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Abstract 56 

Genome-wide association studies have discovered numerous common variants 57 

associated with human cancers. However, the contribution of exome-wide rare 58 

variants to cancers remains largely unexplored, especially for the protein-coding 59 

variants. The UK Biobank provides detailed cancer follow-up information linked to 60 

whole-exome sequencing (WES) for approximately 450,000 participants, offering an 61 

unprecedented opportunity to evaluate the effect of exome variation on pan-cancer. 62 

Here, we performed exome-wide association studies (ExWAS) based on single variant 63 

levels and gene levels to detect their associations across 20 primary cancer types in 64 

the discovery set (WES-300k, N = 284,456) and replication set (WES-150k, N = 65 

143,478), separately. The ExWAS detected 143 independent variants at variant-level 66 

and 49 genes at gene-level, while nine variants and eight genes were shared across 67 

cancers. In the cross-trait meta-analysis, we identified 239 additional independent 68 

pleiotropic variants, mapping to the genes which were functional through trans-omics 69 

analyses in transcriptomics and proteomics. Further, we developed exome-wide risk 70 

scores (ERS) to identify high-risk populations based on rare variants with minor allele 71 

frequency (MAF) < 0.05. The ERS had satisfactory performance in cancer risk 72 

stratification, especially for the extremely high-risk persons (top 5% ERS) that were 73 

frequently risk allele carriers. The ERS (median C-index (IQR): 0.655 (0.636-0.667)) 74 

outperforms the traditional polygenic risk score (PRS) (median C-index (IQR): 0.585 75 

(0.572-0.614)) for discrimination in the replication set. Our findings offer further 76 

insight into the genetic architecture of human exomes for cancer susceptibility. 77 

Keywords: exome-wide association studies, pan-cancer, rare variants, polygenic risk 78 

score, cross-trait 79 
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Introduction 81 

Cancer ranks as a leading cause of death and a critical barrier to increasing life 82 

expectancy worldwide 1. Population-based early screening approaches showed a 83 

remarkable reduction in cancer mortality 2, such as low-dose computed tomography 84 

(CT) screening for lung cancer 3,4. Considering the cost-effectiveness balance, it is 85 

generally agreed that screening should be limited to the high-risk population. 86 

However, precisely identifying high-risk persons is still challenging, while cancer is a 87 

complex disease that derives from environmental exposure and inherent heredity 5.  88 

Cancer shows substantial heritability from genetic variants 6. Genome-wide 89 

association studies (GWAS) have identified numerous associations of genome-wide 90 

significance between genetic variants and common diseases 7. However, common 91 

single nucleotide polymorphisms (SNPs) identified in GWAS explain only a small 92 

fraction of heritability, which might be limited to the coverage of SNP arrays 8. 93 

Exome-wide association studies (ExWAS) have shown that rare coding variants tend 94 

to have larger phenotypic effects than common SNPs and contribute an essential 95 

component of heritability 9. Due to the effect allele frequency being generally low in 96 

ExWAS, the sample size should be large (e.g., n > 100,000) to guarantee the statistical 97 

power, especially for the rare variants 10,11. 98 

Moreover, it is widely recognized that the polygenic risk score (PRS) is a powerful 99 

tool to discriminate the high-risk population susceptible to specific cancer 12,13. 100 

However, most PRSs are generated using common variants derived from the SNP 101 

array, which ignore the rare variants with larger effects, especially those located on 102 

exomes with remarkable biological significance 14,15. Thus, the rare variants might 103 

provide complementarity value for cancer risk stratification based on traditional PRS. 104 

The UK Biobank (UKB) is a powerful resource for evaluating the associations 105 

between coding variants and human diseases because of its large sample size with 106 
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high-quality whole-exome sequencing (WES) data (n≈450,000) 16,17. In our study, we 107 

investigated the landscape of genetic variants with multiple primary cancers through 108 

UKB WES project. Further, we leveraged the rare variants to improve the risk 109 

stratification models to identify the high-risk population. 110 

 111 

Results 112 

Exome-wide association study for single variants 113 

Our study included the whole-exome sequencing 450k (WES-450k in data-field 114 

23148) population of European ancestry in UK Biobank (Table S1). To ensure the 115 

robustness of the results, we conducted a two-stage association study in two separate 116 

datasets: discovery set (interim WES-300k in data-field 23146, N = 284,456) and 117 

replication set (the remaining WES-150k, N = 143,478). Overall, our study included 118 

20 cancer types containing 106,836 primary cancer cases and 321,098 shared 119 

cancer-free controls. The number of cancer cases ranged from 773 (thyroid cancer) to 120 

