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Abstract: Gestational diabetes mellitus (GDM) is often diagnosed during the last trimester of pregnancy, leaving 
only a short timeframe for intervention. However, appropriate assessment, management, and treatment have 
been shown to reduce the complications of GDM. This study introduces a machine learning-based stratification 
system for identifying patients at risk of exhibiting high blood glucose levels, based on daily blood glucose 
measurements and electronic health record (EHR) data from GDM patients. We internally trained and validated 
our model on a cohort of 1,148 pregnancies at Oxford University Hospitals NHS Foundation Trust (OUH), and 
performed external validation on 709 patients from Royal Berkshire Hospital NHS Foundation Trust (RBH). We 
trained linear and non-linear tree-based regression models to predict the proportion of high-readings (readings 
above the UK’s National Institute for Health and Care Excellence [NICE] guideline) a patient may exhibit in 
upcoming days, and found that XGBoost achieved the highest performance during internal validation (0.021 [CI 
0.019-0.023], 0.482 [0.442-0.516], and 0.112 [0.109-0.116], for MSE, R2, MAE, respectively). The model also 
performed similarly during external validation, suggesting that our method is generalizable across different 
cohorts of GDM patients. 
 
Keywords: Machine Learning, Clinical Decision Making, Gestational Diabetes, Blood Glucose, Patient 
Monitoring, Electronic Health Record. 
 
 
1. Introduction 
 

Gestational diabetes mellitus (GDM) is one of the most common health conditions during 
pregnancy, with a prevalence of one in six pregnant women worldwide [1]. GDM is defined as 
glucose intolerance of either first onset or recognition during pregnancy [2]. It is associated with both 
maternal and fetal complications, including perinatal death, excessive fetal growth (leading to 
problems during childbirth), preeclampsia, and neonatal hypoglycemia. Additionally, women who 
develop GDM are at increased risk of developing Type 2 diabetes [3,4,5]. Appropriate assessment, 
management, and treatment have been shown to reduce the complications of GDM. However, GDM 
is typically diagnosed during the last trimester of pregnancy, thus leaving only a short timeframe for 
intervention (typically around 10-16 weeks) [6]. Once diagnosed, counselling is provided for lifestyle 
management, including dietary and exercise modifications. To monitor improvement, women are 
asked to check their glucose levels through finger stick-testing several times a day. In the case that 
glucose levels remain high, medication is prescribed [3]. 

 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted June 16, 2022. ; https://doi.org/10.1101/2022.06.11.22276278doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2022.06.11.22276278
http://creativecommons.org/licenses/by/4.0/


 

 

The UK’s National Institute for Health and Care Excellence (NICE) guidelines states women with 
GDM require an increased level of maternal and fetal surveillance as they may need more 
interventions during pregnancy [7]. Based on the NICE guidelines, nurses and clinicians should 
review women with GDM at least once every two weeks, from the time of diagnosis of GDM until 
delivery. However, women who are at high risk of hyperglycaemia (high blood sugar level), or those 
who, despite treatment, demonstrate persistent hyperglycaemia, can require more frequent clinical 
review. Given that many NHS Trusts and hospitals abroad provide care for very large numbers of 
women with GDM at any one time (often > 100 women), this presents a challenge for busy clinicians. 
Traditionally, glucose control has been assessed based on historic blood glucose readings recorded by 
the women in paper forms or diaries. The advent of digital monitoring opens new possibilities for 
prediction of women at risk of hyperglycaemia. 

 
In clinical practice, clinicians typically review patients’ blood glucose levels every 2-4 weeks in 

the outpatient antenatal clinic. Thus, with the advent of real-time monitoring using GDm-Health, 
there is the potential for more frequent review and more responsive medication adjustment. 
However, this needs to be balanced against workload generation for the clinical team. We propose a 
novel data-driven model that can bypass the need to manually screen all patients with high blood 
glucose readings before making decisions on patient-review order, significantly reducing the burden 
on clinicians. Specifically, we introduce a model for stratifying patients with GDM based on 
hyperglycaemia risk, and consequently, their need for clinical review. Using machine learning-based 
regression models, the proposed pipeline quantifies the risk of hyperglycaemia for the three days 
immediately following a blood glucose measurement. 

