemented by combining the results from individual B-scans, e.g. by291

majority voting or uncertainty propagation.292

While the approval of anti-VEGF has decreased economic and overall treatment burden of nAMD mea-293

sured in disability-adjusted life,56, 57 a large number of patients still discontinues treatment.58 Patients294

named the need for assistance, either in the form of a travel companion or a family member, as the main295

reason for discontinuation.14 Additionally, recurrence of quiescent disease requiring prompt treatment is296

common, making life-long monitoring necessary.59 For these reasons, automated solutions allowing moni-297
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toring close home or even at home are promising technologies:60, 61 They provide easier access and reduce298

the disease burden on the individual.62 Automated solutions for fluid detection have further gained popu-299

larity during the Covid-19 pandemic, which showed the devastating effects of delay or interruption of nAMD300

treatment on visual function.9, 59 Despite promising results in laboratory settings, real-world data revealed301

significantly lower performance rates of home-based OCT with in particular SRF being overlooked by the302

system.63 This shows the necessity of further developments on the machine learning side to guarantee303

reliable use, with multi-task learning as suggested in this study being a viable option.304
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Appendix393

Figure 7: Layer-wise visualization of test data via t-SNE. Starting just before the first Inception module (a)
and reading out feature representations yielded by every other module (b-f) along with the last Inception
module (g), the shared representation layer (h) and the nAMD activity detection head’s penultimate layer
(i), we performed t-SNE with the aforementioned settings. Useful representations emerged towards the
end of convolutional stack and the task-specific representation allowed the best separation of nAMD active
cases from those inactive. Exact read-out locations can be found in Fig. 8.
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Figure 8: Read-out locations within the convolutional stack of the InceptionV3 architecture (indicated by
big black arrows). In addition to these, we used the shared representation layer and task-specific layers
of our multi-task networks (see Fig. 2). Base figure was obtained from https://cloud.google.com/tpu/
docs/inception-v3-advanced .
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