32,307 (skin cancer). 1,769,329 exome single nucleotide variants (SNVs) annotated 121 

putative loss-of-function (LoF), missense, and synonymous passed the quality control 122 

procedures.  123 

For single-variant analyses, 306,031 variants with minor allele count (MAC)≥10 were 124 

tested in ExWAS. The genomic inflation factor (GIF) values suggested no obvious 125 

population stratification (Figure S1). When combining all the P values of pan-cancer, 126 

the GIF was 1.105, indicating the existing pleiotropic effects (Figure S2). 127 

Among the 20 cancer types, ExWAS detected 255 signals from 242 variants that 128 

passed the genome-wide significance level (P < 5×10-8) in 12 cancer types. After LD 129 

pruning, we observed 153 independent signals across 64 chromosome regions 130 
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(LD-r2<0.5) (Figure 1a, Table S2). The top variant with maximum association signals 131 

was rs555607708 (22:28695868:AG:A, frameshift variant of CHEK2, HGVSp: 132 

p.Thr367fs, effect allele frequency: 0.22%), which was associated with three cancer 133 

types including breast [OR (95% CI): 4.15 (3.16-5.43), P = 7.24×10-25], prostate [OR 134 

(95% CI): 2.40 (1.82-3.16), P = 3.48×10-10] and leukemia [OR (95% CI): 8.48 135 

(4.12-17.48), P = 1.21×10-9]. 136 

Additionally, eight independent variants had significant associations with at least two 137 

cancer types, leading by rs6998061 (OR=0.82~0.89, missense variant in POU5F1B), 138 

rs16891982 (OR=1.42~1.46, missense variant in SLC45A2), rs387907272 139 

(beta=24.1~76.2, LoF variant in MYD88), rs3787220 (OR=0.85~0.88, synonymous 140 

variant in NCOA6), rs77681059 (OR=1.11~1.32, missense variant in TUBB3), 141 

rs1805007 (OR=1.34~1.64, missense variant in MC1R), rs56288641 (OR=1.28~1.59, 142 

missense variant in VPS9D1), rs1126809 (OR=1.13~1.23, missense variant in TYR). 143 

More than half of the variants were shared between skin cancer and melanoma, 144 

including three variants located on 16q24.3. The remaining three variants were shared 145 

among breast, prostate, leukemia, colorectal cancers, and non-Hodgkin’s lymphoma 146 

(NHL) (Table S3). 147 

Exome-wide association study based on gene-level 148 

In addition to the variant-level analyses, we performed gene-based association studies 149 

to capture the effects of ultra-rare variants. We used different genetic models to detect 150 

the signals, according to minor allele frequency threshold (0.05, 0.01, 0.001) and 151 

variant functional annotation (LoF, LoF+missense, LoF+missense+synonymous). 152 

After Bonferroni correction, 49 genes were considered significant (P < 2.5×10-6) 153 

(Figure 1b, Table S4). The top genes with the highest hit frequency were CHEK2 154 

[breast (OR = 1.03, P = 1.08×10-22), prostate (OR = 1.02, P = 1.28×10-12), leukemia 155 

(OR = 1.04, P = 1.55×10-13)], BRCA2 [breast (OR = 1.08, P = 1.43×10-38), ovary (OR 156 
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= 1.14, P = 1.94×10-30), prostate (OR = 1.04, P = 5.98×10-8)], and ATM [breast (OR = 157 

1.10, P = 4.33×10-10), prostate (OR = 1.04, P = 1.89×10-9), pancreas (OR = 1.04, P = 158 

2.67×10-7)], which were associated with three cancer types. VPS9D1, SLC45A2, 159 

BRCA1, MSH6, and MC1R were associated with two cancer types (Table S5). 160 

We summarized the association results of genes that reached significance level in at 161 

least two cancer types from variant-level and gene-level analyses (Figure 1c). Four 162 

genes, including CHEK2, ATM, and BRCA1/2, showed a close relationship with 163 

human cancers. 164 

Shared genetic cross-trait meta-analyses identify pleiotropic signals 165 

To identify additional potential pleiotropic variants associated with multiple cancers, 166 

we performed a cross-trait meta-analysis using Association analysis based on 167 

SubSETs (ASSET). 1,572 variants that reached P < 10-4 in any cancer type were 168 

included. We identified 150 independent variants (mapping to 86 genes, 43 169 

chromosome cytobands) with significant one-directional effects (Table S6) and 89 170 

independent variants (mapping to 38 genes, 16 cytobands) with significant 171 

bidirectional effects (Table S7) (Figure 2a). 172 

We checked the pleiotropic variants in NHGRI-EBI GWAS Catalog 18, a publicly 173 

available database that collected all published GWAS signals phenome-wide. The due 174 

date of associations collection was April 7, 2022. More than half of the identified 175 

variants were not reported in GWAS Catalog [100 novel one-directional variants (66.7% 176 

of all), 59 novel bidirectional variants (66.3% of all)] (Table S6-S7). 177 

We also summarized the shared genetic variants across cancers identified in ASSET 178 

subgroups according to their effect direction (Figure 2b). The top cancer pairs with 179 

the highest shared one-directional variants were skin & melanoma (79 variants), skin 180 

