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Abstract 

Dysregulated blood lipid levels sit at the nexus of cardiometabolic disorders and are major 

predictors of human cardiovascular health. Using five major lipid traits (HDL-C, LDL-C, non-

HDL-C, TC, and TG), a recent genome-wide association study (GWAS) in 1.65 million 

individuals identified and fine-mapped over 1,000 genetic loci that may be implicated in the 

etiology of dyslipidemia and related cardiovascular disease. However, a deeper functional 

understanding of these associations is needed to assess their therapeutic potential as druggable 

targets. Here we leveraged data from over 98,000 participants of UK Biobank for deep molecular 

phenotypic refinement and identified 225 lipid risk variants that associated with 168 distinct 

NMR-derived lipoprotein and metabolic traits, doubling the number of loci that are discoverable 

when using the five “classical” lipid traits alone. Hypothesis-free testing of >14,000 ratios 

between metabolite pairs significantly increased statistical power (p-gain) at 72% of the loci, 

revealing distinct groups of variants with functionally matching NMR-ratios that affect 

lipoprotein metabolism, transport, and remodeling (LPmtr). We demonstrate how these NMR-

trait and -ratio associations can be used in the functional interpretation of the respective lipid risk 

loci and their evaluation as potential drug targets. Our study reveals a comprehensive picture of 

the biological roles that the different genetic variants play in LPmtr and supports the emerging 

view that lipoprotein size and core composition are essential for the understanding, prevention 

and treatment of lipid-related disorders, beyond the “classical” five major lipid traits currently 

used in clinical practice. 

Keywords: Lipid and cholesterol metabolism; Lipoprotein particle composition and remodeling; 

Cardiovascular disease; Genetic association; Drug target evaluation 
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INTRODUCTION 

Improper trafficking of plasma cholesterol and other lipids in lipoprotein particles lies at the 

heart of metabolic dysregulation and is associated with atherosclerotic cardiovascular diseases 

(ASCVD) 1. Patients suffering from ASCVD often present with elevated LDL-cholesterol (LDL-

C) and triglyceride-rich lipoproteins (TRLs) levels accompanied by reduced concentrations of 

HDL-Cholesterol (HDL-C) 2-5. While LDL-C levels are efficiently controlled by statins and the 

recently developed PCSK9 inhibitors, newer reports indicate that a large burden of ASCVD 

remains, due mainly to a lack of targeted therapies to alleviate persistent dyslipidemia caused by 

impaired hepatic clearance of TRLs (aka cholesterol remnants) from the arteries, and reduced 

cholesterol efflux capacity from foam cells, two major pro-atherogenic events that directly 

contribute to vascular inflammation and atherosclerotic plaque formation 6-11.  

Moreover, while LDL-C levels are recognized as a major causal risk factor for ASCVD, 

Mendelian randomization studies ruled out a causal effect of clinical HDL-C levels on the risk of 

ASCVD, suggesting that HDL particles exert their anti-atherogenic activities and function 

through specific lipids and protein components other than their core cholesterol content 12,13. 

Indeed, emerging evidence suggests that variations in HDL particle size and composition of 

lipids, proteins, and small non-coding RNAs affect HDL function under healthy and diseased 

conditions, underscoring the importance of identifying gene targets that contribute to the 

cardioprotective function of HDL subclasses 14,15.  

Over the last decade, genome-wide association studies (GWAS) have shed much light on 

common genetic variants associated with major lipid traits that were found to be implicated in 

key regulatory pathways underlying cholesterol and triglyceride metabolism, thereby identifying 

new modes of metabolic control in the pathogenesis of ASCVD, highlighting potential 

therapeutic targets in the reverse cholesterol transport pathway 16. Most recently, Graham et al. 17 

published the largest GWAS with lipid levels in a multi-ethnic study with 1.65 million 

individuals, including 350,000 participants of non-European ancestries. They reported 1,765 

index variants in 773 genomic regions that were associated with the five “classical” blood lipid 

traits, LDL-C, HDL-C, triglycerides (TG), total cholesterol (TC), and non-HDL-C 17. While the 

genetic architecture of these lipid-risk loci was mapped out in detail in their study, much less is 
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known about their mechanisms, the metabolic pleiotropy of these loci, their potential link to 

ASCVD risk, and their role in lipoprotein metabolism, transport, and remodeling.  

Here we leverage the recently published Nightingale NMR data that is now available for 

~100,00 participants of the UK Biobank to refine the metabolic architecture of these genetic lipid 

risk loci with a comprehensive set of 168 metabolite and lipoprotein related traits (Methods and 

Supplementary Tables 1&2) 18-21. We hypothesize that this kind of deep molecular phenotyping 

will shed new light onto the biological functions of the Graham et al. lipid risk genes and their 

role in regulating lipoprotein composition and turnover.  

Our analysis includes three steps of genetic association analyses. First, we attempt a 

replication of the Graham et al. 17 lipid GWAS using the same five lipid traits as used in the 

original study but measured on the Nightingale platform. Then, we proceed to a molecular fine 

mapping of the replicated loci using the 168 NMR traits as endpoints. Finally, we conduct a 

hypothesis-free all-against-all ratio-metric association study, testing over 14,000 ratios at each of 

the Graham et al. genetic lipid risk loci. 

To gain biologically relevant insights from these associations we deploy a formal fine-

mapping approach to all loci and create credible sets of NMR traits that are most directly 

influenced by the associated genetic variants. We then use statin medication and incident 

myocardial infarction (MI) as a showcase to demonstrate how genetic NMR-trait association 

profiles can be used to predict the intervention outcome of presently less-well studied risk 

variants as genetic proxies for potential drugs. Finally, we focus our investigation on those genes 

that are directly involved in lipoprotein metabolism, transport, and remodeling (LPmtr genes) 

and identify NMR-ratios that reflect non-genetic variance that is shared by these LPmtr genes. 

RESULTS 

Metabolic fine mapping almost doubles the number of discoverable lipid risk loci 

Graham et al. 17 reported 2,624 genetic associations on 1,835 lead variants with five major lipid 

traits (TC, TG, LDL-C, HDL-C, non-HDL-C). These associations included conditional analyses 

with up to 46 variants in the model and were conducted in multiple ancestries. Imputed genotype 

data for all but five of the variants were obtained from the UKB research analysis platform 
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(RAP). We computed the associations of all 168 NMR metabolites and all 14,196 ratios between 

them in linear models with the lead variants, age, age2, sex, use of lipid lowering medication, the 

ten first genotype principal components, and all respective conditional variants reported by 

Graham et al. as covariates (Supplementary Table 3). While the conditioned models for the five 

lipid traits were sometimes different, their lead variants could be identical or in high LD. We 

therefore limited our analysis to lead variants that were not in strong LD (r2 < 0.7), and when 

multiple traits and conditional variants were available for the same lead variant, we kept the 

model with the strongest association signal in Graham et al.. To avoid spurious associations with 

rare variants, we limited our analysis to minor allele frequencies of MAF>1% and further to 

associations that were genome-wide significant (p<10-8) in the conditioned analysis by Graham 

et al. In total, 1,054 lead variants satisfied these criteria constituted the starting point for the 

following analyses (Figure 1). 

Although we conducted association tests on a limited number of loci, we nevertheless 

chose to apply a genome-wide significance threshold of pBonf = 5x10-8 so that our conclusions 

also hold if conducted in a broader GWAS setting. We required conservative Bonferroni 

significance throughout by accounting for the number of traits tested as appropriate, that is, by 

dividing pBonf by 5 (pref) for testing five lipids, by 168 (pNMR) for testing all NMR traits, and by 

14,196 (pAllRatios) for testing all possible NMR ratios. To avoid rounding small p-values to zero, 

we report negative log10-scaled p-values throughout the paper. 

A total of 118 out of the 1,054 primary associations were significant at pref for at least one 

of the five lipid traits reported by Graham et al. and can therefore be considered replicated – and 

even discoverable in a GWAS setting – in UKB using the Nightingale platform. The fact that we 

replicate only a fraction of the hits from Graham et al. is attributable to the reduced power of 

starting from a cohort that is sixteen-times smaller, and possibly to other population-specific 

factors, but not to the use of the NMR platform, as the NMR and the clinical biochemistry 

platforms yield highly correlated results (Supplementary Figures 1&2). 

Of the 936 variants that did not replicate with any of these five “classical” lipid traits, 107 

were significant at pNMR with at least one of the 168 Nightingale traits. In other words, 225 of the 

1,054 associations were significant at a genome-wide Bonferroni level with at least one of the 

168 Nightingale traits. Hence, despite the increased multiple-testing burden, using the NMR 
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traits led to the discovery of almost twice as many lead variants (225 versus 118) at loci that 

were established to be associated with lipid traits. One could argue that in these cases the 

respective associated NMR metabolite is then closer to the “true biology” of the implicate locus, 

and that the NMR association profiles contain a considerable amount of additional information 

compared to the five “classical” lipid traits that can be used to functionally fine map the Graham 

et al. lipid risk loci, as we show in the following. 

