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Summary 
Augmenting traditional genome wide association studies (GWAS) with advanced machine 

learning algorithms can allow the detection of novel signals in available cohorts. We 

introduce “Genome wide association neural networks (GWANN)”, a novel approach that 

uses neural networks (NNs) to perform a gene-level association study with family history of 

Alzheimer's disease (AD). In UK Biobank, we defined cases (n=42,110) as those with AD or 

family history of AD and sampled an equal number of controls. The data was split into an 

80:20 ratio of training and testing samples, and GWANN was trained on the former followed 

by identifying associated genes using its performance on the latter. Our method identified 18 

genes to be associated with family history of AD. APOE, BIN1, SORL1, ADAM10, APH1B, 

and SPI1 have also been identified by previous AD GWAS. PCDH9, NGR3, ROR1, LINGO2, 

SMYD3, and LRRC7 were among the new genes that have been previously associated with 

neurofibrillary tangles or phosphorylated tau. Furthermore, there is evidence for differential 

transcriptomic or proteomic expression between AD and healthy brains for 11 of the 12 new 

genes. A series of post-hoc analyses resulted in a significantly enriched protein-protein 

interaction network (P-value<1×10-16), and enrichment of relevant disease and biological 

pathways such as focal adhesion (P-value=1×10-4), extracellular matrix organisation (P-

value=1×10-4), Hippo signalling (P-value=7×10-4), Alzheimer's disease (P-value=3×10-4), 

impaired cognition (P-value=4×10-3), and autism spectrum disorders (P-value=1×10-2). 

Applying NNs for GWAS illustrates their potential to complement existing algorithms and 

methods and enable the discovery of new associations without the need to expand existing 

cohorts. 
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1 Introduction 
Alzheimer’s disease (AD) affects approximately 30 million people in the world, making it the 

most common form of dementia1. It is characterised by the build-up of Aβ and tau proteins in 

the brain, leading to neuronal death and impaired cognitive function2. In the last 10 years, 

genome wide association studies (GWAS) have revolutionised our understanding of the 

inherited basis of disease and they have been critical in identifying multiple risk loci and 

novel disease pathways associated with AD involving the microglia and lysosome3. 

However, the classical GWAS analysis depends on sample size, and despite the number of 

SNPs identified until today, they still only explain a fraction of the heritability of the disease4. 

Gene-based methods have been developed to identify the joint effects of rare variants5,6 and 

common variants7, and gene-level analysis from GWAS summary data8. However, there are 

currently no methods to perform gene-based discovery using machine learning methods.  

Along with the modern availability of large datasets9–12, to complement and enhance current 

GWAS methods, we propose to use an approach based on machine learning to shed light 

on more complex patterns in genomic mechanisms involving gene interactions and non-

linear relationships. Machine learning methods, more particularly Neural Networks (NNs), 

have been instrumental in the advancement of multiple engineering industries due to their 

efficacy in analysing complex data patterns13,14, especially where large amounts of data are 

available. Compared to the success of classical GWAS, the successes of NN in gene 

discovery has been limited. NNs have recently been employed and tested on various 

complex traits and diseases including eye colour and schizophrenia15. Our aim was to 

develop NNs specialised to perform a gene-level association study using SNP data available 
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in the UK Biobank (UKB)16. Our method is gene-based and considers groups of SNPs within 

and around each gene in the genome to establish the association of the gene with the 

phenotype of interest. In this paper we demonstrate the application of our new GWANN 

method as a complementary method to existing GWAS methods, to identify associations 

with familial history of Alzheimer’s disease/dementia, a proxy that has been successfully 

used to identify new genes for AD in the UKB17,18. We present the genetic associations to 

family history of AD found by the method, and systematically support the results with post-

hoc enrichment analyses using transcriptomic data from post-mortem AD brains, biological 

pathways and gene ontologies, protein-protein interaction (PPI) data, disease and trait gene 

sets, and data about target tractability for drug development.  

2 Results 

2.1 Identification of genes related to family history of AD using 

GWANN 

We applied GWANN to 42,110 cases of AD family history, and an equal number of controls. 

80% (n=67,376) of the data was used to train the NNs and 20% (n=16,844) was used as a 

held-out test set. The analysis was run at a gene-level, where the SNPs within a gene and in 

the flanking 2500 bp region were mapped to the gene. Each gene was divided into windows 

containing a maximum of 50 SNPs, and a separate NN (Figure 1) was trained for each 

window. A total of 70,848 gene windows were tested. In addition to the SNPs, age (field 

21003), sex (field 31), the first six genetic principal components (PCs) obtained from UKB 

variables (field 22009), and education qualification (field 6138) were used as covariates. 