 
2. System Design 
 
2.1. Bluetooth-enabled Blood Glucose Measurement 
 

To address the challenges of monitoring patients with GDM and providing timely intervention, 
the University of Oxford and Oxford University Hospitals NHS Foundation Trust (OUH) developed a 
digital blood glucose management system, GDm-Health [6]. This is a smartphone-based, Bluetooth-
controlled blood glucose monitoring system, enabling remote self-monitoring and bidirectional 
communication between patients and clinicians. 

 
Women who were diagnosed with GDM and managed by OUH were subscribed to the GDm-

health system to monitor their blood glucose levels. During the period of using GDm-Health, women 
were recommended to measure their blood glucose between four to six times a day (recorded as pre-
breakfast, one-hour post-breakfast, pre-lunch, one-hour post-lunch, pre-dinner, and one-hour post-
dinner), for a minimum of three days of the week [7]. We will refer to these six measurements as 
“Tags” in this study. 

 
Additionally, GDm-Health has a heuristic alerting system based on clinical care pathways used 

by OUH during the development of GDm-Health. A red flag is generated if three or more consecutive 
blood glucose readings are above the designated threshold at the same meal tag.  An amber flag is 
generated if two or more consecutive readings are above the threshold [6]. However, with large 
numbers of women with GDM managed in each hospital, a significant proportion of women have red 
or amber flags every week, generating substantial work for clinicians. Thus, there is a need for 
improved approaches to further stratify patients within these higher risk groups, who need urgent 
attention. 

 
We developed a model that aims to streamline clinician workflows by automating the 

identification of patients that need urgent clinical review. This algorithm can be used as an intelligent 
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add-on module on GDm-Health or as a stand-alone system for any GDM clinic if they have access to 
patients’ daily blood glucose data. 

 
2.2. Participant Inclusion and Exclusion 
 

For this study, we used de-identified, linked electronic health record (EHR) data and blood 
glucose measurements. Women with GDM, managed at the OUH, and subscribed to the GDm-Health 
system between April 30, 2018 to May 4, 2021 were included in this study (1,148 pregnancy cases). 
Patients with more than one pregnancy during the study period were considered for each pregnancy, 
independently. Additionally, we only considered patients who had one baby during the pregnancy 
(i.e., twin pregnancies were not included in the study). Pregnancies with less than 36 blood glucose 
readings were excluded to ensure that models were trained on patients who have established their 
blood glucose test patterns. This threshold of 36 readings assumed that patients would establish their 
blood glucose test pattern after 7-10 days of blood glucose monitoring (with 4-6 readings per day). 
Excluding patients with a small number of blood glucose measurements reduces the risk of having 
distribution shifts between training and prediction samples, removing possible biases, such as patient 
behavioural changes. 

 
To externally validate the performance of our model, the GDm-Health data of 709 pregnancy 

cases at the Royal Berkshire Hospital was also included using the same inclusion and exclusion 
criteria. 

 
2.3. Hyperglycaemia Risk Score Definition 
 

The model is designed based on the hypothesis that the predicted three-day mean percentage of 
high readings, immediately after a three-day observation window, can be used as a proxy for 
hyperglycaemia risk. This score can then be used to stratify patients in need of clinical review, 
supporting clinicians in deciding whom to review based on predicted risk. 

 
3. Methods 
 
3.1. Data Preprocessing 
 

There were 1,148 pregnancies and 272,712 blood glucose readings considered during the model 
development process. In our study, the measurements used were self-tested and self-reported by 
patients; thus, the blood glucose testing frequency varied. As shown in Fig. 1, the highest numbers of 
blood glucose measurements were taken pre- and post-breakfast, post-lunch, and post-dinner (in the 
OUH cohort). 

 
Beyond the difference in sample rate frequencies, the duration of blood glucose monitoring 

(between the week of recruitment and the week of giving birth), also varied. Thus, for each 
pregnancy, we separated blood glucose measurements into multiple three-day windows, using 
measurements from one three-day window to predict the hyperglycaemia risk for the following 
three-day window. This windowing method helps minimize any possible errors from outliers or 
missing measurements over the three-day period. Furthermore, it allows us to use more of the data, 
as days with some missing tag values can still be considered in training. The risk score being 
predicted (score between 0-1, with 1 representing the highest risk), is defined as the proportion of 
blood glucose readings above the NICE advised thresholds [7]. A higher proportion of high-reading 
alerts indicates a higher risk of blood glucose abnormality. This set-up allows for blood glucose status 
to be predicted after each blood test, making it easier for clinicians to stratify patients with abnormal 
blood glucose levels. Additionally, as the monitoring period between clinical review for GDM 
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patients is typically between three-days (and possibly up to two weeks), the window size is suitable 
for current clinical review periods. The ability to prioritize patients with higher hyperglycaemia risk, 
helps enable personalized and continuous GDM blood glucose monitoring. 