NMR association profiles reflect distinct biological pathways 

Hypothesizing that genes at lipid risk loci with similar NMR association profiles share common 

biology, we decided to proceed with a k-means clustering of the -log10(p) association profiles. 

Based on gap statistics, an optimal number of seven clusters was chosen. We visualized the 

association statistics (-log10(p-value)) and effect sizes (aka betas) as clustered heatmaps with the 

lipid risk loci as one dimension and the Nightingale traits as the other (Figure 1B/C and Figure 

2). To avoid counting similar signals at a single locus with several associated variants multiple 

times, we limited our analysis in the following to 141 sentinel variants that represent independent 

genetic regions, using a distance cut-off of 500kb to define regions and retaining only the variant 

with the strongest association signal to the NMR traits in each region. We found that many well 

studied genes that act on a same pathway clustered closely together. 

For instance, lecithin:cholesterol acyltransferase (LCAT) and cholesteryl ester transfer 

protein (CETP) are both enzymes critical to HDL maturation and remodeling 22. They share 

similar association profiles with the core composition of the 14 lipoprotein size classes and 

cluster closely together (cluster 7 in Figure 2). Both variants are predominantly associated with 

medium, large, and extra-large HDL particles, and to a lesser extent with the small HDL fraction, 

which is in accord with the established altered catabolism of apoA-1 and apoA-2 containing 

HDL particles in individuals lacking CETP 23 or LCAT 24. Both profiles showed a negative 

association with HDL-TG content and a positive association with HDL-PL, -FC and -CE, which 

is also in agreement with the established LCAT and CETP activity that ultimately results in FC 

and CE reduction and TG enrichment in HDL lipoprotein particles.  Notably, cluster 7 also 

includes other HDL regulating factors, such as the sterol-responsive transcription factor LXR-

alpha (NR1H3), GALNT2 25, TTC39B 26, and the HDL receptor SCARB-1 (SR-B1) that controls 

the last step in HDL catabolism 27. CETP expression is activated by LXR-alpha, a central 
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transcription factor that is destabilized and degraded by TT39B-mediated ubiquitination 27. The 

co-clustering of CETP and TTC39B suggests a potential biological link between these genes with 

possible ramifications for therapeutic T39 targeting and also suggests a role for the yet unknown 

co-clustered genes such as SLC39A8, C6orf106 and STARD3 in the regulation of HDL particle 

size. 

Angiopoietin-like-4 (ANGPTL4), a secretory protein that restricts lipoprotein lipase 

(LPL) activity to limit plasma TRL-TG hydrolysis and subsequent release of fatty acids for 

uptake into adipose tissue during fasting, had a profile similar to LPL 28 (cluster 4, Figure 2, 

Supplementary Figure 10C). Loss of function variants and pharmacologic inactivation of 

ANGPTL4 is associated with reduced TG and increased HDL-C levels 27,29,30. Conversely, our 

data resembled a concordant inverse lipoprotein profile for the ANGPTL4 variant between HDL 

subclasses and their CE, PL and FC subtractions and TG, as reported for ANGPTL4 E40K loss 

of function mutation 31. 

During feeding, ANGPTL3, by binding to ANGPTL8, acts in contrast to its ANGPTL4 

counterpart, to replenish/restore fat depots in adipose tissue by blocking both endothelial lipase 

(LIPG) and LPL mediated TG-uptake through the liver and oxidative tissues 32,33. Remarkably, 

we found that ANGPTL3 in cluster 5 is set apart from co-clustering with ANGPTL4 and LPL, 

despite sharing a similar LDL and VLDL profile (Figure 2, Supplementary Figure 10F). This 

is caused by differential correlation with small and medium HDL subclasses and is in accord 

with experimentally and clinically validated findings that show ANGPTL3 depletion or 

inhibition leads instead to a proportional reduction in HDL-C, non-HDL-C and TG levels 30.  

Intriguingly, NMR associations revealed co-clustering of corroborated genetic variants 

associated with systemic and familial hypercholesterolemia that were not selectively captured in 

previous GWAS of human lipid traits. SNP rs73015024 near LDLR, a central factor of hepatic 

LDL-C and non-HDL-C uptake, SNP rs12916 near 3-hydroxy-3-methylglutaryl–coenzyme A 

reductase (HMGCR), the rate-limiting enzyme of cholesterol biosynthesis pathway and the target 

of LDL-C lowering statin drugs, and SNPs rs11591147 near PCSK9 and rs2235215 near MYLIP 

(aka IDOL), two major factors facilitating post-translational LDLR degradation (cluster 2 in 

Figure 2C) 34,35. Concordantly, we found that all four genetic variants were most strongly 

associated with all LDL subclasses and extra small to medium size VLDL particles resembling 
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cholesterol remnants, confirming experimental findings that were not otherwise obtained from 

previous GWAS. The phenotypic correlations between selected pairs of these LDL loci 

(Supplementary Figure 10ADE) reveals rs2235215 as a novel gain-of-function mutation 

associated with MYLIP with potential therapeutic implications.  

Data summarized in pre-formatted Supplementary Tables 4&5 (see also Supplementary 

Figures 3&4) provide an analytical framework for the identification and fine-mapping of other 

associated gene(s) with NMR-measured lipoprotein-associated metabolic traits. 

Credible sets of NMR traits reveal the most direct associations at the lipid risk loci 

The lipoprotein particle traits measured on the NMR platform, like for instance the concentration 

of esterified cholesterol in small VLDL particles, are determined by multiple processes, 

including cholesterol metabolism, fatty acid turn-over, phospholipid and triglyceride side-chain 

remodeling, and lipoprotein particle recycling, which can lead to intricated correlation structures 

between the traits. To account for possible bias in the clustering that may stem from these 

correlations, and to select NMR traits that are most representative for the observed associations, 

we applied the “Sum of single effects model" (SuSiE) approach 36. SuSiE is a Bayesian stepwise 

variable selection technique that is routinely applied in genetic fine mapping. Rather than picking 

the single most strongly independently associating variables, SuSiE identifies what are termed 

“credible sets” (CS) of variables (see methods). Applied to the NMR data, SuSiE identifies sets 

of traits that together share the maximal possible amount of non-redundant variance that can be 

explained by the respective genotype, or otherwise stated, SuSiE identifies those NMR traits that 

are likely to be the most directly affected by processes that are modulated by the variant 

(Supplementary Table 6). 

The average number of credible sets identified for the 141 loci was 5.1 (median 3, 

maximum 24). We created a matrix with binary entries (0/1) that reflects which trait is a member 

of a CS at any given locus (Supplementary Table 7&8 and Supplementary Figures 5&6). 

Unsurprisingly we found less correlations between the individual loci than when using the NMR 

association summary statistics for clustering. Albumin was the trait that appeared most 

frequently in the CS (32 times), followed by glycoprotein acetyls (26). It is interesting to note 

that these frequently associated traits were not generally among the strongest associations at the 

individual loci, but rather reflect the broader effect of variance in lipid metabolism on markers 
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that correspond to processes such as free fatty acid transport in blood (albumin) and 

inflammation (glycoprotein acetyls). These CS can now be used to prioritize NMR traits to 

interpret specific lipid risk associations in the presence of highly correlated features. 

NMR association profiles can predict the therapeutic outcome of a medical intervention  

A key application of GWAS in pharmaceutical drug development is the generation of genetic 

evidence to predict the efficacy of therapeutic interventions in humans. Extending the phenotype 

space from five lipids to 168 NMR traits is expected to represent a substantial gain in 

information. Each of the 225 NMR association profiles we generated here reflects a potential 

outcome of the therapeutic modulation of the underlying gene product.  

As proof of concept, we evaluated the HMGCR locus. HMGCR encodes HMG-CoA 

reductase, the first committed step in cholesterol biosynthesis and the target of the statin class of 

lipid lowering agents. Statins are approved to reduce the risk of atherosclerotic cardiovascular 

disease and myocardial infarction (MI). To genetically evaluate the appropriateness of HMGCR 

inhibition to reduce the risk of MI we compared the association of each NMR species with 

incident MI to the impact of variants at HMGCR on those NMR species (Figure 3).  