Education qualification was transformed into years of education using the International 

Standard Classification of Education (ISCED) encoding. Since NNs are inherently 

stochastic13, for each window, the method was run 16 times with different random seeds to 

get a stable aggregate performance metric on the held-out test set, and to then determine 
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the level of statistical significance of this metric being significantly above chance predictions 

of family history of AD. The aggregate metric was compared to a null distribution obtained 

from simulated data generated using the ‘dummy’ method of PLINK 2.019 to obtain a P-

value. An empirical threshold, θ1 = 1x10-25, was determined such that 95% of the gene 

windows with P-value < θ1 would also satisfy P-value < 7.06x10-7—the Bonferroni corrected 

genome wide significance threshold—if the method were repeated another 16 times with 

different random seeds (see STAR Methods for further details). This was to ensure that only 

the most confident hits were reported as significant associations. The negative log loss 

(NLL) of the NNs were used as the test metrics to evaluate significance, and for all post-hoc 

analyses. If multiple windows of a gene were significant, the window with the best test metric 

was selected. 

 

32 genes passed the empirical significance threshold before pruning for linkage 

disequilibrium (LD). After identifying LD blocks (genes with r2 ≥ 0.8) among these genes, we 

retained the gene with the best test metric within a block as the hit gene. This resulted in 

narrowing down to 18 associated genes (Figure 2, Table 1). Among these hits, APOE, BIN1, 

ADAM10, SORL1, SPI1, and APH1B have been previously associated with AD by large 

GWAS3 (Figure 3). In addition to these AD associated genes, LINGO2, LRRC7, NRG3, 

PCDH9, ROR1, and SMYD3 have been previously identified via SNP x SNP interaction 

studies to be associated with phosphorylated tau3. Six genes, SYNPO, SRGAP2B, PALD1, 

AKR1C6P, HSP90AB4P, and RPS6KC1, had no evidence for previous GWAS association 

with AD or AD-related traits. To further understand the 12 new GWANN hits, we obtained 

information about them from the Agora AD knowledge portal 

(https://agora.adknowledgeportal.org) (Figure 3). Besides PCDH9 and AKR1C6P, all hits 

had evidence for differential transcriptomic or proteomic expression between post-mortem 

AD and healthy brains. RNAseq levels of PCDH9 had evidence of association with clinical 

consensus diagnosis of cognitive status at time of death (COGDX). AKR1E2, a gene 23 kbp 

upstream of AKR1C6P, was nominally significant (P-value = 7.43x10-6) in the GWANN 
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analysis, and also has evidence for association with phosphorylated tau in previous genome-

wide interaction analysis3, and differential transcriptomic expression between AD and 

healthy brains (https://agora.adknowledgeportal.org). We also performed a GWAS using 

PLINK 2.019 on the same data that was used for GWANN (TradGWAS). After LD pruning, 

TradGWAS identified APOE and SORLI as significant genes (P-value < 5x10-8), both of 

which were identified by GWANN. When compared with the genes identified by the largest 

AD GWAS run in the European population (EADB GWAS)12, GWANN had an overlap of five 

genes (APOE, SORL1, APH1B, BIN1, SPI1) and TradGWAS had an overlap of two genes 

(APOE, SORL1) (Figure 3c). We also looked at the overlap with the EADB GWAS hit genes 

using the top 100 genes from GWANN and TradGWAS (Figure 3d). This showed an overlap 

of 7 genes (APOE, SORL1, BIN1, ABCA7, BCKDK, UFC1, CR1) between the EADB GWAS 

and TradGWAS, and 7 genes (APOE, SORL1, BIN1, ABCA7, APH1B, SPI1, CTSH) 

between the EADB GWAS and GWANN. If an intergenic hit SNP in the EADB GWAS was 

not deterministically mapped to either the upstream or downstream gene, both were 

considered when calculating the overlap. The EADB GWAS reported 89 hit loci, but since we 

calculated the overlap on a gene level, we used the 84 unique genes that these loci were 

mapped to and added APOE to the list of hits.  