 
 

 
Figure 1: Blood glucose readings for each tag across patients in the OUH cohort. 105,693 readings 
recorded pre- and post-breakfast, 62,923 recorded pre- and post-lunch, and 66,429 recorded pre- and 
post-dinner. 
 

In the OUH time-series data, we further removed any readings with miscellaneous values, such 
as those recorded as NaN or those with invalid time tags (i.e., tags not corresponding to any of the 
six). We did not filter any extreme blood glucose values outside reasonable ranges, as we wanted to 
develop a model that would be robust to any errors that may be due to data collection/sensor 
recordings. Blood glucose readings under the “pre-lunch” and “pre-dinner” tags were also excluded 
during model development, as these tags had far fewer measurements recorded (less than half of the 
frequency of the other tags). By removing these, we were able to avoid using any form of data 
imputation for missing values.  Moreover, the NICE guideline advises patients to have four 
measurements every day; thus, developing a model based on four tag features is well-suited for the 
task, without overwhelming women with additional blood tests. We then combined the remaining 
blood glucose readings with their linked, de-identified EHR features. We included three features 
previously shown to affect blood glucose levels – maternal age, gestational day (duration of 
pregnancy in days), and medication [8,9,10]. Pregnancies missing any of these features were 
excluded, leaving 840 pregnancies (collectively contributing 5,765 windows) in the final dataset. 

 
Although BMI has been previously found to affect blood-glucose levels, there were many 

missing values present in our dataset, and since we removed any windows with missing values, 
including BMI as a feature would significantly reduce the size of our training set (from 4,573 
windows to 2,500). Thus, we did not include it as a feature in our primary analyses. 

 
We applied the same preprocessing pipeline to our external validation dataset collected at the 

RBH, which resulted in 186 pregnancies (corresponding to 1,219 windows) available for testing 
(screened from 163,376 blood glucose readings, from 709 patients). 
 

Beyond the time-series blood glucose readings and EHR features, we also generated two 
engineered features. The first feature is based on high blood glucose readings, which considers any 
blood glucose measurements higher than the NICE advised blood glucose ranges, which are defined 
as target measurements between 3.5 mmol/L and 5.8 mmol/L for fasting measurements, and 
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measurements less than 7.8 mmol/L for 1-hour postprandial measurements [7]. Using this definition, 
we calculated the value of this feature as the percentage of high-readings that occur within the three-
day observation period (across all tags). The second engineered feature we calculated is the average 
rate of change of blood glucose measurements over the three-day observation window (calculated 
individually for each time tag). We refer to these as High-readings and Gradients, respectively. The 
full summary of features (and their respective definitions) included in model development are listed 
in Table 1. We grouped individual features into corresponding sets based on accessibility, namely, 
sensor-provided features (Tags), two types of engineered features (Gradients, High-readings), and 
EHR data (maternal age, gestational day, medication).  

 

 
Figure 2: Final datasets after all data exclusion considerations, pre-processing methods, and 
training/testing split (80:20) of the OUH dataset. 
 
Table 1: Feature sets used in model development. 

Feature Set Features Definition 
Tags Pre-breakfast reading, 

Post-breakfast reading, 
Post-lunch reading, Post-
dinner reading 

Tags correspond to mean blood glucose 
measurements for a given time-point (tag), over the 
three-day observation period 

Gradients Pre-breakfast gradient, 
Post-breakfast gradient, 
Post-lunch gradient, Post-
dinner gradient 

Gradients correspond to rate of change of blood 
glucose for a given time-point (tag), over the three-
day observation period 

High-
readings 

Percentage of high 
readings 

High-readings is the percentage of high-readings 
among all blood glucose measurements within the 
three-day observation period. This feature is also 
calculated for the subsequent three days (three days 
following the observation window) and used as the 
predicted output of the models. 

EHR Maternal age, Gestational 
day, Medication 

Maternal age is the age of the woman when she is 
confirmed with pregnancy. 
Gestational day is the average day of the woman’s 
pregnancy (gestational) days over each three-day 
window. 
Medication is a binary feature, defined as anyone 
taking Metformin and insulin during pregnancy. 
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Summary population characteristics of OUH and RBH patient cohorts are reported in Table 2, 
and summary population statistics of the features used in training can be found in Supplementary 
Tables B1 and B2, for the OUH and RBH cohorts, respectively. 
 