We first estimated causality for the NMR traits on incident MI. For this analysis, we 

excluded all individuals who reported any cholesterol-lowering medication at the time of 

recruitment. Of the 98,698 UKB participants for whom Nightingale data is available, 80,791 

UKB participants did not use any cholesterol-lowering drugs. Among the UKB participants who 

did not use any cholesterol-lowering drugs at baseline, 1,100 subsequently had an MI event. To 

identify those NMR traits that are potentially causal for MI, we then conducted a Mendelian 

randomization study (MR) 37 with the NMR traits as exposures and MI as the outcome 

(Supplementary Table 9 and Supplementary Figure 7). In total, 43 NMR traits had a 

significant (p<0.05/168) MR estimate using the conservative MR-Egger approach, 24 of which 

were related to LDL, eight to VLDL, five to IDL, and four to cholesterol traits. Apolipoprotein B 

(ApoB) was one of the strongest associations, in agreement with a previous study that prioritized 

ApoB as key lipid risk factor for coronary artery disease 38. Also consistent with previous studies 
13, we found that no HDL-related traits were significant in the MR analysis. As a future 

application of our study, the NMR-trait exposure data we generated here can be used in MR 
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analyses with different disease outcomes. These instruments are provided as Supplementary 

Data on FigShare at https://doi.org/10.6084/m9.figshare.19728991. 

Next, we compared the impact of variants near HMGCR on the NMR traits identified as 

potentially causal for MI (Figure 3A). We found that in general, the traits most strongly 

influenced by HMGCR were those most strongly correlated with incident MI, especially the 

LDL-related traits. However, many VLDL-related traits had a stronger effect on MI risk but were 

less strongly influenced by HMGCR. The strongest risk factor not influenced by HMGCR 

variants is Glycoprotein Acetyls (GlycA). GlycA is an inflammatory biomarker that captures 

distinct sources of inflammation and provides a measure of cardiovascular risk 39.  

We then compared the impact on the lipid traits obtained from lifelong genetic 

modulation of HMGCR with therapeutic intervention at the gene product of HMGCR. Of the 

98,698 UKB participants for whom Nightingale data was available, 15,050 reported being on a 

statin treatment. We found that the impact on the lipid species due to statin usage was highly 

correlated with the effect of the genetic variant at HMGCR on that same lipid (Figure 3B), 

which is expected but reassuring, nonetheless. These results suggest that one can assess the 

causality of specific traits or biomarkers and identify variants and targets that favorably impact 

those causal traits which may translate into therapeutic benefits by targeting the gene products of 

the impacted genes. 

We provide and discuss additional examples in Figure 3C/D and Supplementary Figures 

8-11. Taken together, these examples demonstrate how NMR-profile analysis can be used to 

evaluate the potential outcomes of therapeutic modulation of the associated gene products and 

guide further investigations.  

Ratios between NMR traits reveal shared biology and uncover new loci. 

The hypothesis-free testing of all-against-all ratios between metabolite levels can increase the 

statistical power of metabolomics studies, well beyond what is lost by the increased level of 

multiple testing 40. When two metabolic traits share the same non-genetic information, taking 

their ratio will reduce the variance that a SNP could not explain. When the shared non-genetic 

information is large, this can lead to very large gains in power to detect a genetic association 

(quantified by the p-gain). Most interestingly, large p-gains reveal the presence of shared biology 
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or other shared confounders between the traits, that can then be used to group genetic variants 

based on such – in general yet to be identified – shared biology or confounder. 

Ratios between metabolic traits as independent variables in statistical hypothesis tests 

have been used for a long time. However, they are often considered mere normalization 

techniques, such as dividing metabolite levels in urine by creatinine to account for variability in 

urine concentrations or normalizing metabolite levels in cell extracts by "Bradford" total protein 

content to account for variability in metabolite extraction. Nevertheless, several GWAS with 

ratios between metabolite pairs identified associations with exceptionally large gains in the 

strength of their association that reflected biochemical conversions between the implicated 

metabolite pairs 40-44. Using this approach, we inferred the FADS1 gene product as a desaturase 

of C20:3 to C20:4 fatty acids, while others found reduced enzyme activity of alkyl-DHAP in 

smokers 45, identified metabolic markers for drug screening 46, and unraveled genetic variance in 

blood-type related genes associated with fibrinogen protein phosphorylation 43. Interestingly, 

Nightingale already suggested 81 ratios between the directly measured traits as additional 

endpoints for analysis. We treat these ratios (termed NightRatios) separately as a benchmark, 

representing a targeted ratio-metric approach. There are hence to major motivations to analyze 

ratios: first, to increase power to detect genetic associations, and second, to identify groups of 

genes that share common non-genetic biological variance, that is, genes that can be hypothesized 

to act in a shared pathway. 

We computed the associations of all 14,196 possible ratios between the 168 NMR traits 

with all lipid risk loci, using the p-gain statistic to identify significant ratios 40. The p-gain of an 

association of a metabolite ratio is defined as the smaller value of the two p-values for a pair of 

metabolite associations divided by the p-value of the association for their ratio. A p-gain of 10 

has been shown to be the equivalent of an alpha level of significance of 0.05 for a single test 40. 

Out of the 225 variants that were associated with at least one NMR-trait, 162 variants had a 

Bonferroni significant p-gain at a genome-wide level (p-gainAllRatios > 10 * 106 * 14,196 = 1011.2), 

indicating that in over two thirds of the cases a ratio added significant information to the 

associations. Of the 829 associations that were not significantly associated with at least one of 

the NMR traits, 59 became significant at pAllRatios with at least one ratio. On the other hand, eight 

loci that were significant at pNMR did not reach the higher significance level required when using 

ratios. Hence, testing all possible ratios rather than only the NMR traits allowed us to identify 59 
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new loci, while eight loci with weaker signals were lost due to the increased multiple testing 

burden. Ratios therefore provided new knowledge at already known loci in 72% (162/225) of the 

cases, while at the same time increasing the power to discover entirely new loci by 23% 

(51/225). 

Fifty-eight lipid risk loci that are involved in lipoprotein metabolism, transport, and 

remodeling can be characterized by 14 associated pathways-specific ratios. 

Genetic evidence that supports potential mode of action is key in drug target prioritization 47. 

Using SNiPA 48, GeneCards 49, PhenoScanner 50, and general PubMed searches, we identified 58 

gene loci among the 141 unique lead variants that encode proteins involved in lipoprotein 

metabolism, transport, and remodeling (LPmtr genes), and that are – given their functions, 

associated NMR traits, and absence of alternative candidates – most likely causal for the 

observed lipid trait associations. To keep this analysis focused on potential targets of lipid 

metabolism, we excluded here genes that were broadly related to other functions, like energy 

homeostasis, inflammation, and development. We used Pharos 51 to annotate the 58 LPmtr genes 

with NCBI gene summaries, UniProt function annotations, and drug target development status 

(Supplementary Table 10). Ten of these genes had the highest Pharos drug target development 

status (Tclin), that is, their gene products are already targeted by an approved drug (ALOX5, 

NPC1L1, LEPR, ABCA1, HMGCR, PCSK9, PPARG, APOC3, VEGFA, ANGPTL3). Twenty 

further genes had the second highest Pharos status (Tchem), indicating that at least one 

compound with an activity cutoff of < 30 nM targets their gene products (ABCB11, ALDH1A2, 

APOB, CETP, CPT1A, CTSB, CYP26A1, CYP7A1, DGAT2, GALNT2, LCAT, LDLR, LIPG, LPL, 

NR1H3, PLA2G10, PLA2G6, SCARB1, SCD, SORT1). Inhibitors of some of these proteins are 

currently in clinical trials 52. These 58 genes thus constitute high value drug targets. 

We used NMR ratios to identify shared biological pathways between these genes with the 

expectations that these may ultimately provide a deeper understanding of their roles and 

interactions in lipoprotein metabolism, transport, and remodeling. We retrieved for each of the 

58 loci the strongest associating ratio that reached Bonferroni significance (p-gain > 1011.2). We 

found 45 unique ratios. As some of these ratios were correlated, we clustered the resulting 58x45 

matrix and retained 14 ratios that were consistently associated with all genes in a cluster block 

(Supplementary Figure 12). The ratio that associated with the largest number of genes was 
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Free Cholesterol in LDL / LDL Cholesterol, that is, the percentage of free cholesterol in all LDL 

particles (13 genes), followed by the ratio Concentration of HDL Particles / Total Concentration 

of Lipoprotein Particles, that is, the percentage of HDL particles (9 genes), and the ratio of 

Triglycerides in Small HDL / Triglycerides in Medium HDL, that is, an indicator of relative TG 

content between small and medium sized HDL particles (6 genes). Except for three ratios that 

were associated with a single gene, all other ratios linked multiple genes together. We argue that 

these 14 ratios reflect biology shared by the respective associated genes and that the ratios are 

markers for the corresponding pathways.  