& thyroid (69 variants), sarcoma & skin (51 variants), NHL & skin (50 variants), 181 

esophagus & skin (47 variants). The top cancer pairs with the highest heterogeneous 182 
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bidirectional variants were leukemia & thyroid (51 variants), liver & thyroid (50 183 

variants), lung & sarcoma (48 variants), skin & liver (48 variants), lung & thyroid (48 184 

variants) (Table S8). 185 

Trans-omics functional analysis for the identified genes 186 

We performed a trans-omics analysis to integrate the identified genes from single 187 

variant, gene based and cross-trait meta-analyses into transcriptomics and proteomics. 188 

Gene expression was obtained from the recompute transcriptomic data of The Cancer 189 

Genome Atlas (TCGA) and The Genotype-Tissue Expression (GTEx). 98 unique 190 

protein-coding genes across 15 tissue types that passed quality control were included. 191 

Through comparisons of gene expression in tumor and healthy normal tissues, we 192 

observed remarkable differences in gene expression. The well-known HLA family 193 

genes, BRCA1/2, CHEK2, and TUBB3 were up-regulated in tumor tissues, while ATM, 194 

VPS9D1, and MC1R were down-regulated. However, some genes showed 195 

heterogenous trends across cancers, such as the KRT family, POU5F1B, and TET2 196 

(Figure 3a, 3b).  197 

Further, we performed a KEGG pathway enrichment analysis for the identified genes. 198 

Numerous immune-related pathways were identified, such as Th1 and Th2 cell 199 

differentiation (P = 1.46×10-3), Th17 cell differentiation (P = 2.63×10-3), and 200 

inflammatory bowel disease (P = 3.94×10-4), as well as the classical cancer-related 201 

pathways, including cell adhesion molecules (P = 1.29×10-5), platinum drug 202 

resistance (P = 6.14×10-4), p53 signaling pathway (P = 6.14×10-4), and NF-kappa B 203 

signaling pathway (P = 0.018) (Figure 3e, Table S9). 204 

Proteomic data were collected across ten tissue types from The National Cancer 205 

Institute’s Clinical Proteomic Tumor Analysis Consortium (CPTAC). We observed 206 

moderate differences by comparing protein abundance in tumor and adjacent normal 207 
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tissues. Interestingly, some proteins showed similar patterns with the corresponding 208 

gene expression, such as HLA family genes and CHEK2. However, a reverse trend 209 

was also found for some genes. For example, BRCA2 was down-regulated in 210 

proteomics of tumor tissues (Figure 3c, 3d).  211 

Using the STRING database to integrate all known and predicted proteins-protein 212 

interactions, we identified two large clusters: one was related to the HLA (e.g., HLA 213 

family genes, MICA, BTNL2) and immune function (e.g., CTLA4, CTSS, SAMHD1); 214 

another was related to DNA damage response and repair (e.g., BRCA2, ATM, CHEK2, 215 

MSH6) (Figure 3f). In addition, three small clusters were also identified, including the 216 

keratin family, BPI fold containing family B, and melanogenesis. 217 

Identify high-risk population based on rare variants 218 

We developed exome-wide risk scores (ERS) to identify high-risk population based 219 

on rare variants with minor allele frequency (MAF) < 0.05 for incident cancers. The 220 

discovery set (WES-300k population) was used for risk score training, while the 221 

replication set (WES-150k) was used for external validation. After screening using the 222 

least absolute shrinkage and selection operator (LASSO) with 10-fold cross-validation, 223 

we included a moderate number of rare variants in ERS (median [interquartile range 224 

(IQR)]: 103 (82-199)), ranging from 39 variants (thyroid) to 585 variants (skin) 225 

(Table S10). 226 

We performed a risk stratification analysis to identify the high-risk populations 227 

susceptible to specific cancer types. We defined three risk levels: extremely high-risk 228 

(top 5% ERS), high-risk (5%-25% ERS), and low-risk (bottom 75% ERS), which 229 

might be applicable to different medical screening strategies. The ERS could stratify 230 

the cancer absolute incidence risk significantly in the replication set (Figure 4) and the 231 

whole UKB-450k population (Figure S4) (all log-rank P<2.2×10-16). Using the 232 

low-risk population as the reference, the extremely high-risk persons had hazard ratios 233 
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(HRs) ranging from 4.52 to 9.92 [median (IQR): 7.20 (6.44-7.85)], which 234 

outperformed PRS [HR median (IQR): 2.44 (1.95-2.80)]. The high-risk persons had 235 