Table 2: Patient characteristics and statistics for OUH and RBH cohorts. Mean values recorded 
alongside standard deviation (where applicable). *missing values present 

Characteristic OUH Cohort RBH Cohort 
Age (years) 33.6 (5.2) 33.6 (4.9)* 
BMI 31.0 (6.8)* 28.6 (6.9)* 

Ethnicity 

Not Stated: 506 
White: 231 
South Asian: 44 
Black: 27 
Other: 22 
Chinese: 8 
Mixed: 2 

Not Stated: 43 
White: 63 
South Asian: 66 
Black: 7 
Other: 7 

 
 
3.2. Model Development and Hyperparameter Optimization 
 

For hyperglycaemia risk prediction, we trained both linear and non-linear ensemble models. To 
predict a continuous risk score, we used multiple linear regression (MLR), Random Forest, and 
XGBoost regression models. All models can handle tabular data consisting of both continuous and 
categorical features. MLR is a parametric model that is widely accepted in clinical decision-making, 
making it an appropriate benchmark for comparison to more complex models. Random Forest is an 
ensemble method built on decision trees, and XGBoost is an optimized distributed gradient boosting 
library which has been found to outperform Random Forest and other tree-based models. It is an 
ensemble model that has achieved state-of-the-art results on many machine learning challenges, 
especially those involving structured or tabular datasets (as we are using in our study). Another 
benefit of using tree-based models is that feature importance can be explained using Shapley additive 
explanations (SHAP). 

 
To predict the impending proportion of high-readings a woman will have in the upcoming three 

days, we used the features in a three-day window as the input features (representing the features, X, 
Table 1) and the percentage of high-reading alerts in the subsequent three-day window as the output 
(corresponding label, y, respectively). Each X and y pairing is then treated as an individual sample 
during model development. To understand the role of each feature set (Tags, Gradients, EHR, High-
readings) in MLR, Random Forest, and XGBoost models, we reported model performances using a 
stepwise method, adding additional feature sets one at a time for each subsequent model developed, 
thereby evaluating their relative importance. 

 
To choose the appropriate training settings for the XGBoost regressor, we plotted the model 

outcome variable (i.e., percentage of high-readings alerts over the subsequent three days), y, to look at 
its distribution. As shown in Fig. 3, this variable is highly skewed, with many zeros. However, as our 
model focuses on predicting patients at risk of exhibiting high blood glucose levels, we chose to use a 
Gamma distribution to represent the distribution of the predictor variable, such that our model is 
focused on non-zero values for high-readings. 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted June 16, 2022. ; https://doi.org/10.1101/2022.06.11.22276278doi: medRxiv preprint 

https://doi.org/10.1101/2022.06.11.22276278
http://creativecommons.org/licenses/by/4.0/


 

 

 
Figure 3: Percentage of high-readings in three-day prediction windows to be predicted (OUH 
dataset), compared to different distributions. 

 
 

For model development, we used an 80:20 ratio of the OUH data, by individual pregnancy, 
resulting in 4,573 and 1,192 windows in the training and test set, respectively (corresponding to 672 
and 168 patients, respectively). We used the training set for hyperparameter optimization and 
modeling training. For the XGBoost model, we implemented a grid search for different values of the 
learning rate, number of trees used, maximum tree depth, percentage of samples used per tree, and 
percentage features used per tree. Standard five-fold cross-validation was then applied to evaluate 
which hyperparameter combination performed the best. We used the same number of trees and 
maximum tree depth in the Random Forest Model. Details about the final settings and 
hyperparameter values used for each model can be found in Supplementary Table C1. After 
successful hyperparameter optimization, we tested the final model on the held-out test set. 

 
We started model training by using only tag features, as a baseline model, and sequentially 

added additional feature sets. The availability of feature sets can vary depending on the level of data 
access in different settings; thus, we evaluate all combinations of these sets in model development. 
Although we did not include BMI in our primary analyses, we tested its influence using the 
subsequently reduced training set, to demonstrate the potential of including it as a feature in any 
future analyses. Results for this can be found in Appendix D in the Supplementary Material. 