To show that this is indeed the case, we annotated known interactions between the genes 

that associate with a same ratio and summarized their shared functions by a pathway annotation 

(Figure 4 and Box 1). For instance, of the nine genes that are associated with the percentage of 

HDL particles, seven share the same transcriptional repertoire controlled by SREBPs and LXRs, 

and all are involved in mechanisms related to LDLR mediated LDL-C uptake and cholesterol 

transport. Noticeable is how the ratios are most often specific to a single set of genes, although 

there are of course also cases where a gene appears to act in more than one pathway. Taken 

together, we believe that this approach of utilizing NMR lipid trait ratios helps to systematically 

identify potential mechanistic links between specific gene variants and regulatory pathways that 

are involved in lipoprotein metabolism.  

In this context it is interesting to note that the genes coding for the targets of three of the 

most successful cholesterol-lowering drugs (statins:HMGCR, ezetimibe:NPC1L1, and 

evolucumab:PCSK9) all associate with the same ratio (ratio 1 in Figure 4: the percentage of HDL 

particles). It might therefore be of interest to investigate still uncharacterized genes that associate 

with this same ratio for their potential role in lipoprotein metabolism, transport, and remodeling.  

Mendelian randomization with NMR ratios 

We then asked whether NMR ratios might constitute causal markers for disease. We conducted a 

Mendelian randomization (MR) with MI as an outcome using the 144 unique lead NMR ratios 

associated at the 225 loci and that had a nominal p-gain > 10 as exposures (Supplementary 

Table 13). Overall, the estimated causal effect sizes and significance levels were weaker than 

those obtained using single NMR traits, the latter being dominated, as expected, by LDL traits. 

However, the third strongest MR association with ratios was the concentration of HDL particles 
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divided by the total concentration of lipoprotein particles (p=3.2x10-5), whereas the single trait 

MR associations were substantially weaker (p= 0.008 and p=0.05, respectively). Interestingly, 

this is the ratio that we independently identified as ratio 1 in Figure 4. As the causal role of 

HDL-C in MI is unclear, we asked whether this ratio, which represents the percentage of HDL 

particles among all lipoprotein particles, was a predictor of incident MI in UKB. We found that 

statin-naïve UKB participants in the lower 10% range of HDL particle-% had twice the risk of 

having an MI in the follow-up period than the general UKB population (230 individuals 

compared to an expected 110 out of 1,100 statin-naïve UKB participants who had an MI after 

visiting the study center at baseline, chi2 p<10-16). 

A genome-wide association study with NMR ratios 

Finally, we asked whether NMR ratios can reveal new associations. We therefore conducted a 

GWAS with the fourteen ratios reported in Supplementary Table 10 and Figure 4. We 

identified 1,139 ratio associations with 595 genetically uncorrelated variants (Supplementary 

Table 14). For each of the 595 variants we then identified the most highly correlating variant in 

Graham et al. All but seven of the 595 variants were located on the same chromosome and 

within less than 10MB from a variant reported by Graham et al., indicating that using these ratios 

only very few new loci were discovered. However, over half of the variants that were located 

within 10MB of a known lipid risk locus (290 of 588) were not correlated (LD r2<0.1) with any 

of the Graham et al. lipid risk variants, suggesting that using these ratios additional genetic 

signals were discovered and that using ratios may be of value for further genetic fine mapping of 

these loci. This is in line with the expectation that, due to its much larger power, the Graham et 

al. study most likely already discovered all lipid risk loci that would be discoverable with ratios 

in our study. 

An example of how ratios with large p-gains can generate new hypotheses regarding 

shared biology between the traits is MLXIPL, which encodes the carbohydrate-responsive 

element-binding protein (ChREBP), a transcription factor which binds to the carbohydrate 

response element (ChoRE) motifs in the promoters of triglyceride synthesis genes to instigate 

lipogenesis in response to high-carb diet  53. Matching its function, Graham et al. identified a 

strong association with TG at this locus that we also replicate here (rs3812316). New in this 

GWAS with ratios is the discovery of a strong association (p < 10-118) of the same variant with 
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the ratio Free Cholesterol in LDL / LDL Cholesterol, that is, the percentage of free cholesterol in 

LDL particles. Note that the associations with the two individual NMR traits were barely 

significant (p>0.001). This observation suggests that genetic variation in MLXIPL not only leads 

to changes in TG levels, but also to a shift from free to esterified cholesterol in large LDL 

particles, which should be considered when investigating possible outcomes of medical MLXIPL 

inhibition. 

DISCUSSION 

In this study we report the metabolic and lipoprotein fine-mapping of all currently known 

lipid risk loci using NMR measurements from the Nightingale platform, which is a dataset that 

has only recently been made available for over 98,000 samples from the UK Biobank. The 

benefit of having such detailed phenotypes for such a large number of samples becomes evident 

by the strength and breadth of the association signals that we report. Most striking were the many 

direct biological links that could be identified between the lipoprotein and metabolic traits and 

ratios and their associated gene variants that modulate many disease-relevant processes of 

lipoproteins metabolism, transport, and remodeling, as evidenced in Figure 4 and Box 1.  

A recent report of the European Atherosclerosis Society Consensus Panel concluded that 

the pathobiology of remnant lipoproteins is key to the development of optimal targeted therapies, 

but that understanding the atherogenic potential of their lipidomic and proteomic composition is 

very much a ‘work-in-progress’ 1. Our phenotypic fine mapping of the Graham et al. lipid risk 

variants responds to this challenge by generating biological insights at 225 independent gene 

loci. At over half of these loci the association strength increased by more than 9.5 orders of 

magnitude (pNMR) with an NMR trait compared to the five "classical” lipid traits, indicating that 

for each of these loci additional biochemical information has been generated, arguably getting 

closer to the true biology of the respective genes and loci. Moreover, in over two thirds of the 

cases, ratios between NMR traits further increased the strength of association at a genome-wide 

scale and beyond, revealing shared biology in many cases.  

Our study has of course also its limitations – the biggest being the curse of the “too-many 

results”. We clearly could not discuss all associations to the degree that they deserve. We 

therefore share all associations in different formats and degrees of condensationas 

Supplementary Data on Figshare at https://doi.org/10.6084/m9.figshare.19728991  (see also 
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Supplementary Figure 13). These data can (among others) be used as instruments in future 

Mendelian randomization studies and for the evaluation of specific gene products for their 

potential as drug targets. 

Another limitation reflects the choices that had to be made regarding the scaling of the 

traits, the covariates used in the models, significance cut-offs etc. We tried to follow as closely as 

possible previous work (i.e. Graham et al.), and to be as conservative as possible (i.e. always 

using Bonferroni correction and not analyzing rare variants). However, some choices, like the 

number of clusters, distance measures etc. used in the NMR-association profile clustering are to 

a certain degree ad hoc. We therefore did not put too much weight on the interpretation of the 

exact cluster boundaries, but rather see these as indicating helper tools in the interpretation and 

comparison of the NMR association profiles.  

We included drug treatments as covariates which may introduce bias 54. Approaches to 

correct for it have been demonstrated with the UKB 55 but are not very practical here due to the 

large number of traits. Supplementary Figure 14 presents a scatterplot of the effect sizes (beta) 

for the associations with the respective lead NMR trait at the 141 loci, with and without 

including lipid lowering medication as a covariate, that shows that potential bias due to this 

effect is limited in our study. 

The validity of the Nightingale platform is critical to our study. While the NMR platform 

has been used in many previous studies 18,56, we additionally confirmed that results obtained 

using the NMR platform concord with those obtained using clinical biochemistry. We found that 

the Pearson correlation between the readouts from both platforms was larger than r2 = 0.75 

(Supplementary Figure 1) and that the correlation between the effect sizes for the 141 lead 

associations was r2 = 0.974. Furthermore, the correlation between the effect sizes obtained using 

the ~98,000 UKB samples and those reported by Graham et al. were r2 = 0.953 when using the 

NMR data and r2 = 0.974 when using the clinical biochemistry data (Supplementary Figure 2). 

Metabolic fine mapping of genetic lipid risk loci to provide evidence to support or reject 

potential drug targets, with Mendelian randomization studies to be used to anticipate the results 

of randomized trials 57,58, is not new. This approach using the Nightingale platform has been 

pioneered in a study with 8,330 individuals 59. Gordillo-Marañón et al. validated and prioritized 

30 lipid-related therapeutic for CHD, including NPC1L1 and PCSK9 60. Richardson et al. 61 
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provided strong evidence of an effect of drug-based genetic scores on coronary artery disease 

(CAD) for seven out of eight drug targets (HMGCR, PCKS9, NPC1L1, CETP, APOC3, 

ANGPTL4, LPL, but not ANGPTL3). Similar single-gene studies were also conducted on 

HMGCR 62,63, PCSK9 63, and CETP 64. We replicate most of these earlier associations, which 

validates our generalization to all currently known lipid risk loci. 