2.2 Enriched biological pathways, GO terms, diseases, and PPI 

network 

Gene set enrichment analysis (GSEA)20 was applied to the GWANN summary test metrics 

for all genes to identify enriched pathways in Reactome, Wiki, Kyoto Encyclopaedia of 

Genes and Genomes (KEGG), and Gene Ontology (GO) gene sets obtained from MSigDB21 

(Figure 4a-4d, Supplementary Table 2). GSEA calculates the normalised enrichment score 

(NES) based on the test metric of all genes analysed using a Kolmogorov-Smirnov-like 

test20. Hence, some pathways had a significant NES due to the cumulative contribution of 

genes that were nominally significant but not among the list of 18 GWANN hits. The enriched 
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pathways with the GWANN hits present in the GSEA leading edge were extracellular matrix 

organization (P-value = 1.04x10-4), signalling by receptor tyrosine kinases (P-value = 

7.64x10-4) , axon guidance (P-value = 2.23x10-3), diseases of signal transduction by growth 

factor receptors and second messengers (P-value = 1.11x10-2), and ERBB signalling (P-

value = 2.29x10-2). The most enriched GO terms with GWANN hits in the GSEA leading 

edge were regulation of neuron projection development (P-value = 7.03x10-8), glutamatergic 

synapse (P-value = 2.64x10-6), synapse organisation (P-value = 5.66x10-6), distal axon (P-

value = 7.77x10-5), and regulation of synapse structure or activity (P-value = 7.72x10-4). 

 

Disease and trait enrichment was performed using the DisGeNET22. The enrichment 

analysis requires a list of genes to perform an over representation analysis for all diseases 

and traits in the database. We used the top 100 genes (without LD pruning) ranked by the 

test metric for this analysis and filtered out diseases and traits with more than 5000 genes 

mapped to them (Figure 4e, Supplementary Table 3). Some of the most enriched traits with 

the largest number of overlapping genes were Alzheimer’s disease (FDR = 2.56x10-4), 

impaired cognition (FDR = 4.23x10-3), autism spectrum disorders (FDR = 1.19x10-2), blood 

protein measurement (FDR = 1.82x10-2), and mental deterioration (FDR = 3.50x10-4). 

 

Using the same set of genes as used for the disease and trait enrichment, we generated a 

PPI network using STRING23 (Figure 4f). Some of the gene symbols were not recognised by 

the STRING protein database, leaving a set of 88 genes that were accepted. The resultant 

PPI network was significantly enriched with 72 edges (P-value < 1x10-16). Given a network of 

88 proteins, the expected number of edges for a set of randomly selected proteins is 21, 

thereby rendering the GWANN PPI network to have significantly more connections than an 

equivalent network of random proteins. The nodes in the network enriched multiple gene 

sets in the experimental factor ontology (EFO), broadly grouped (Supplementary Table 4) 

into AD-related traits, lipid and lipoprotein measurements, inflammation markers, cognition, 

cardiovascular diseases, liver enzyme measurements, and gut microbiome measurement. 
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The network in Figure 4f shows each node (protein) coloured by the group of EFO traits it 

enriched.  

 

We also performed the same enrichments for TradGWAS (Supplementary Figure 1). 

Pathways related to ERBB signalling and calcium signalling overlapped with GWANN. The 

other top enriched pathways were mainly related to cholesterol, lipids, and lipoproteins 

(Supplementary Figure 1a-d). The PPI network showed similar levels of enrichment to the 

GWANN PPI network (P-value < 1x10-16, Supplementary Figure 1e).  

2.3 Enrichment of transcriptomic data from AD post-mortem 

brains using GWANN hits 

We identified two previous studies that looked at differential transcriptomic expression 

between the brains of post-mortem AD cases and healthy controls. The first study, by Patel 

et. al.24. reported the results of a meta-analysis of DEGs between AD cases and controls in 

the cerebellum, frontal lobe, parietal lobe, and temporal lobe. We used the DEGs identified 

by them when comparing AD vs controls, and non-AD mental disorders vs controls. We also 

performed the enrichment for DEGs unique to AD and no other mental disorder. The second 

study, by Patel et. al.25 listed DEGs between (i) asymptomatic AD cases vs controls, (ii) 

symptomatic AD cases vs controls, and (iii) symptomatic vs asymptomatic AD cases in the 

cerebellum, entorhinal cortex, frontal lobe, and temporal lobe. We applied the GSEA 

algorithm to identify the level of enrichment of the DEG sets. Table 2 contains the adjusted 

P-value of enrichment of the DEG sets for each condition and in each brain region.   