 
To compare our models, we reported the mean squared error (MSE), the R2 value (R2), and the 

mean absolute error (MAE). Because our goal was to stratify patients at risk of having high blood 
glucose levels, the actual prediction value itself was ancillary to the order in which patients are 
ranked. Thus, we also considered the accuracy in which a patient is ranked. We determined this rank 
by calculating the percentage of patients that were correctly triaged into correct risk bounds. We 
considered three label-encoded scoring bounds – lower-, middle-, and upper-bounds (scores binned 
by equally splitting lower-, middle-, and upper-thirds). To further understand the contribution of 
individual features to model predictions, we also performed SHAP analysis. 

 
4. Results 
 
4.1. Model Training and Internal Validation 
 

Both tree-based ensemble methods outperformed MLR (Table 3), and the narrow CIs showed 
model stability. The XGBoost model achieved the best performance in terms of all metrics (0.021 [CI 
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0.019-0.023], 0.482 [0.442-0.516], and 0.112 [0.109-0.116], for MSE, R2, MAE, respectively), followed 
closely by the Random Forest model (0.022 [0.021-0.024], 0.447 [0.400-0.482], and 0.117 [0.117 (0.114-
0.121], for MSE, R2, MAE, respectively). The MLR model performed significantly poorer, achieving 
0.035 [0.031-0.149], 0.155 [0.000-0.179], and 0.142 [0.127-0.150], for MSE, R2, and MAE, respectively. 
The XGBoost model also achieved the highest accuracy for all three risk bounds (0.609 [0.582-0.633], 
0.413 [0.387-0.438], and 0.650 [0.624-0.675] for lower-, middle-, and upper-bounds, respectively) 
compared to the other two models; and as before, the Random Forest model performed second best 
(0.598 [0.569-0.625], 0.404 [0.378-0.430], 0.639 [0.610-0.665] for lower-, middle-, and upper-bounds, 
respectively). Results between the XGBoost and MLR models were significantly different (Wilcoxon 
Signed Rank Test, p < 0.0001), as well as between the XGBoost and Random Forest models (p < 
0.0001). 
 
Table 3: Performances of MLR, Random Forest, and XGBoost models trained on Tags feature set. 
Results are reported alongside 95% confidence intervals (calculated using 1000 bootstrap samples). 

Model MSE R2 MAE Rank Accuracy 
Lower Middle Upper 

MLR 0.035 
(0.031-
0.149) 

0.155 
(0.000-
0.179) 

0.142 
(0.127-
0.150) 

0.570 
(0.516-
0.628) 

0.403 
(0.372-
0.433) 

0.601 
(0.537-
0.665) 

Random Forest 
Regression 

0.022 
(0.021-
0.024) 

0.447 
(0.400-
0.482) 

0.117 
(0.114-
0.121) 

0.598 
(0.569-
0.625) 

0.404 
(0.378-
0.430) 

0.639 
(0.610-
0.665) 

XGBoost 
Regression 

0.021 
(0.019-
0.023) 

0.482 
(0.442-
0.516) 

0.112 
(0.109-
0.116) 

0.609 
(0.582-
0.633) 

0.413 
(0.387-
0.438) 

0.650 
(0.624-
0.675) 

 
Feature importance determined by SHAP analysis ranked the Pre-breakfast tag as being the most 

important, followed by Post-breakfast, Post-dinner, and Post-lunch tags. This was similar to the MLR 
coefficients which ranked Pre-breakfast as the most important, followed by Post-dinner, Post-
breakfast, and Post-lunch tags. Results for the feature ranking of different Tags can be found in 
Supplementary Figure C1 and Table C2. 

 
Non-linear, tree-based ensemble regression models achieved higher performance for this task, 

compared to an MLR model. Thus, as the XGBoost model out-performed both Random Forest and 
MLR models, especially with respect to the R2 value, we chose to use XGBoost for the development of 
all subsequent models. 
 