HRs ranging from 1.37 to 4.43 [median (IQR): 1.97 (1.75-2.33)), while the PRS had 236 

HRs ranging from 1.11 to 2.15 with median (IQR): 1.56 (1.41-1.79) (Figure 5a, 5b). 237 

Thus, the ERS had satisfactory performance in cancer risk stratification, especially for 238 

the extremely high-risk persons that were frequently risk allele carriers. The 239 

distributions of ERS in each cancer type were shown in Figure S5. Most people did 240 

not carry the causal alleles, while only a few were high-risk carriers. The density plot 241 

of cases and controls indicated the cancer cases had obvious larger ERS than controls 242 

(Figure S6).  243 

Further, we evaluated the discrimination abilities of ERS and PRS using the C-index 244 

for ten-year cancer incidence. The C-index values in the replication set were stable, 245 

ranging from 0.601 to 0.686 [median (IQR): 0.655 (0.636-0.667)], outperforming the 246 

traditional PRS [median (IQR): 0.585 (0.572-0.614)] (Figure 5c). Through Spearman 247 

correlation analysis, we found low correlation between ERS and PRS (average rs = 248 

0.016), indicating the complementary predictive value for the rare exome variants 249 

(Table S11). 250 

 251 

Methods 252 

Study population and phenotype definition 253 

The UK Biobank (UKB) is a population-based prospective cohort of individuals aged 254 

40–69 years, enrolled between 2006 and 2010. The work described herein was 255 

approved by the UK Biobank under application no. 83445. All the phenotype data 256 

were accessed in March 2022. 257 

Health-related outcomes were ascertained via individual record linkage to national 258 
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cancer and mortality registries and hospital in-patient encounters. Cancer diagnoses 259 

were coded by International Classification of Diseases version 10 (ICD-10) codes. 260 

Individuals with at least one recorded incident diagnosis of a borderline, in situ, or 261 

primary malignant cancer were defined as cases collected from data fields 41270 262 

(Diagnoses - ICD10), 41202 (Diagnoses - main ICD10), 40006 (Type of cancer: 263 

ICD10), and 40001 (primary cause of death: ICD10). Finally, we analyzed 20 primary 264 

cancer types with overall cases > 500, including bladder, brain, breast, colorectal, 265 

esophagus, head and neck, kidney, lung, leukemia, liver, non-Hodgkin’s lymphoma 266 

(NHL), ovary, pancreas, prostate, sarcoma, melanoma, skin (non-melanoma), stomach, 267 

thyroid, uterus cancers. 268 

To ensure the robustness of the results and validate the risk stratification model, we 269 

used the WES-300k population released on Sep 28th 2021 as the discovery set and the 270 

remaining WES-150k population additionally released on Oct 29th 2021 as the 271 

replication set. We included only participants of European ancestry. The demographic 272 

and cancer characteristics were described in Table S1. All the data analyses were 273 

performed on DNAnexus Research Analysis Platform (RAP). 274 

Quality control for the genetic variants 275 

Whole-exome sequencing data for UKB participants were generated using the IDT 276 

xGen v1 capture kit on the NovaSeq6000 platform. The UK Biobank WES 450k 277 

release includes CRAM and gVCF files processed using the OQFE protocol 19. 278 

Single-sample variants were called from OQFE CRAMs with DeepVariant 0.0.10 279 

employing a retrained model and are provided as single-sample gVCFs. All gVCFs 280 

were aggregated with GLnexus 1.2.6 using the default joint-genotyping parameters 281 

for DeepVariant. The OQFE protocol maps to a full GRCh38 reference version 282 

including all alternative contigs in an alt-aware manner. Genotype depth filters (SNV 283 

DP≥7, indel DP≥10) were applied prior to variant site filters requiring at least one 284 
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variant genotype passing an allele balance filter (heterozygous SNV AB>0.15, 285 

heterozygous indel<0.20). The detailed parameters were described in Category 170 of 286 

the UKB showcase. In addition, we filtered out the variants with low allele counts if a 287 

variant had minor allele count (MAC) < 3 in the discovery set or MAC < 2 in the 288 

replication set. 289 

Exome-wide association for single variants and gene levels 290 

Single-variant and gene-based association analyses were performed using SAIGE 291 

v1.0.5 20,21. SAIGE is a toolkit developed for genome-wide association tests in 292 

biobank level datasets, which uses saddlepoint approximation to handle extremely 293 

case-control imbalance of binary traits and linear mixed models to account for sample 294 

relatedness. The variant-level association tests included high-quality and reliable 295 

variants with MAC≥10. The exact inclusion criteria for single variants were: (i) MAC296 