 

In the first study (Patel at. al. – A), DEG sets in all brain regions were enriched for AD vs 

controls and ‘Only AD’ vs controls, and the cerebellum and parietal lobes were enriched for 

‘non-AD’ vs controls. The GWANN hits in the leading edge of the GSEA for the different 

enriched conditions and brain regions were PCDH9, APOE, SORL1 and LRRC7. Despite the 
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temporal lobe being enriched, none of the GWANN hits were in the leading edge. UFC1, a 

new hit identified in the EADB GWAS and a nominal hit in our analysis (P-value = 2.4x10-11), 

along with MAP2K1, another nominal GWANN hit (P-value = 6.11x10-22) were in the leading 

edge for the temporal lobe. Additionally, there was no difference between the DEGs for AD 

vs controls and ‘Only AD’ vs controls in the temporal lobe, thereby producing identical 

enrichment. There was no enrichment for the asymptomatic AD vs controls condition in the 

second study (Patel at. al. – B), and the entorhinal cortex and temporal lobes were enriched 

for symptomatic AD vs controls, and symptomatic AD vs asymptomatic AD. The GWANN 

hits in the leading edge were BIN1, SORL1, SYNPO and SRGAP2B. 

 

The same enrichments were also performed for TradGWAS (GWAS on same data as 

GWANN) using PLINK 2.0 (Supplementary Table 7). The brain regions and conditions 

enriched were the same as that for GWANN. 

2.4 Potential of GWANN targets for AD drug discovery 

To assess the tractability of the GWANN hits for aiding drug discovery, we used TargetDB26 

to score them based on information collected from literature, and knowledge about their 

chemistry, biology, structure, and genetics. ADAM10, APOE, SMYD3, BIN1, SORL1, and 

ROR1 were reported to be tractable; and SPI1, LRRC7, APH1B, NRG3, and PCDH9 were 

reported as challenging, but tractable (Supplementary Table 5). Amongst the tractable 

genes, ROR1 has a drug, Cirmtuzumab, associated with it which is currently under clinical 

trials for different cancers and neoplasms27.  

3 Discussion 
We developed GWANN and applied it to identify genes associated with family history of AD 

using data from the UKB. In doing so, we were able to identify 18 genes significantly 

associated with the phenotype. The post-hoc enrichment analyses showed enriched 
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biological and disease pathways relevant to AD and neurodegeneration. Several GWANN 

hits were also identified as tractable drug targets.  

3.1 Role of hit genes and enriched biological pathways in 

neurodegeneration and AD 

While some of the GWANN hits have not been identified in previous GWAS, many of them, 

or their associated biological pathways, have been linked to AD or neurodegeneration. For 

brevity, the six well-known AD genes identified by GWANN have not been discussed here. In 

the following paragraphs, the pathways and gene ontologies mentioned in parentheses were 

enriched and contains the gene being discussed. 

 

LINGO2 has been linked to promoting lysosomal degradation of amyloid-β protein precursor, 

thereby having a protective effect against AD28. A similar finding has been reported in a 

previous differential gene expression analysis in the CA1 and CA3 brain regions of the 

hippocampus, where they found higher expressions of LINGO2 in healthy controls as 

compared to AD patients29. In our post-hoc enrichment analyses, LINGO2 contributed to the 

enrichment of biological processes involved with synapse organisation (GO:0050808), and 

synapse activity and structure (GO:0050803). This could explain its importance in 

maintaining a healthy synapse by facilitating the clearance of amyloid-β, as identified by the 

previously mentioned studies. Additionally, although LINGO2 has not been identified as a 

genome wide significant gene for AD, it has been identified to be nominally significant in 

previous GWAS on (i) non-hypertensive AD cases vs controls30, and (ii) brain region atrophy 

(entorhinal cortex thickness, hippocampus volume, ventricular volume) derived from MRI 

data31. Another GWANN hit, SYNPO, has demonstrated involvement in synaptic plasticity32. 

It has been previously shown to have a role in facilitating the autophagic clearance of p-

Ser262 microtubule-associated protein tau (MAPT)33. Our post-hoc enrichment analyses 

highlighted its localisation to the actin cytoskeleton (GO:0015629). The role of the actin 
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cytoskeleton in facilitating autophagy34 and the involvement of SYNPO with the organisation 

(GO:0007015) and binding (GO:0003779) of this cellular component could explain how it 

aids in the clearance of phosphorylated tau. Furthermore, it was also identified to be 

significantly downregulated in patients with dementia of Lewy bodies and Parkinson’s 

disease dementia, suggesting its role in other neurodegenerative disorders with similar 

pathology to AD35. Along with SYNPO, ROR1 is among the new GWANN hits that also 

contributes to the maintenance of healthy synapses through its involvement with the 

cytoskeleton. It encodes a receptor tyrosine kinase (GO:0004713) that is associated with the 

actin cytoskeleton (GO:0015629). Actin filaments help in maintaining the integrity of the 

neuronal cytoskeleton, and past studies have implicated the role of amyloid-β in disrupting 

the cytoskeleton. The overexpression of ROR1 was shown to stop cytoskeleton degradation 

in-vitro, even in the presence of amyloid-β by preserving the actin network36. Epigenetically, 

ROR1 was also identified as a gene with differential hydroxymethylation between late-onset 

AD patients and healthy controls. Along with six other genes, it was shown to be correlated 

with MMSE and MoCA scores of subjects37.  