Overall, performance across different models, did not differ substantially from the baseline 
model trained on only Tags (MSE, R2, MAE of 0.021 [CI 0.019-0.023], 0.482 [0.442-0.516], and 0.112 
[0.109-0.116], respectively), upon the sequential addition of feature sets (MSE and MAE were 0.021 
[CIs range 0.019-0.023] and 0.112 [CIs range 0.108-0.116], respectively, across all models). However, 
models that included High-Readings, performed slightly better (mean R2 of 0.486 [CIs range 0.442-
0.521]), with the model trained on Tags and High-Readings achieving the best performance (R2 0.488 
[CI 0.446-0.521]). Similar results were achieved with respect to rank accuracy, as lower-, middle-, and 
upper-bounds increased in accuracy with the addition of High-Readings (lower-, middle-, and upper-
bound mean accuracies of 0.614 [CIs range 0.586-0.643], 0.417 [0.391-0.444], 0.655 [0.628-0.681]). Again, 
the model using Tags and High-Readings achieved the highest rank accuracies (lower-, middle-, and 
upper-bound accuracies of 0.616 [CI 0.589-0.643], 0.418 [0.394-0.444], 0.655 [0.628-0.681], respectively), 
followed closely by the model trained on Tags, High-Readings, and EHR (lower-, middle-, and upper-
bound accuracies of 0.615 [CI 0.589-0.641], 0.418 [0.392-0.442], 0.655 [0.628-0.681], respectively). 
However, when comparing the outputs of the different models, they do not significantly differ from 
the model which is trained solely on Tags (model trained on Tags and High-Readings, p = 0.309 using 
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the Wilcoxon Signed Rank Test; model trained on Tags, High-Readings, and EHR, p = 0.232). This 
suggests that blood glucose measurements themselves are collectively the most influential features for 
determining impending blood glucose anomalies. This is further confirmed by SHAP analysis, where 
Tags and High-Readings are consistently ranked highest in terms of feature importance across all 
models (SHAP results can be found in Appendix C of the Supplementary Material). The addition of 
Gradients, EHR, or the combination of both, did not appear to improve model performance over the 
corresponding models without these feature sets (p > 0.05). A full list of p-values comparing models 
to the baseline can be found in Supplementary Table C3. 
 
Table 4: Overall performance and rank accuracy of XGBoost models trained on different feature set 
combinations. Results are reported alongside 95% confidence intervals (calculated using 1000 
bootstrap samples). 

Feature Sets 
Used 

MSE R2 MAE Rank Accuracy 
Lower Middle Upper 

Tags 0.021 
(0.019-
0.023) 

0.482 
(0.442-
0.516) 

0.112 
(0.109-
0.116) 

0.609 (0.582-
0.633) 

0.413 (0.387-
0.438) 

0.650 
(0.624-
0.675) 

Tags, 
Gradients 

0.021 
(0.019-
0.023) 

0.480 
(0.442-
0.517) 

0.112 
(0.108-
0.116) 

0.608 (0.580-
0.635) 

0.412 (0.385-
0.437) 

0.650 
(0.626-
0.675) 

Tags, High-
Readings 

0.021 
(0.019-
0.022) 

0.488 
(0.446-
0.521) 

0.112 
(0.108-
0.116) 

0.616 (0.589-
0.643) 

0.418 (0.394-
0.444) 

0.655 
(0.628-
0.681) 

Tags, 
Gradients, 
High-
Readings 

0.021 
(0.019-
0.022) 

0.484 
(0.444-
0.515) 

0.112 
(0.108-
0.115) 

0.611 (0.586-
0.638) 

0.416 (0.391-
0.441) 

0.654 
(0.628-
0.678) 

Tags, EHR 0.021 
(0.019-
0.023) 

0.480 
(0.440-
0.510) 

0.112 
(0.108-
0.116) 

0.611 (0.583-
0.635) 

0.412 (0.387-
0.438) 

0.650 
(0.622-
0.676) 

Tags, EHR, 
Gradients 

0.021 
(0.019-
0.023) 

0.480 
(0.437-
0.514) 

0.112 
(0.108-
0.116) 

0.610 (0.581-
0.635) 

0.414 (0.387-
0.440) 

0.650 
(0.623-
0.676) 

Tags, EHR, 
High-
Readings 

0.021 
(0.019-
0.022) 

0.486 
(0.448-
0.518) 

0.112 
(0.108-
0.116) 

0.615 (0.589-
0.641) 

0.418 (0.392-
0.442) 

0.655 
(0.628-
0.681) 

Tags, EHR, 
Gradients, 
High-
Readings 

0.021 
(0.019-
0.023) 

0.484 
(0.442-
0.514) 

0.112 
(0.108-
0.116) 

0.613 (0.586-
0.643) 

0.417 (0.392-
0.444) 

0.654 
(0.629-
0.680) 

 
 

As there were many missing values present for BMI in our dataset, we did not include it in our 
main analyses. However, we did perform preliminary analyses, including BMI as a feature in model 
development (using a subsequently reduced dataset). Additionally, we also performed analyses using 
the same dataset filtered to only include samples with blood glucose measurements between [1, 31]. 
Results for both can be found in Appendix D of the Supplementary Material. 
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4.2. External Validation 
 

To demonstrate the generalizability of our method, we performed external validation on a cohort 
of women from RBH. The distribution of the predictor variable (Figure. 4b) is similar to that of the 
training set used during model development (Figure. 3). 