≥3 in both cases and controls in the discovery set; (ii) MAC≥2 in both cases and 297 

controls in the replication set. The variants were functionally annotated using Variant 298 

Effect Predictor (VEP) software 22. In addition to the coding variants that alter protein 299 

sequences, synonymous variants could also disturb the level of mRNA expression and 300 

have non-neutral functions 23,24. Thus, variants annotated as putative loss-of-function 301 

(LoF, including nonsense, splice site, and frameshift variants), missense, and 302 

synonymous were included in the analysis. Independent variants were pruned out 303 

using the PLINK v1.9 clump function (--clump-r2 0.50 --clump-kb 500). 304 

For gene-based analysis, we included rare and ultra-rare variants with minor allele 305 

frequency (MAF) < 0.05, 0.01, or 0.001. Three genetic models were considered: LoF, 306 

LoF+missense, LoF+missense+synonymous. Of all the combinations, we reported the 307 

association results with the lowest P value to collectively capture a wide range of 308 

genetic architectures 25. The effect sizes and 95% confidence interval (CI) of genes 309 

were estimated by burden tests. 310 
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In all the association analyses, we adjusted the covariates including age, gender 311 

(excluding sex-specific tumors), Body Mass Index (BMI), smoking status (binary), 312 

drinking status (binary), and the top 10 principal components (PCs). Meta-analysis 313 

was used to summarized the results between discovery and replication sets for single 314 

variants by METAL software 26. At the same time, the gene-based P values were 315 

aggregated by aggregated Cauchy association test (ACAT) method 27.  316 

We reported the significant associations when the variants/genes meet the following 317 

criteria: (i) P < 0.05 in both discovery and replication sets; (ii) reach genome-wide 318 

significant level (P < 5×10-8) in the meta-analysis for variant-level or pass Bonferroni 319 

correction threshold P < 2.5×10-6 (nearly 20,000 protein-coding genes tested) for 320 

gene-level. 321 

Shared genetics analyses to identify potential genes across cancers 322 

To discover more potential variants associated with multiple cancers, we applied a 323 

cross-trait meta-analysis using Association analysis based on SubSETs (ASSET) 28. 324 

ASSET is a statistical tool specifically designed to be powerful for pooling 325 

association signals across multiple cancers when true effects may exist only in a 326 

subset of the cancers. We considered both one-sided (one-directional) and two-sided 327 

(bidirectional) ASSET. Variants with association P < 1×10-4 in any cancer type were 328 

included. Variants were considered significant while reaching Poverall < 5×10-8 and P < 329 

0.05 for each side in bidirectional tests. 330 

Comparison analyses for gene expression in tumor and healthy normal tissues 331 

The UCSC Toil Recompute Compendium provides processed transcript-level 332 

RNA-Seq data from TCGA tumor tissues and GTEx healthy normal tissues quantified 333 

using a unified computational pipeline to remove computational batch effects. We 334 
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used this data to perform comparative analysis across tumor and health normal tissues 335 

from both projects 29. All the gene expression values were normalized to transcripts 336 

per million (TPM) and then logarithmically transformed. After filtering, 15 tissue 337 

types with sample size > 100, including 7,085 TCGA tumor tissues and 4,311 GTEx 338 

normal tissues, were analyzed (Table S12). We used Student's t-test (Pbonferroni<0.05) 339 

and fold change (FC>1.5 or FC<0.5) to identify the differential gene expression 340 

between tumor and healthy normal tissues. 341 

Pathway enrichment analysis 342 

We collected the pathway information with gene sets from the KEGG database, 343 

containing a total of 186 pathways up to March 2022. All enrichment analyses were 344 

performed using the R package clusterProfiler 30. 345 

Comparison analyses for protein abundance in tumor and adjacent normal tissues 346 

The National Cancer Institute’s Clinical Proteomic Tumor Analysis Consortium 347 

(CPTAC) is a national effort to accelerate the understanding of the molecular basis of 348 

cancer through the application of large-scale proteome and genome analysis 31. Eleven 349 

cancer types with available protein abundance data of 1,270 tumor tissues and 845 350 

adjacent normal tissues were collected from ten tissue types (Table S13). The 351 

differential proteins were identified following the same criteria with gene expression. 352 

Protein-protein interaction analysis 353 

To further understand the protein-protein interactions, we used the STRING database, 354 

which considered both physical interactions as well as functional associations 32. The 355 

protein interaction network was clustered into different colors using Markov 356 

Clustering (MCL). 357 
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Polygenic risk score generation 358 