Although the prevalence of ASCVD has globally declined, this trend is threatened by 

persistent dyslipidemia mainly caused by the obesity epidemic and the conjoined increase in 

Type 2 diabetes. New treatments are needed as recent studies indicate that many patients 

suffering from ASCVD fail to achieve optimal LDL-C reduction, while existing clinical 

therapies to increase HDL function and lower TRLs and cholesterol remnants are only modestly 

effective and remain elusive. Identification of genes that contribute to changes in lipid and 

protein constituents of lipoprotein subpopulations under physiologic and pathologic conditions is 

a challenge and an unmet need to develop novel precision therapeutics to improve ASCVD and 

MI outcomes. Here we established a clear role for 58 genes that play a potentially causal role in 

lipoprotein metabolism, transport, and remodeling. For the gene products of 30 of these genes an 

inhibitory molecule already exists that can now be further investigated. More generally, as we 

have shown in examples, our data can now be used to transfer knowledge from known to new 

lipid risk loci based on similarity of their respective NMR-trait and -ratio association profiles. 

Taken together, our deep molecular fine mapping of the Graham et al. lipid risk loci provides a 

comprehensive resource for the research into and the development of future lipid regulating 

drugs and treatment options.  

METHODS 

Data sources. All data was obtained through the UKB RAP system on the DNAnexus platform 

(data dispensed on December 14, 2021; application id 43418). Samples for analysis were 

selected using the following criteria: “Ethnic background | Instance 0” is “White”, “Genetic 

ethnic grouping” is “Caucasian”, “Spectrometer |Instance 0” is not NULL and “Measurement 

Quality Flag | Instance 0” is NULL, yielding NMR data for 98,698 out of 502,414 UKB 

participants. Imputed genotypes for 1,835 variants were extracted from UK RAP BGEN files 

(https://biobank.ndph.ox.ac.uk/showcase/label.cgi?id=100319) using bgenix 65 and reformatted 

to text format using plink 66. NMR data 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 28, 2022. ; https://doi.org/10.1101/2022.06.12.22276286doi: medRxiv preprint 

https://doi.org/10.1101/2022.06.12.22276286
http://creativecommons.org/licenses/by-nc-nd/4.0/


18 

 

(https://biobank.ndph.ox.ac.uk/showcase/label.cgi?id=220) and additional phenotype data (age, 

sex, use of cholesterol lowering medication, medication usage, clinical biochemistry, …) were 

extracted using the DNAnexus cohort browser and the table downloader app 

(https://ukbiobank.dnanexus.com/landing). Incident myocardial infarction was defined as present 

when the reported “Date of myocardial infarction” 

(https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=42000) was later than the “Date of 

attending assessment centre” (https://biobank.ndph.ox.ac.uk/ukb/field.cgi?id=53). For all 

variables for which multiple instances were available, “Instance 0” (baseline) was selected. 

Lipoprotein and metabolic data. A detailed description of the metabolic traits and pathways 

covered by the Nightingale NMR platform is provided in Supplementary Table 1 and 

https://biobank.ndph.ox.ac.uk/showcase/label.cgi?id=220. In brief, the platform readouts include 

several amino acids (alanine, glutamine, glycine, histidine, isoleucine, leucine, valine, 

phenylalanine, tyrosine), glycolysis related metabolites (glucose, lactate, pyruvate, citrate), 

ketone bodies (3-hydroxybutyrate, acetate, acetoacetate, acetone), creatinine, and two lipid 

species (linoleic acid, docosahexaenoic acid). The Nightingale platform further reports 

aggregated lipid traits, specifically, total fatty acids and their degree of unsaturation, omega-3 

and omega-6 fatty acids, polyunsaturated fatty acids (PUFA), monounsaturated fatty acids 

(MUFAs), saturated fatty acids, phosphoglycerates, total cholines, phosphatidylcholines (PCs), 

and sphingomyelins (SMs). Moreover, the platform also provides readouts of protein 

glycosylation (glycoprotein acetyls), apolipoproteins B (ApoB) and A1 (ApoA1), and albumin. 

However, the largest part of the platform's traits are quantitative measures of total lipids, free and 

total cholesterol (FC, TC), cholesteryl esters (CE), phospholipids (PL), and triglycerides (TGs), 

all segregated by lipid particle size, together with the concentrations of these particles. 

Lipoprotein particle classes cover fourteen size ranges, from small HDL particles with an 

average diameter of 8.7 nm to chylomicrons and extremely large VLDL, with particle diameters 

from 75 nm upwards. In addition to the individual traits, Nightingale suggests the computation of 

81 ratios between these directly measured traits as additional endpoints, including the ratios of 

TGs to phosphoglycerides, apoB to apoA1, PUFAs to MUFAs, omega-6 fatty acids to omega-3 

fatty acids, and the percentages of different lipid content in the lipoprotein size classes, bringing 

the total number of features up to 249 (Supplementary Table 2). 
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Statistical analysis. The NMR data was log-scaled and ratios were computed using the identity 

log(A/B) = log(A) - log(B), which renders the association statistics invariant to inversion of 

nominator and denominator. NMR values equal to zero were treated as missing. The fraction of 

missing and zero values was very low, with 16,180 NA’s (0.098%) and 4,836 zero values 

(0.029%) out of 98,698*168 = 16,581,264 individual datapoints. The data was inverse-normal 

scaled after log-scaling to avoid overly strong effects of outliers that may have resulted from 

division by small values. Linear models were computed using R (version 4.1.0) using the R-

package maplet (version 1.1.1) 67, with the NMR data as dependent variables and all genetic 

variants reported in Supplementary Table 3 by Graham et al., plus age, age2, sex, and use of lipid 

lowering drugs to the model (binary) as independent variables. For ratios between two NMR 

traits, the p-gain was computed as the smaller of the two p-values for the individual trait 

associations divided by the p-value for the ratio 40. Assuming a genome-wide multiple testing 

level of ~106 tests and requiring nominal significance (p<0.05, p-gain>10 in case of ratios 40), the 

following Bonferroni levels of significance were applied, depending on the context:  

• pref = 5x10-8/5 = 10-8 for testing the five lipid traits (also used by Graham et al.), 

• pNMR = 5x10-8 / 168 = 10-9.5 for testing the NMR traits, 

• pNightRatios = 5x10-8 / 249 = 10-9.7 for testing NightRatios, 

• pAllRatios = 5x10-8 / (168*169/2) = 10-11.5 for testing all ratios & traits, 

• p-gainAllRatios = 106 * 10 * (168*169/2) = 1011.2 for testing all ratios & traits. 

K-means clustering was performed using the R package factoextra (version 1.0.7).  

SuSiE credible set computation. The R-version of the ‘sum of single effects’ (SuSiE) model 36 

was used (susieR, version 0.12.19) to conduct variable selection and to identify credible sets 

(CS) of variables. SuSiE is a Bayesian stepwise variable selection method that is widely used in 

genetic fine mapping. Rather than picking the single most strongly independently associating 

variable(s), SuSiE identifies what are termed “credible sets” (CS) of variables. In cases where 

there are multiple traits in a credible set, SuSiE provides a posterior probability for each 

individual trait to be included in the model (PIP values). The sum over the PIP values in each 

credible set sums up to one. For each genetic locus, the genotype (coded as numerical value 0, 1, 

2) of the lead variant was used as the dependent variable (y) in the SuSiE calculation. The 168 

NMR traits were used as independent variables (X) after the following pre-processing: Zero and 
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missing values were imputed to the minimal occurring non-zero value. The NMR traits were 

then log-scaled, residuals were calculated in a model that comprised the variables age, age2, sex, 

use of lipid lowering medication, and the first ten genotype PCs as covariates and were then 

inverse-normal scaled. The R function “susie” was used with default parameters, except for the 

allowed maximum number of non-zero effects in the regression model, which was set to 25 to 

assure that all possible effects were included. Note that the largest number of eventually 

identified non-zero effects in our study was 24. All credible sets together with the corresponding 

PIP values are provided as Supplementary Table 6 and the corresponding plots are described in 

Supplementary Figure 5. A clustering of the binarized PIP value matrix is in Supplementary 

Figure 6 and numeric values are in Supplementary Table 7. 

Phenome-wide association data. Buergel et al. trained a neural network to learn disease-

specific metabolomic states from the 168 UKB NMR traits to predict individual multi-disease 

outcomes 68. The authors provide the ranked variable importance for the NMR traits to predict 24 

conditions, including common metabolic, vascular, respiratory, musculoskeletal and neurological 

disorders and cancers (Supplementary Table 12 in Buergel et al.). In addition, they provide the 

correlations of all NMR traits with a comprehensive selection of 40 clinical predictors, including 

in-depth blood measurements (Supplementary Table 12 in Buergel et al.). We merged these data 

sets with our trait associations to provide additional information about the different functional 

roles that the NMR traits play in other diseases (Supplementary Table 8). 