 

 
Figure 4: RBH dataset (a) Blood glucose readings for each tag across all pregnancies; (b) Percentage of 
high-reading alerts in the three-day prediction windows. 

 
As the model using Tags and High-Readings achieved the best performance compared to other 

model variations, we used this as the model for external validation. We also compared this to the 
baseline model trained solely on Tags, as we found that they were not significantly different (p>0.05). 
 
Table 5: Overall performance and rank accuracy of XGBoost models externally validated on RBH 
cohort. Results are reported alongside 95% confidence intervals (calculated using 1000 bootstrap 
samples). 

Feature 
Sets Used MSE R2 MAE 

Rank Accuracy 
Lower Middle Upper 

Tags 
0.021 
(0.020-
0.021) 

0.507 
(0.494-
0.519) 

0.110 
(0.109-
0.111) 

0.624 (0.609-
0.639) 

0.413 (0.391-
0.430) 

0.627 (0.612-
0.639) 

Tags, 
High-
Readings 

0.020 
(0.020-
0.021) 

0.519 
(0.505-
0.530) 

0.108 
(0.107-
0.110) 

0.639 (0.624-
0.654) 

0.420 (0.398-
0.440) 

0.624 (0.607-
0.639) 

 
As shown in Table 5, when applied to the RBH cohort, our models achieved similar scores to 

those previously achieved from internal validation. The model trained on Tags achieved MSE, R2, 
and MAE scores of 0.021 (CI 0.020-0.021), 0.507 (0.494-0.519), 0.110 (0.109-0.111), respectively 
(compared to internal validation scores for MSE, R2, and MAE of 0.021 [CI 0.019-0.023], 0.482 [0.442-
0.516], and 0.112 [0.109-0.116], respectively). The model trained on Tags and High-Readings achieved 
MSE, R2, and MAE scores of 0.020 (CI 0.020-0.021), 0.519 (0.505-0.530), 0.108 (0.107-0.110), respectively 
(compared to internal validation scores for MSE, R2, and MAE of 0.021 [CI 0.019-0.022], 0.488 [0.446-
0.521], and 0.112 [0.108-0.116], respectively). The similarity in scores suggests that our model was not 
overfitted to the training set, and thus, is generalizable across external cohorts of patients. 
Additionally, as previously shown, the addition of High-Readings achieved better performance, 
overall, than the baseline model without this feature (Wilcoxon Signed Rank Test, p = 0.004). 

 
 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted June 16, 2022. ; https://doi.org/10.1101/2022.06.11.22276278doi: medRxiv preprint 

https://doi.org/10.1101/2022.06.11.22276278
http://creativecommons.org/licenses/by/4.0/


 

 

5. Discussion 
 

In this study, we developed a data-driven machine learning model to identify patients at risk of 
exhibiting high blood glucose levels (hyperglycaemia). This is a crucial task, as there is an 
appreciation that there exists a spectrum of disease and outcomes, and assigning all women to the 
same care pathway is not patient-centered and does not necessarily provide the best care for each 
woman. Furthermore, with increasing prevalence of GDM and limited healthcare resources, it is 
important for healthcare providers to tailor care delivery to women who need it – providing a 
proportionate response to care delivery depending on glycaemic control and other risk factors. 

 
This study demonstrates the first machine learning-based stratification system for quantifying 

hyperglycaemia risk in GDM clinics, and is not limited to the existing GDm-Health platform. The 
model presented can be used by any GDM clinic if they have access to patients’ daily blood glucose 
data, and such a tool could be used to identify patients who require more urgent clinical review or 
need an adjustment to their current treatment. In order to translate this tool into clinical practice, 
future studies can consider converting the model results into a risk score (e.g. thresholding the 
regression scores into categories, combining regression scores with other clinical features to define the 
degree of risk). 

 
We found that tree-based ensemble models significantly outperformed a linear model. This may 

be due to their inherent ability to consider non-linear effects of the features. Additionally, tree-based 
models are less sensitive extreme values (e.g. outliers, any data measurement errors which can occur 
from the data collection process) compared to linear regression. This is further demonstrated by MLR 
performing better on the filtered dataset, where extreme blood glucose values and sensor errors were 
removed prior to training (Supplementary Table D3). 