The polygenic risk score (PRS) aggregates the effects of numerous genetic variants 359 

into a single number which predicts genetic predisposition for a phenotype. To 360 

investigate the association of PRS with cancer risk, we generated the PRS based on 361 

previous literature reports. The SNP information and score weights were collected 362 

from the PGS Catalog database 33. PGS Catalog is an open database of published 363 

PRSs, covering >2,000 scores for various phenotypes. If multiple PRSs were reported 364 

for one cancer, we selected the one generated from the largest sample size. After 365 

filtering, 17 PRSs were collected and generated in UKB imputed genotype population 366 

(data field 22828: Imputation from genotype), except for liver, stomach, and sarcoma 367 

cancers that did not have reported PRSs (Table S14). 368 

Development and validation of the risk stratification models based on rare variants 369 

We developed an exome-wide risk score (ERS) for population risk stratification based 370 

on rare variants (MAF<0.05) for each cancer separately. The analyses were restricted 371 

to incident cancers. To perform independent training and validation phases, the 372 

selected variants and weights were determined using the association information in 373 

the discovery set.  374 

We select the rare genetic variants reaching P<1×10-4 in the discovery set as the first 375 

step. The variants identified in this analysis were further screened through penalized 376 

regression using the least absolute shrinkage and selection operator (LASSO) after 377 

10-fold cross-validation to reduce the overfitting and collinearity problem. When high 378 

correlation exists, variants representing independent loci with the strongest statistical 379 

significance were retained. The ERS was generated as: 
1

n

i iERS Gβ=∑ , where iβ  380 

denoted the coefficient of the ith variant iG  calculated by SAIGE in the discovery 381 
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set. 382 

In the validation phase, the variant panel with previously determined weights was 383 

used to generate ERS in the replication set. 384 

We used person-year to describe the absolute cancer incidence risk, which was 385 

defined as the time gap from the date of cohort enrollment to cancer diagnosis or the 386 

last follow-up, whichever came first. Hazard ratios (HRs) and 95% confidence 387 

interval (CI) were used to evaluate the association between ERS and cancer risk based 388 

on Cox proportional hazards models, adjusting for age, sex (excluding sex-specific 389 

cancer), and top ten principal components. We compared effect sizes of ERS for 390 

cancer risk based on the top 5% (extremely high-risk), 5~25% (high-risk), and bottom 391 

75% (low-risk) percentile of ERS. The discrimination performance of the risk scores 392 

were evaluated by Harrell’s C-index. 393 

 394 

 395 

Discussion 396 

In this study, we comprehensively evaluated the susceptibility between genetic 397 

variants on human exome and 20 primary cancer types in approximately 420,000 398 

UKB participants of European ancestry. To our knowledge, this is the first 399 

exome-wide pan-cancer study including almost the whole UKB population, which 400 

could improve the statistical power compared with some previous studies using the 401 

early-phase UKB 200k population 34,35. Trans-omics analyses were performed to 402 

evaluate the functional evidence of identified signals, including genomics, 403 

transcriptomics, and proteomics. Moreover, through establishing the independent 404 

discovery and replication sets, the signals identified and the risk stratification models 405 

could be validated externally to ensure their robustness, especially for the rare 406 

variants with smaller MAF. 407 
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Our first major finding discovers exome-wide signals associated with multiple cancers. 408 

In the ExWAS analyses, the identified protein-coding variants in CHEK2 (known as 409 

c.1100del), BRCA1/2, ATM have been reported associated with cancers in previous 410 

studies 36. Based on such a large-scale population, novel variants and genes were also 411 

identified. For example, the missense variant rs6998061 in POU5F1B, which was 412 

predicted as a possibly damaging SNV by VEP, was associated with prostate and 413 

colorectal cancers. POU5F1B was a protein-coding gene highly homologous to OCT4 414 

37, which was recently shown to be transcribed in cancer cells. It has been found 415 

related to tumorigenicity and tumor growth in vivo and could promote angiogenesis 416 

and cell proliferation and inhibits apoptosis in cancer cells 38. The stop lost variant 417 

rs387907272, predicted as probably damaging in MYD88, was associated with 418 

leukemia and NHL. MYD88 encodes a cytosolic adapter protein that plays a central 419 

role in the innate and adaptive immune response 39. It functions as an essential signal 420 

transducer in the interleukin-1 and Toll-like receptor signaling pathways 40. Moreover, 421 

mutations in MYD88 could activate NF-κB and its associated signaling pathways, 422 

thereby promoting B-cell proliferation and survival 41. Thus, this germline mutation 423 

might be a promising target for clinical implications. Moreover, we identified multiple 424 

SNVs located in 16q24.3 that were shared between skin cancer and melanoma, 425 

including VPS9D1, MC1R, and TUBB3. VPS9D1, a protein-coding gene that affects 426 

protein binding activity, was significantly associated with skin cancer and melanoma. 427 