Association with statin usage and incident MI. The number of non-statin users was 80,791 

individuals, defined as individuals not using any cholesterol lowering drugs, the number of statin 

users was 15,050 individuals. Individuals using cholesterol lowering drugs but not statins were 

excluded. Covariates used in the model were age, age2, sex, HbA1c and glucose. Association 

with incident MI was limited to 80,791 samples not using any cholesterol lowering medication, 

leaving 79,691 controls and 1,100 incident MI cases (date of reported MI > date of visit of the 

UKB assessment center). 

Mendelian Randomization. MR was conducted using the R-interface to MR-Base with MI as 

an outcome and NMR traits or ratios as exposures 37. GWAS summary statistics from 

CARDIoGRAMplusC4D 69 were accessed through MR-Base (trait ieu-a-798, 43,676 cases, 

128,199 controls). We used the association summary statistics of 215 uncorrelated SNPs with 
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168 NMR traits to generate exposures. Only strong instruments (ad hoc p-value < 10-10) were 

retained. 157 of the 168 NMR traits had at least three strong instruments. The MR Egger method 

was used to compute MR estimates (Supplementary Table 9 for traits & Supplementary Table 

13 for ratios). Summary statistics for the exposures are provided as Supplementary Data in 

MR-Base compatible format and can be used online version (http://app.mrbase.org) to conduct 

further MR analyses with other outcomes and to generate detailed reports for all traits.  

Genome-wide association study with selected ratios. We conducted a GWAS of the 14 key 

ratios that characterize the 58 LPmtr genes using the UKB RAP platform with the genotyped 

data set. We used generalized linear models implemented in plink (version 2) 66 with age, sex, 

lipid lowering medication use and the first ten genotype PCs as covariates, filtering variants on 

minor allele count > 100 and MAF > 1%. NMR traits and ratios between them were inverse 

normal scaled. The p-gain was computed as previously described 40. Associations with a p-value 

of p < 5x10-8 / 14 and additionally a p-gain > 10 were retained and clumped into independent 

genetic loci across the 14 ratios using an LD cut-off of r2<0.1, followed by clumping of 

correlated lead signals using an LD cut-off of r2>0.9, as previously described 70. Lead variants 

were annotated using PhenoScanner 50 and the corresponding highest correlating variant in ST3 

in Graham et al. was identified using UKB RAP genotype data (Supplementary Table 14). 
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Box 1. Biological insights into the pathways that link the 58 LPmtr genes and their link to 
the associated ratios. Here we present selected highlights and bibliographic references that link 
the different LPmtr genes to their respective ratios. Abbreviations: reverse cholesterol transport 
(RCT), triglyceride-rich lipoproteins (TRL), free cholesterol (FC), cholesterol ester (CE), 
phospholipids (PL). 

Ratio 1: The percentage of HDL particles (ratio 1) associated with key regulators of LDL-C uptake and cholesterol 
remnant clearance, including LDLR and its posttranslational regulators MYLIP and PCSK9. SORT1 promotes LDL-
uptake in liver and macrophages by binding to LDL and directing its lysosomal degradation 71,72, while restricting 
hepatic ApoB/VLDL secretion 73,74. This ratio also associated with NPC1L1 and HMGCR, two major established 
therapeutic targets for LDL-C lowering drugs. The inhibition of HMGCR by statins increases LDLR expression via 
SREBP transactivation, suggesting that ratio 1 is driven by the more dynamic changes in VLDL and LDL plasma 
levels, which are mirrored by changes in the percentage of HDL particles. In total, 7 out of 9 genes of this group 
share the same transcriptional repertoire by SREBPs and LXRs. These transcription factors maintain cholesterol 
homeostasis in response to cellular sterol levels, indicating that this set of genes is responsible for mechanisms 
underlying LDLR mediated LDL-C uptake and cholesterol excretion. Genetic upregulation of these processes then 
appears to induce a decrease in the percentage of HDL particles. This group of genes contains three of the most 
successful cholesterol-lowering drug targets (statins:HMGCR, ezetimibe:NPC1L1, and evolucumab:PCSK9). 

Ratio 2: Reduction in LDL-FC subfraction leads to the remodeling of LDL to smaller, more atherogenic particles, 
as they escape binding to LDLR and thus remain in circulation 75-77. We found that the fraction of FC in LDL-C 
(ratio 2) associated with genes that are involved in hepatic lipogenesis (PLA2G6, HSD17B13, MLXIPL), VLDL 
secretion and processing (APOB, LPL, ANGPTL4, CTSB, VEGFA), and cholesterol efflux (CYP26A1, APOA1 locus 
78, SGPP1). These genes are all mainly controlled by the LXR-alpha (NR1H3) transcription factor, which binds to 
retinoic acid receptor RXR and restricts SREBP-2 mediated cholesterol biosynthesis, while promoting VLDL 
secretion and processing as well as cholesterol efflux. Genetic variance in these processes can thereby explain the 
associated ratio, that is, the fraction of FC in LDL-C. 

Ratio 3: The lipid acquisition of HDL particles occurs mainly after secretion. Thereby, the TG core content in 
HDLs is mainly derived from TRLs through concomitant action of lipases (e.g. LPL, associated with ratio 2) and 
CETP (associated with ratio 5). We found, however, that the TG content in small vs. medium HDL (ratio 3) 
associated with genes related to HDL binding to cell surface proteins (SCARB1, aka SR-B1), that selectively 
facilitate the internalization of its CE content (SULF2), that activate surface heparan sulfate proteoglycans (the LPL 
interaction partner GBIHBP1), and that activate PLTP and block the function of APOC3 and ANGPTL3 to activate 
LPL at postprandial state, when TG loading of HDL occurs (GALNT2) 25,79,80. In addition, our associations match 
the function of key TG-related enzymes (GPAM and DGAT2), emphasizing TG biosynthesis and secretion as 
upstream modulators of TG content in HDL particles.  

Ratio 4: Identification of gene factors that alter the FC content in small atherogenic LDL particles are of therapeutic 
interest. We found a set of genes affecting the ratio of FC in small LDL vs LDL-C (ratio 4) that are primarily 
involved in regulatory pathways, such as the hydrolysis of VLDL/LDL TG content (ANGPTL3, LIPG) 81 and its 
LDLR mediated uptake (MMAB, ALOX5) 82,83. Notably, ALOX5 was shown to be an activator of SR-B1-mediated 
HDL-C uptake 83. Indeed, we observe overlapping association of ALOX5 with ratio 3, namely TG in small vs 
medium HDL, affected by a set of variants including in the gene coding for SR-B1 (SCARB1). How ANGPTL3 
impacts LDL-C levels remained unknown until more recently 81. Our data revealed a strong correlation between 
ANGPTL3 and the endothelial lipase (LIPG) and their joint association with ratio 4. Apart from its role in hepatic 
HDL catabolism through HDL-PL hydrolysis 84, our data confirms that LIPG plays a role in ApoB-containing 
lipoprotein metabolism, as has been indicated in refs 85,86 and confirmed more recently in refs 81,87. 

Ratio 5: Recent studies suggest that HDL-C and TGs are the strongest determinants of cholesterol efflux capacity 88. 
In ratio 5 we report on another cluster of genes implicated in TG metabolism, which is distinct from those found to 
affect ratio 3. Our data captures critical plasma HDL-C and reverse cholesterol transport (RCT) regulating factors, 
that is, LCAT, CETP, and TTC39B (T39), that alter the ratio between TG in small HDL and small LDL particles 
(ratio 5). While LCAT acts towards maturation of HDL particles, CETP potentiates CE/TG transfer in the HDL to 
LDL conversion, the ultimate last step in RCT 89. 

Ratio 6: RCT is a key function of HDL and inversely correlated with LDL-C and ASCVD development 90. It 
comprises multiple steps and commences with cholesterol efflux from the periphery (e.g. macrophages) towards 
cholesterol uptake and fecal excretion as bile acids. The here associated cholesterol efflux pump, ABCA1, and the 
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bile acid pump ABCB11B, constitute the rate limiting steps in the RCT pathway 83, thus most significantly control 
the overall lipid content in large HDL particles (ratio 6), which less anti-atherogenic as they contain both Apo-A1 
and Apo-A2 79,91. Notably, larger HDLs have a stronger beneficial effect on RCT as compared to anti-atherogenic 
smaller HDLs, especially in a disease-specific context such as type 2 diabetes 92. Additionally, we found that 
PPARG, a transcription factor known to transactivate ABCA1 and ABCB11 expression via LXR 93 and FXR 94, 
respectively, as well as activating CYP71A expression, the central enzyme in the bile acid pathways that converts 
cholesterol to alpha-hydroxycholesterol, associated with ratio 6. Concordantly, anti-diabetic PPARG agonists such 
as thiazolidinediones and other glitazones have been shown to elevate the ApoA-2/1 ratio in concert with increased 
HDL-C levels, confirming the mechanistic link observed here between “larger” HDL and the genes associated with 
ratio 6. These observations suggest that the beneficial effect of PPAR agonists on lowering atherosclerosis 
progression in individuals with T2D 95 appears to be caused by improved RCT rather than anti-atherogenic small 
HDLs. Moreover, given PPAR gamma agonists’ detrimental side effects on weight gain and hepatic steatosis, 
therapeutic interventions that directly activate both ABCA1 and ABCB11 expression might prove more efficient to 
treat atherosclerosis. 