 
There are several limitations to this study. Firstly, the MSE, R2, MAE, and rank accuracy scores 

suggest that this model can perform moderately accurately for predicting high blood glucose 
readings, especially those in the upper-bound group.  However, the scores achieved require 
improvement in order to be suitable for clinical practice. This lower performance may be due to the 
small dataset size used in training, data imbalance, and possible clinical confounders that were not 
considered during model development. Further development needs to be done, with clinical experts, 
to both increase the sample size and determine what confounders should be included in the study. In 
terms of the algorithmic approach, a weighted regression model may help improve model fitting. 
Additionally, different window sizes can be considered since it may be necessary to preserve a higher 
degree of granularity; binning may not be accurate enough to track and evaluate blood glucose 
patterns and is heavily biased on the sample population. 

 
As blood glucose measurements are self-measured, there is variation in the number and length 

of recordings completed by each patient. Thus, when splitting the data into windows, there was an 
unequal number of samples contributed from different patients. Ideally, the number of samples 
available from each patient is balanced; however, in the real world this difficult to achieve, as women 
may be diagnosed at different points in their pregnancy and may have very different lifestyles, 
making it difficult to collect consistent measurements across all patients. If enough data is available, 
one possible solution can be regularizing the number of samples contributed by each patient 
(reducing the bias contributed from any individual patient). Similarly, future models can collectively 
consider multiple windows per patient rather than treating each window separately. 

 
The specification of when a patient started or stopped taking GDM-related medication was not 

clear in our data. We considered women who had taken any medication for blood glucose control 
(metformin or insulin) as the medication group and the remainder as the non-medication group. 
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Patients who changed from non-medication to medication during the data collection period of the 
study, were considered as part of the medication group. This is a limitation of this study, as it may 
have impacted the models’ ability to confidently differentiate different groups and accurately predict 
the high-reading percentages. By comparing model performance results (Table 4) and SHAP values 
(Supplementary Figures C1-C8), we found that including the medication feature did not significantly 
change our results when compared to the baseline model. Thus, future analyses should be performed, 
with more data, to confirm the effectiveness of including this feature. 

 
Data missingness is another limitation, as we used real-world clinical data sets. After we 

removed samples with values missing values from any of our selected features, the size of data 
available for training and testing was reduced to 70% and 25% of the original dataset size in the OUH 
and RBH datasets, respectively. Thus, future analyses would greatly benefit from more data or the 
application of different data imputation methods. For this study, we did not have enough data to 
impute missing values in a way that would be biologically accurate. 

 
In general, overall performance did not differ significantly with the addition of non-blood-

glucose features. This may be due to the size of our dataset, as a larger number of features often 
require a larger sample size for training. Additionally, it is difficult to understand how different 
behavioural, physiological, and genetic factors independently and collectively affect GDM, and thus, 
there may be other factors that are better suited to use in the model than the ones we tested. For 
example, known diabetes risk factors (e.g. high BMI, previously having a macrosomic baby, being 
from an ethnicity with a higher prevalence of GDM), may be important in blood glucose prediction. 
In this paper, whilst we were not able to test these features, this reflects the reality of features directly 
accessible by most GDM clinics. Although BMI was not included in our main model development 
(due to many missing values), it was ranked moderately high in terms of feature importance in our 
preliminary analyses (Supplementary Table D2). Thus, future models can consider additional EHR 
features during development, as it may help improve model performance. 

 
6. Conclusion 
 

With the massive growth of digital sensors and electronic data continuing to saturate healthcare, 
machine learning will greatly support clinicians in optimizing healthcare utilization and facilitating 
patient care. This paper presents one of the largest clinical machine learning studies on GDM patient 
stratification and provides a proof-of-concept demonstration of how personalized patient care can be 
implemented for GDM patients. As there is currently no mechanism in place to predict those women 
at risk of hyperglycaemia, our study outlines and demonstrates a straightforward method for 
implementing proportionate care delivery based on features already available in many GDM clinics. 
Additionally, our framework has the potential to be extended to and used with many other predictor 
features and applications. Overall, machine learning in GDM is still a relatively new area; thus, 
additional model training and external validation is necessary to improve our understanding of 
GDM, clinical management, and ultimately, overall maternal and fetal health and care. 
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