 

NRG3, along with some of the well-known AD hits—APOE, BIN1, APH1B, ADAM10—, is 

part of the enriched pathways involved with receptor tyrosine kinase signalling (R-HSA-

1250342 and R-HSA-1963642), and biological processes involved with synapse organisation 

and signalling (GO:0099177 and GO:0050808). In a previous single cell RNAseq analysis 

using cells from the entorhinal cortex of AD patients, the NRG3-ERBB4 ligand-receptor pair 

was identified to be important for intercellular communication between astrocytes, neurons, 

oligodendrocyte precursor cells, and other cells. Ablation of NRG3 and ERBB4 caused a 

reduction in excitatory synapse formation in AD patients when compared with healthy 

controls and affected intercellular communication38. ERBB4 was not genome wide significant 

in our analysis but achieved nominal significance (P-value = 2.59x10-10). Additionally, given 

the association of NRG3 with cognitive impairment, a hypothesis driven study tested its 
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association with risk and age at onset of AD. The authors identified multiple SNPs and 

haplotype pairs to be significantly associated with the phenotypes39. Hence, despite not 

being genome wide significant in previous studies, the NRG3 gene and associated biological 

pathways have been shown to possess a link to AD.  

 
PCDH9, a member of the protocadherin family, facilitates cell adhesion (GO:0007156 and 

GO:0098742) in neural tissues, contributes to forebrain development (GO:0030900), and is 

associated or localised in the distal axon (GO:0150034). Variants proximal to or within the 

gene have been nominally associated with AD40, and associated with essential tremor 

(another neurodegenerative disease)41 in previous GWAS. Another GWANN hit, SMYD3, 

has been shown to be significantly elevated in the prefrontal cortex of AD patients and in 

mouse models of tauopathy. Inhibiting its expression aided in rescuing cognitive defects and 

restored synaptic function in pyramidal neurons42.  

 

3.2 Selection of the significance threshold 

We ran the method 16 times to obtain a more stable metric than what would be achieved by 

running the method a single time. To empirically determine the P-value threshold of 

significance, we selected pairs of k runs—k in {2, 3, 4, 5, 6, 7 ,8}—from within the 16 total 

runs, and assessed the stability of the identified hits at different thresholds of P-values 

(Supplementary Figure 2a, STAR Methods). We defined the stability of hits as the 

percentage of intersection between a pair of k runs. Since the maximum value of k for 

creating paired runs was 8, given a maximum of 16 runs, the empirical P-value threshold 

was selected as the largest value that ensured 95% stability of hits for 8 runs, instead of 16. 

We noticed that the significance threshold becomes larger as the number of runs increases 

(Supplementary Figure 2b). Hence, the threshold for 8 runs would ensure a minimum 

stability of 95% for hits identified after 16 runs.  
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While this approach reduced the false positives, it also had the effect of increasing the false 

negatives. Given the increasing trend in the P-value threshold with number of runs, if the 

threshold was increased to 1x10-15, three well known AD genes, PICALM (P-value = 

6.99x10-21), EPHA1 (P-value = 1.7x10-20), and ABCA7 (P-value = 1.84x10-16), would be 

added to the list of GWANN hits. Furthermore, if the P-value threshold was considered as 

7.06x10-7, the Bonferroni threshold for multiple testing, instead of empirically determining it, 

ACE (P-value = 2.39x10-12), CD2AP (P-value = 4.62x10-12), IL34 (P-value = 4.52x10-9), and 

APP (P-value = 6.37x10-7), would also be added to the list of well-known AD hits identified 

by GWANN. However, for each of the above-mentioned thresholds, 53% and 65% of all the 

significant genes would have no evidence for association with AD or AD-related traits in 

previous GWAS. While a proportion of these genes could have true association with family 

history of AD, others would increase the false positives identified by GWANN and reduce the 

confidence of the reported hits. Hence, we decided to use the more conservative empirical 

threshold of 1x10-25 to limit the false positives and report the most confident hits.  