Although its role in cancer has not been reported, its antisense VPS9D1-AS1 could 428 

promote tumorigenesis and progression by mediating micro RNAs via the 429 

Wnt/β-catenin signaling pathway in multiple cancers 42,43. Human MC1R has an 430 

inefficient poly(A) site allowing intergenic splicing with its downstream neighbor 431 

TUBB3, which were involved in melanogenesis. Melanogenesis is a key parameter of 432 

differentiation in melanocytes and melanoma cells that could affect the treatment of 433 

pigmentary disorders 44. Therefore, the SNVs and genes we identified had remarkable 434 

biological functions that were practical for precise clinical implications. 435 
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Our second major finding identified the pleiotropic variants shared among cancers. 436 

We observed strong functional evidence for the identified genes from KEGG pathway 437 

network and protein-protein interaction network through trans-omics analyses for 438 

gene expression and protein abundance. We found several essential function modules 439 

from proteomics. The DNA damage response and repair agents are widely used in 440 

clinical oncology given the expanding role of immune checkpoint blockade as a 441 

therapeutic strategy 45. The HLA locus, located on chromosome 6, is among the most 442 

polymorphic regions of the human genome 46. HLA dysfunction is deeply involved in 443 

the immune evasion events in the development and progression of certain cancers 47. 444 

A previous study has reported that somatic mutation in HLA was associated with 445 

multiple cancers 48; we hereby demonstrated that germline mutation in HLA was also 446 

relevant. In addition, the keratin family and BPI fold containing family B (BPIFB) 447 

were also related to cancers that had certain biological functions 49,50.  448 

Our third major finding improves the ability for high-risk population identification. It 449 

is widely recognized that early screening for cancers is most likely beneficial when 450 

the target tumor type has relatively uniform biology and a slower rate of progression 2. 451 

Targeting on high-risk populations with appropriate strategies for early detection 452 

could get remarkable benefits of mortality reduction 51-53. However, the selection of 453 

individual to be screened is a complex procedure, with difficulty accurately 454 

identifying high-risk persons who are most likely to benefit from screening. Because 455 

cancer is heritable, PRS is emerging as the quantitative measurement for individual 456 

genetic risk. However, the heritability for common variants identified in GWAS is 457 

limited, while the contribution of rare variants could not be ignored. Therefore, we 458 

leveraged the rare variants to construct the ERS to offset this limitation. By evaluating 459 

C-index and risk stratification, we demonstrated the added values of rare variants.  460 

ERS could be combined with specific tumor screening strategies, suggesting that 461 

people with extremely high risk should be screened frequently (e.g., once a year), and 462 
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those with high risk should be screened regularly (e.g., once every three years), which 463 

is expected to further reduce the cancer mortality. Therefore, ERS is expected to serve 464 

as an informative benchmark to incorporate the PRS and baseline information that 465 

have been used in cancer risk assessment. 466 

Our work has several strengths. First, we comprehensively evaluated the exome-wide 467 

genetic variants in 20 cancer types on variant and gene levels among 420k 468 

participants and analyzed the cross-cancer pleiotropy through cross-trait meta-analysis. 469 

Second, we explored the relationship between identified genes and cancers at 470 

multi-omics levels, including genomics, transcriptomics, and proteomics. The 471 

trans-omics analyses revealed that the identified signals were functional. Third, we 472 

focused on the high-risk population identification based on exome-wide variants, 473 

while few studies developed risk scores using rare variants. We demonstrated the 474 

stable performance of ERS across pan-cancer in the replication set, especially for its 475 

ability to identify the extremely high-risk persons. Therefore, the ERS might serve as 476 

a complementary genetic risk assessment tool combined with the existing screening 477 

guidelines.  478 

It is essential to acknowledge the limitations of our study. First, this study was 479 

conducted in the UKB population only. Although we established a discovery set and 480 

replication set, it is not strictly independent validation. Therefore, future large-scale 481 

population studies should be conducted to replicate these findings. Second, we 482 

focused on individuals of European ancestry only. Moreover, it is essential to evaluate 483 

the associations of variants and performance of ERS in non-European populations. 484 

Third, we mainly investigated the genetic effects of population risk stratification. 485 

However, the contribution of environmental factors should not be ignored. 486 

Well-established risk models incorporated with environmental factors, PRS, and ERS 487 

should be developed for specific cancer. 488 

In conclusion, our study provides novel insights into human exomes and rare variants 489 
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through comprehensive analyses of genetic susceptibility to human cancers and 490 

subsequent target analyses on specific genes and risk stratification. 491 

 492 

Data Availability 493 

UK Biobank data is available from https://www.ukbiobank.ac.uk/. TCGA data is 494 

available from https://portal.gdc.cancer.gov/. GTEx data is available from 495 

https://www.gtexportal.org/home/. CPTAC data is available from 496 

https://pdc.esacinc.com/pdc/pdc. 497 

Code Availability 498 

The R software codes that support our findings are available from the corresponding 499 

author by a reasonable request. 500 

 501 

  502 
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Figure legends 664 

Figure 1. (a) Manhattan plot for the single variant association results in ExWAS. The 665 

blue dash line indicates the genome-wide significance level (P < 5×10-8). (b) 666 