Ratio 7: Linoleic acid (an omega-6 PUFA) is the substrate of FADS2. Ratio 7 reflects its enzymatic function, in 
line with previous reports 41. During fasting, CPT1A facilitates entry of FAs into the mitochondria for oxidation, the 
transcription of which is stimulated by the PPARA-transcription factor 96, which is known to activate genes in the 
beta-oxidation pathway. Recent reports also implicate FADS2 as another direct target of PPARA. CERS2 catalyzes 
hepatic C16:0 ceramide synthesis that leads to impaired FA beta-oxidation in IR, NAFLD, and ASCVD. 
Conversely, PLA2G10 acts to release omega-3 PUFAs (EPA, DHA) from epithelial cells. These observations 
suggest that these genes (CPT1A, FADS2, PLA2G10 and CERS2) are all determining factors in the fraction of 
linoleic acid within all PUFAs (ratio 7). 

Ratio 8: Further biological functions were confirmed at the example of ratio 8 (PLTP, ADH4, PON1), that is, 
between PL in medium LDL and TC in non-HDL particles yet indicating unknown mechanisms linking PL 
metabolism with non-HDL lipoprotein surface PL content. The function of PLTP, that transfers PL from TRLs to 
HDL upon hydrolysis, is a key step in HDL maturation; however, its role in humans remains unclear. 

Ratio 9: GWAS implicated miR-148a as the most highly conserved intergenic microRNA associated with human 
lipid traits. In liver, it inhibits both LDLR and ABCA1 to compromise cholesterol trafficking in and out of 
hepatocytes, thus contributing to abnormal LDL/HDL ratios 97,98. The joint association with ratio 9 suggests a 
potential link between miR-148a, APOH and LPA in the regulation of VLDL secretion, by modulating VLDL-PL 
content (ratio 9). A potential functional link between APOH and LPA is also supported by a recent study 
demonstrating that a genetic variant in APOH increases LPA expression 99. 

Ratio 10: GlycA is an inflammatory biomarker and provides a measure of cardiovascular risk 39. Its link in ratio 10 
with total FA content to genetic variance in LEPR reflects the connection between the regulation of nutritional (fat) 
intake and obesity associated inflammation. Loss of Serpina1 in mice changed inflammatory, lipid metabolism, and 
cholesterol metabolism-related genes in the liver 100. 

Ratio 11: The two genes, ALDH1A2 and CYP2W1, both associate with the content of FC in small HDL particles 
(ratio 11) and are both involved in retinoic acid metabolism. Intriguingly, several of the genes that associated with 
the fraction of FC in LDL-C (ratio 2) are regulated via the retinoic acid receptor RXR (see above).  

Ratios 12-14: The ratio of saturated fatty acids / monounsaturated fatty acids corresponds to the substrate-product 
pair of SCD and reflects its enzymatic function 43 (ratio 14). PNPLA3, another SREBP target gene, most dominantly 
affects the ratio between TG in IDL and saturated fatty acids (ratio 12), while TM6SF2, a potential LXR target 
gene, appears to act towards the regulation of PL in small vs. medium VLDLs (ratio 13), pointing to a role in VLDL 
secretion and remodeling.   

 

  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 28, 2022. ; https://doi.org/10.1101/2022.06.12.22276286doi: medRxiv preprint 

https://doi.org/10.1101/2022.06.12.22276286
http://creativecommons.org/licenses/by-nc-nd/4.0/


30 

 

FIGURES 

 

Figure 1. Study design and outcomes. (A) Flow chart of the present study; (B) Heatmap of 

negative log10(p-value) for the association of 168 NMR traits at the 141 independent genetic loci 

(rsids), scaled by division using the largest -log10(p-value) at each locus; Darker colors represent 

stronger associations; (C) Heatmap of the effect estimates (beta), scaled by division using the 

largest absolute beta value and aligning the directionality (sign of beta) such that the strongest 

beta at each locus has a positive association with the respective effect allele of that variant; Blue 

colors represent negative associations and red positive associations; Details on k-the means 

clusters are in Supplementary Figure 4; Heatmaps are also provided in Excel format as 

Supplementary Tables 4&5, see also Supplementary Figure 3.  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 28, 2022. ; https://doi.org/10.1101/2022.06.12.22276286doi: medRxiv preprint 

https://doi.org/10.1101/2022.06.12.22276286
http://creativecommons.org/licenses/by-nc-nd/4.0/


31 

 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 28, 2022. ; https://doi.org/10.1101/2022.06.12.22276286doi: medRxiv preprint 

https://doi.org/10.1101/2022.06.12.22276286
http://creativecommons.org/licenses/by-nc-nd/4.0/


32 

 

Figure 2. Association profiles of 141 independent genetic loci with the lipoprotein classes 

and LP core content. The association profiles (normalized effect sizes) are shown for 

cholesterol ester (CE), free cholesterol (FC), phospholipids (PL), and triglycerides (TG) for the 

fourteen lipoprotein size classes that are covered by the NMR platform, ordered by size from 

smallest (S-HDL) to largest (XXL-VLDL); Closest genes as identified by Graham et al. are in 

black; Genes annotated here as being involved in lipoprotein metabolism, transport, and 

remodeling are in red; Lead variants (rsids) are grouped by k-means cluster membership. 
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Figure 3. Application of NMR association profiles for drug target assessment. (A)

Scatterplot of the effect estimates for the association of rs12916 near HMGCR with the 168

NMR traits and of the effect for the association of statin usage with the 168 NMR traits, colored

by NMR trait group (Supplementary Table 1); Error bars represent the standard errors of the

effect estimates; (B) Scatterplot of the effect size for the association of statin usage and incident

MI with the 168 NMR traits; Dot sizes represent the log10(p-value) of the MR estimates (MR

Egger) for the MR with MI as an outcome; Supplementary Figure 7 shows the odds ratios for

the associations with incident MI and estimated by MR; (C) Scatterplots of the effect sizes for

the lead variants at the LPL and the ANGPTL3 loci with the 168 NMR-traits; (D) Scatterplot of

the effect estimates for the association of the two independent variants (rs676210 and

rs138905573) at the APOB locus with, limited to lipid traits (symbols) in the respective

lipoprotein particles; The associations with the blood levels of HDL-C (H), LDL-C (L), total

cholesterol (C), total triglycerides (T), and apolipoprotein B (B) measured by clinical

biochemistry are indicated by the letters. 

) 

68 

ed 

he 

nt 

R 

for 

for 

 of 

nd 

ve 

tal 

cal 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 28, 2022. ; https://doi.org/10.1101/2022.06.12.22276286doi: medRxiv preprint 

https://doi.org/10.1101/2022.06.12.22276286
http://creativecommons.org/licenses/by-nc-nd/4.0/


34 

 

  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 28, 2022. ; https://doi.org/10.1101/2022.06.12.22276286doi: medRxiv preprint 

https://doi.org/10.1101/2022.06.12.22276286
http://creativecommons.org/licenses/by-nc-nd/4.0/


35 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 28, 2022. ; https://doi.org/10.1101/2022.06.12.22276286doi: medRxiv preprint 

https://doi.org/10.1101/2022.06.12.22276286
http://creativecommons.org/licenses/by-nc-nd/4.0/


36 

 

  

Figure 4. Genetic associations of 58 lipid metabolism, transport, and remodeling genes with 

14 pathway specific ratios. Center: Heatmap displaying the relative log10(p-gain) for the 

associations of 14 key ratios with genetic variance at 58 lipid risk loci that harbor genes that are 

involved in lipoprotein metabolism, transport, and remodeling (LPmtr genes); Right: The highest 

log10(p-gain) observed at each given locus (rsid); Left: Full ratio names, matched to the 14 

columns in the heatmap and functional annotation of the 58 LPmtr genes and pathways; refer to 

the embedded legend for symbols used in pathway annotations (detailed gene annotations and 

heatmap data are in Supplementary Table 10; see also Supplementary Tables 11&12 for 

details on how this heatmap was obtained). Functional links between the ratios and gene groups 

are provided in Box 1. 
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SUPPLEMENTARY FIGURES 

Supplementary Figure 1: Scatterplots between the five lipid traits measured on the NMR

platform and using clinical biochemistry methods show a high degree of correlation between

both platforms (Pearson r2 > 0.75). 
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Supplementary Figure 2: Scatterplots between the effect sizes (beta) for the associations of

the 141 lead variants with the lead lipid trait reported in ST3 by Graham et al. obtained in

different ways: Left: using the five lipid traits from the Nightingale NMR data (beta [NMR])

compared to using the clinical biochemistry data (beta [clinical]) on the 98,000 UKB samples;

Middle: using the clinical biochemistry data compared to estimates from ST3 in Graham et al.