 

3.3 Comparison of methods and datasets 

We studied the overlap of hit genes and top 100 genes between GWANN, TradGWAS 

(PLINK 2.0 GWAS on GWANN data), and the EADB GWAS (Figure 3c-d). There was a 

larger overlap between the hits of (i) GWANN and EADB GWAS (n=5) as compared to the 

overlap between the hits of (ii) TradGWAS and EADB GWAS (n=2). However, for the top 

100 genes, the overlap was the same (n=7) in (i) and (ii). A possible reason for the smaller 

overlap between the hits in (ii), despite employing similar methods, can potentially be 

attributed to the lower power in TradGWAS. Additionally, the overlap between the top 100 

genes for (iii) TradGWAS and GWANN (n=21) was larger than (i) or (ii). This would suggest 

that there seems to be a greater effect of similarity in the dataset as compared to the 

method. Although the EADB GWAS included the signal from the UKB, the inclusion of 
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additional datasets made the signal sufficiently different as compared to the data analysed 

by TradGWAS and GWANN. The effective dataset used in the EADB GWAS (n=788,989) 

was almost 10 times the size of the GWANN or TradGWAS data (n=84,220), which also 

contributed to the power of the analysis. We used multiple approaches to calculate the 

overlap between the different methods and observed the same pattern (Supplementary 

Figure 3). While the genes from the EADB GWAS were always the same set of 85 genes, 

the different methods to get genes from GWANN and TradGWAS were (a) selecting the top 

100 genes without LD pruning, (b) selecting the hit gene in an LD block after LD pruning, 

and (c) selecting the entire LD block after LD pruning and calculating if any gene within this 

block overlaps with a gene in a different method. The reason we used method (c) was to 

accommodate the condition where a known AD gene within an LD block would be pruned if 

another gene in the same block had a higher statistic than it.  

3.4 Limitations and considerations 

Some well-known AD hits such as CLU, CR1, and TREM2 would not be identified by 

GWANN even if the P-value threshold would be increased, as discussed earlier. An 

explanation for missing genes like TREM2 could be the difference in the minor allele 

frequencies (MAFs) of the hit SNPs and the SNPs selected for the GWANN analysis. We 

used a MAF of 0.01 and all SNPs rarer than this were not considered. Furthermore, a caveat 

of our analysis is the limited genomic region that was analysed. Only SNPs within a gene 

and in the 2500bp flanking it were considered in the analysis, thereby leaving out most 

intergenic SNPs. Due to the large computational burden of training a very large number of 

NNs, we decided to limit the number of SNPs to allow the method to run in a reasonable 

amount of time. This led to a lot of hit SNPs being excluded from the analysis and could be 

another possible explanation for not identifying some of the well-known AD hits. We also 

limited the number of SNPs per NN to a maximum of 50. The number of SNPs per gene 

ranged from 1-10,000 and this would require modification of the NN architecture due to the 
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wide range of input sizes. The limit of 50 SNPs was imposed to avoid having multiple NN 

architectures and simplify the analysis. However, this is a limitation of our analysis, and it 

would be more beneficial to include a much larger range of SNPs to utilise the true potential 

of NNs in identifying non-linear relationships. Thirdly, the GWANN analysis used a 1:1 ratio 

of cases:controls to avoid the NNs from overfitting to the majority class. This reduced the 

sample size as compared to what would be used in a traditional GWAS and possibly 

influenced the failure to discover genes with weaker signals that would benefit from a larger 

sample size. Hence, the difference in SNPs and sample size used by GWANN, along with 

the difference in the model itself as compared to previous GWAS could be the factors 

contributing to the inability of known AD loci to reach significance in this analysis.  

 

Another limitation of GWANN is the inability to provide SNP level statistics for the hit genes. 

This makes it difficult to compare GWANN with standard GWAS methods and use GWANN 

results with packages and tools designed for downstream analyses post GWAS. Packages 

such as SHAP43 and Captum44 provide methods such as Shapley additive values and 

integrated gradients that help in assigning importance to NN input features. However, 

running the method multiple times to get a more robust metric of performance rendered 

these methods a lot more complicated to implement due to the non-trivial approach that 

would be required to combine the importance values across all runs. The NLL of the NNs for 

each gene serves as an alternative to the effect size estimate that can be obtained from a 

linear model that is commonly used in GWAS. A gene with smaller NLL suggests stronger 

association as compared to one with a larger NLL. However, the NLL does not tell us about 

the direction of effect. Additionally, since we had to run the method more than once, it 

contributed to increasing the computational cost. Hence, effort is required to make the 

method scalable and efficient.  

 

Finally, we acknowledge that while the analysed cohort had diagnosed AD cases, the 

majority were those with family history. Family history has been previously used as a proxy 
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for AD17,18, but the findings warrant validation in external cohorts with diagnosed AD cases. 

While it does not serve as a substitute for external validation, in the absence of it, the series 

of post-hoc enrichment analyses serve as an additional source of confidence for our 

findings.  