Manhattan plot for the gene-based association results in ExWAS. The blue dash line 667 

indicates the Bonferroni correction level (P < 2.5×10-6). (c) The heatmap of 668 

variant-level and gene-level association results for the genes shared at least two 669 

cancer types. We report the signal if it reaches nominal P<0.05 in the corresponding 670 

cancer type (red: odds ratio (OR)>1; blue: OR<1). The grey color indicates 671 

association P > 0.05. 672 

Figure 2. (a) Circos plot for the genes identified in the cross-trait meta-analysis. (b) 673 

Heatmap for the number of shared genetic variants across each cancer pair. The red 674 

color indicates the shared variants with one-directional effects. The blue color 675 

indicates the shared variants with bidirectional effects between the cancer pairs. 676 

Figure 3. (a) Heatmap of fold change (FC) values to compare gene expression 677 

between TCGA tumor tissues and GTEx healthy normal tissues. (b) Volcano plot for 678 

the FC values and -log(P) values for comparison of gene expression. (c) Heatmap of 679 

FC values to compare protein abundance between CPTAC tumor tissues and adjacent 680 

normal tissues. NA: not available. (d) Volcano plot for the FC values and -log(P) 681 

values for comparison of protein abundance. (e) KEGG pathway network from the 682 

enrichment analysis of the pleiotropic genes. (f) Protein-protein interaction network of 683 

the signal genes and pleiotropic genes. 684 

Figure 4. Cumulative cancer incidence plot for the 20 cancer types in the replication 685 

set (WES-150k). The red line indicates the extremely high-risk persons, the green line 686 

indicates the high-risk population, and the blue line indicates the low-risk persons. 687 

The P values were calculated using the log-rank tests. 688 
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Figure 5. (a) The dot plot of the hazard ratios (HRs) and 95% confidence intervals 689 

(CIs) of exome-wide risk scores (ERS). The low-risk subgroup (blue dot) was set as 690 

the reference group. The red dot indicates the extremely high-risk persons, the green 691 

dot indicates the high-risk population. (b) The dot plot of the HRs and 95% CIs of 692 

polygenic risk scores (PRS) for 17 cancer types, while liver, stomach, and sarcoma 693 

cancers did not have reported PRSs. (c) The C-index values of ERS and PRS 694 

generated by the Cox regression model. 695 

Supplementary Figures 696 

Figure S1. Q-Q plots of single variant tests for each cancer 697 

Figure S2. Q-Q plot combining all the P values of pan-cancer 698 

Figure S3. Manhattan plot for the single variant analyses of each cancer 699 

Figure S4. Cumulative cancer incidence plot for the 20 cancer types in the whole 700 

UKB-450k population. 701 

Figure S5. Histogram of the exome-wide risk scores (ERS) in each cancer 702 

Figure S6. Density plot of the exome-wide risk scores (ERS) in cases and controls 703 

Supplementary Tables 704 

Table S1. Demographic characteristics in the UK Biobank cohort 705 

Table S2. Association results for independent single variants with P<5×10-8 in the 706 

whole UKB-450k population 707 

Table S3. Association results for single variants with P<5×10-8 in at least two cancer 708 

types 709 

Table S4. Association results for genes with P<2.5×10-6 in the whole UKB-450k 710 

population 711 
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Table S5. Association results for genes with P<2.5×10-6 in at least two cancer types 712 

Table S6. Cross-trait meta-analysis results for single variants with one-directional 713 

effects 714 

Table S7. Cross-trait meta-analysis results for single variants with bidirectional effects 715 

Table S8. Number of independent shared genetic variants in the cross-trait 716 

meta-analysis 717 

Table S9. KEGG enrichment analysis for the genes identified in cross-trait 718 

meta-analysis 719 

Table S10. Model parameters for the exome-wide risk scores (ERS) in 20 cancer types 720 

Table S11. Correlation analysis for ERS and PRS 721 

Table S12. Number of tissues included in the comparison analyses for gene 722 

expression in tumor and healthy normal tissues 723 

Table S13. Number of tissues included in the comparison analyses for protein 724 

abundance in CPTAC 725 

Table S14. Information of the selected polygenic risk score (PRS) in PGS catalog 726 

 727 
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