(beta [Graham et al.]); Right: using the NMR data compared to Graham et al; These plots

demonstrate that there is a very high correlation between the effect sizes (betas) derived using

the NMR platform and the clinical biochemistry measurements on samples from 98,000 UKB

participants, and that both also highly correlate with the effect sizes derived by Graham et al.

using data from 1.6 million multi-ethnic individuals. 
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(a) (b) 

Supplementary Figure 3: Association data for the 141 lead variants. The clustered and scaled

effect sizes and -log10(p) values shown in Figure 1B/C are also available as data in Excel

format (Supplementary Tables 4&5). The full association summary statistics for all NMR trait

and ratio associations with all variants and all models reported in ST3 of Graham et al. are

accessible as Supplementary Data on FigShare at

https://doi.org/10.6084/m9.figshare.19728991. 
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Supplementary Figure 4: NMR association profiles by cluster. Individual association profiles 

are in grey and correspond to loci (columns) of the heatmaps presented in Figure 1B and 1C; 

NMR traits are ordered as in Figure 1 and Supplementary Tables 4 and 5; Average profiles for 

each cluster in green (normalized -log10(p-values)) and red (normal effect estimates, beta). 
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Supplementary Figure 5: Example of a set of SuSiE analysis plots, showing model

coefficients, p-values (-log10(p)) and z-scores for the single effect models, and the posterior

inclusion probabilities (PIP) for the NMR traits (ordered on the x-axis as in Supplementary

Table 1); Credible sets are colored and labeled; Details of credible set membership are in

Supplementary Table 6; SuSiE analysis plots are provided in PDF format for all 141 lead

associations on FigShare (file: run_susieR.pdf). 
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Supplementary Figure 6: Binarized posterior inclusion probability (PIP) matrix for the

SuSiE analysis of the 141 loci; red dots indicate traits that were included in the respective SuSiE

models (Supplementary Table 6); The clustered matrix is also available as data in Excel format

as Supplementary Table 7. 
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Supplementary Figure 7. Mendelian randomization with MR. Odds ratios for the association

of incident MI with the NMR traits (black) and estimates using Mendelian randomization (red);

Triangles indicate Bonferroni significant MR estimates; Points for the same traits are connected

by lines that are colored by the NMR trait group; Traits are ordered as in Figure 1B/C. 
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Supplementary Figure 8. Association of variants in drug target genes and the

corresponding drug usage. Scatterplots of the effect estimates for the associations of four

variants near genes coding for established drug targets (HMGCR, ADRB1, NPC1L1, PPARG)

with the 168 NMR traits and the effect sizes for the associations of the corresponding drugs

(statin, beta blocker, ezetimibe, glitazone) with the 168 NMR traits (see legend to Figure 4); The

statistical estimates are based on 15,050 statin users, 394 glitazone users (209 pioglitazone, 185

rosiglitazone), 615 ezetimibe users, and 5,939 users of ADRB1 specific beta blockers; These

plots can be used to interpret how well a given variant possibly models the actual effect of the

respective drug on the respective NMR traits.  
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Supplementary Figure 9. Association of variants in potential drug target genes and incident

MI.  Scatterplots of the effect estimates for the association of four variants near genes coding for

established or potential drug targets (HMGCR, CETP, ANGPTL4, ANGPTL3) with the 168

NMR traits and the effect for the association of incident MI with the 168 NMR traits; Dot sizes

represent the log10(p-value) of the MR estimates (MR Egger) for the MR with MI as an

outcome; These plots can be used to interpret how the effect of genetic modulation of a potential

drug target on the NMR traits aligns with the association of incident MR, and which of these

traits are potentially causal, based the MR. 
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Supplementary Figure 10. Scatterplots of the effect sizes for associations of selected pairs of

variants with the 168 NMR-traits. These examples show the degrees of similarity that can be

expected when targeting the respective gene products; They can be used to hypothesize on the

potential effect of inhibiting a new target based on the profile(s) of known ones. 
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Supplementary Figure 11. Association plots for the APOB locus. (a) Scatterplot of the effect

estimates for the association of two genetically uncorrelated variants (rs676210 and

rs138905573) at the APOB locus with the 168 NMR traits; The associations with the blood

levels of HDL-C (H), LDL-C (L), total cholesterol (C), total triglycerides (T), and apolipoprotein

B (B) measured by clinical biochemistry are indicated by letters; (b) as (a), but limited to lipid

traits (symbols) in the respective lipoprotein particles; (c,d) Scatterplot of the effect estimates of

the respective APOB variants and the 168 NMR-traits and the association of incident MI with

the NMR-traits; Dot sizes represent the log10(p-value) of the MR estimates (MR Egger) for the

MR with MI as outcome; Note that rs676210 is a protein altering variant in the APOB gene

while rs138905573 is located upstream of APOB; This example shows that two variants located

to a same gene locus can have very different effects; In this case the protein altering variant may

for instance change the physical binding properties of APOB and its interaction with other

molecules in the lipoprotein particles, while the non-coding variant may alter APOB protein

levels altogether.  
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Supplementary Figure 12: Identification of the 14 key ratios (yellow) that are associated with

the 58 genes (clusters highlighted as colored columns) involved in lipoprotein metabolism,

transport, and remodeling; full matrix with all ratios (top) and limited to the ratios with the

largest p-gain per cluster (bottom); matrix entries are normalized log10(p-gain) values; The data

is also available in Excel format as Supplementary Tables 11&12. 
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Supplementary Figure 13. P-gain matrix. An example of a 168x168 matrix containing all

log10(p-gain) values for the association of one variant (rs116843064 near ANGPTL4) with all

14,196 traits and ratios; The diagonal contains the -log10(p-values) and the off-diagonal cells

contain the log10(p-gain) values, where the sign indicates the direction of the association;

Formatted data for this example is in Supplementary Table 15; Data for all loci is available on

Figshare at https://doi.org/10.6084/m9.figshare.19728991.  
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Supplementary Figure 14: Effect of lipid lowering medication as a covariate. Scatterplot of

the effect sizes (beta) for the associations with the respective lead NMR trait at the 141 loci,

including and excluding lipid lowering medication as a covariate; This plot shows that major

biases introduced by including lipid lowering medication as a covariate can be ruled out. 
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SUPPLEMENTARY TABLES 

Supplementary tables are provided in EXCEL format. 

ST1 List and annotation of the 168 NMR traits 

ST2 List of 81 ratios proposed by Nightingale (NightRatios) 

ST3 Association data for all computed models (based on 2,624 entries of ST3 by Graham et al.) 

ST4 Scaled log10(p-value) for 141 genetic loci and 168 traits (data used in Figure 1B) 

ST5 Scaled effect sizes (beta) for 141 genetic loci and 168 traits (data used in Figure 1C) 

ST6 Results of SuSiE analyses (credible sets, PIP values, …) 

ST7 Matrix indicating which of the168 trait is included in a credible set at one of the 141 loci 

ST8 Phenomewide association data for the 168 traits (from Buergel et al., Nat. Med. 2022) 

ST9 Mendelian Randomization on myocardial infarction (MI) 

ST10 Manual curation of 58 genetic loci associated with lipoprotein transport, metabolism and 

remodeling (LPmtr genes) 

ST11 Ratios that associated with one of the 58 LPmtr genes involved in lipoprotein metabolism, 

transport, and remodeling 

ST12 14 lead ratios that associated with one of the 58 LPmtr genes 

ST13 MR with 144 ratios that represent the strongest ratio association for at least one of the 225 

replicated loci 

ST14 GWAS with the 14 lead ratios 

ST15 Example of a formatted p-gain matrix (data provided for all loci on FigShare) 
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SUPPLEMENTARY DATA 

Summary statistics for all NMR-trait and NMR-ratio associations at all 1,906 loci, ratio 

association matrices similar to Supplementary Table 15 in tab-separated text format, as well as 

all MR instruments in MRBase format are available on FigShare 

https://doi.org/10.6084/m9.figshare.19728991. 
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