3.5 Conclusion 

We applied our method to family history of AD using data from the UKB and introduced a 

new method to complement the success of existing GWAS methods. GWANN identified 

genes associated with family history of AD that have previously not been identified by 

GWAS. A series of post-hoc enrichment analyses provided evidence for differential 

expression of RNA and proteins associated with the hits between the brains of AD patients 

and healthy controls. Among the new hits, LINGO2, NRG3, PALD1, PCDH9, SMYD3, and 

SYNPO have evidence of association with AD or other neurodegenerative disorders from 

previous in-vitro and in-vivo studies. Additionally, enrichment of biological pathways and 

gene ontologies provided possible explanations for the role of these genes in the processes 

contributing to AD. Furthermore, SMYD3, LRRC7, NRG3, PCDH9, and ROR1 were 

identified as tractable targets for drug development. Overall, the findings suggest the 

potential of GWANN to augment the effort of existing methods in understanding the 

pathogenesis of AD and other diseases. 

STAR Methods 

Resource Availability 

Lead Contact  
Further information and requests for resources should be directed to and will be fulfilled or 

coordinated by the Lead Contact, Upamanyu Ghose (upamanyu.ghose@psych.ox.ac.uk). 
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Materials Availability 
GWANN results and the summaries for all post-hoc analyses are available in the 

Supplementary Tables. 

Data and Code Availability 
This research was conducted using data from the UK Biobank Resource under the approved 

project 15181. Data on brain eQTLS, RNA change in the brain, protein change in the brain, 

and AD pathology measures were obtained from the Agora AD knowledge portal 

(https://agora.adknowledgeportal.org), site version 3.3.0, and data version syn13363290-

v66. Original code used in the analysis can be found at 

https://github.com/titoghose/GWANN. 

Method Details 

Population 
We utilised data from the UK Biobank (UKB) (http://www.ukbiobank.ac.uk). The data 

comprises health, cognitive and genetic data collected from ~500,000 individuals aged 

between 37 and 73 years from the United Kingdom at the study baseline (2006–2010)16,45. 

We used imputed SNP genotype data as input to GWANN. UKB genotyping was conducted 

by Affymetrix using a BiLEVE Axiom array for 49,950 participants and on a further updated 

using an Affymetrix Axiom array for the remaining 438,427 individuals in this study, based on 

the first array (95% marker content shared). The released genotyped data contained 

805,426 markers on 488,377 individuals. Information on the genotyping process is available 

on the UKB website (http://www.ukbiobank.ac.uk/scientists-3/genetic-data)45. Genotype 

imputation was performed combining the UK 10K haplotype and Haplotype Reference 

Consortium (HRC) as reference panels46. A number of individuals (n=856) either with 

inconsistencies between their genetic predicted and reported sex, or abnormal number of 

sex-chromosomes were removed. In addition, 968 outliers were identified based on 
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heterozygosity and missingness, and removed. The dataset was further limited to only 

individuals of “White British” descent resulting in 409,703 remaining individuals. A genetic 

relationship matrix along with genome-wide complex trait analysis was used to identify 

131,818 individuals with relatives within the dataset, using a relationship threshold of 0.025. 

Only one person from each pair of related individuals was retained. Only biallelic SNPs with 

MAF > 1% and imputation quality info score > 0.8 were retained for the analysis, and all 

indels and multi-allelic SNPs were dropped. For the analysis, we used the imputed genotype 

dosages. 

Definition of cases and controls 
The cases were defined as individuals with at least one of AD diagnosis (n=1,176), or 

parental history of dementia (n=40,934). The parental histories of dementia was defined 

according to a previous study on family history of AD17. Individuals with other neurological 

disorders47 were removed from the control groups. Supplementary Table 6 contains a list of 

all the neurological disorders along with the UKB fields used to determine the presence of 

the disorders. We divided the entire range of ages into three groups (age-group1: 38-52, 

age-group2: 53-61, age-group3: 62-73 years), and paired them with the two possibilities of 

sex (male and female) to obtain six broad groups—(age-group1, male), (age-group1, 

female) etc. An equal number of controls (n=42,110) were randomly sampled while ensuring 

that a similar number of cases and controls were included from each of the six broad groups. 

80% (n=67,380) of the data was used to train the NNs and 20% (n=16,840) of the data was 

reserved as a held-out test to evaluate the performance of the NNs and ascertain 

association with the phenotype.  

Neural network model  
GWANN follows an architecture with 2 branches that later merge into a single trunk (Figure 

1). One of the branches reads contiguous SNPs within a genomic region involving each 

gene, while the other reads the covariates. The common trunk combines this information to 

predict family history of AD.  
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Each sample consists of SNPs and covariates for a homogenous group of 10 cases or 

controls. The NN was trained to predict if a group was formed by cases or controls. The 

rationale behind using convolutional layers in our architecture (Figure 1) was to implement 

“group training”, which allows the NNs of GWANN to consider the group of 10 cases or 

controls as a single sample, enabling them to identify similar patterns across the individuals 

in the group. The intuition of this architecture is similar to the concept of retrieval augmented 

NNs, where the NNs make a prediction using not only a single input sample, but also a 

candidate set of samples similar to the target sample48. The “group training” section is 

implemented as a 1-dimensional convolution with 32 filters, with the weight filters sliding 

across the different individuals in the group. This allows the NN to assign a weight to each 

SNP while being invariant to the different individuals in the group. This is followed by an 

average-pooling layer which takes the mean of the feature vectors obtained after the 

convolution operation.  

 

Before passing the output of this section to the densely connected section of the model, they 

are passed through an “attention” block to focus on important features and ignore features 

without much information. This block contains a linear layer with ReLU activation followed by 

a softmax function that converts the features into probabilities (values between 0 and 1), 

which are finally elementwise multiplied with the output of the linear layer to weight the 

features.  

 

The densely connected portion of each branch has 2 blocks with linear layers with ReLU 

activation, having 32 and 16 neurons, followed by batch normalisation, and a dropout 

probability of 0.5. The final feature vector, obtained from the densely connected portion of 

the NN focussing on the SNPs, is concatenated with a feature vector (or encoding) 

generated from the covariates (bottom-left branch of NN in Figure 1) and finally passed 

through the densely connected end layers of the NN to obtain the final prediction. The 
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covariate encodings are obtained from the penultimate layer of the bottom-left branch. The 

final prediction block of the NN has 2 blocks with linear layers with ReLU activation, having 

16 and 8 neurons, followed by batch normalisation, and a dropout probability of 0.1.  

 

Before narrowing down on the described architecture, we tried (i) a multi-layer perceptron 

architecture without group training or the attention block, and (ii) a branched multi-layer 

perceptron without group training, with one branch for the SNPs and the second for the 

covariates. However, we noticed that the models were unable to identify any genes with a 

significant P-value except APOE (Supplementary Figure 4). Hence, we decided to 

incorporate group training along with the attention block.  

Training the neural network 
Gene locations were mapped according to the Genome Reference Consortium Human Build 

37 (GRCh37/hg19). For every gene, SNPs within the gene and in the 2500 bp flanking 

region (upstream and downstream of the gene) were considered. Since NNs are 

computationally more intensive than linear models, we set the limit to 2500 bp as a trade-off 

between increased computational time and including downstream and upstream SNPs in the 

analysis. This also minimised the chances of overlap between genes which are very close to 

each other. We divided every gene into windows of maximum 50 SNPs and the final analysis 

was done on all windows of all genes. A different NN was trained for each window per gene 

in the entire genome. This resulted in having to train a total of 70,848.  

 

The NNs were trained on a classification task with the objective of minimising NLL. To 

implement “group training”, a sampler was created to group cases and controls into groups 

of 10, such that, for an epoch, (i) no individual appeared in more than one group, and (ii) 

each individual only appeared once within a group. After each epoch, the data sampler 

shuffled the data to form new groups. Hence, the NNs were not biased to seeing the same 

groups in every epoch. The only exception to this was in the case of the test or validation 
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sets, where the data was not shuffled, to ensure that the metrics were calculated on the 

same set of samples for each epoch and for all genes.  

 

We pre-trained the covariate branch (bottom-left branch in Figure 1) and froze the weights 

while training the NNs for all gene windows. There was no significant difference in 

performance between freezing the weights of the covariate branch and leaving them as 

trainable (Supplementary Figure 4). Hence, we employed the former because it provided a 

speed-up in analysis. The optimiser used to train the NN was Adam, with a learning rate of 

5x10-3, and batch size of 256. Early stopping, with a patience of 20 epochs, was used during 

training to avoid overfitting. A validation set of 20% was created from the training set to 

determine the early stopping epoch. 

 

Finally, due to the weak signal in most gene windows, we noticed that results would vary 

between multiple runs of the method. Hence, we ran the models 16 times with different 

random seeds to obtain a more stable metric than what would be achieved by running the 

model once. The final metric used for each gene window was the 20th percentile of the NLL 

across all 16 runs. The 20th percentile was used instead of the 80th percentile because a 

lower NLL is better than a higher one.  

 

The NNs were trained using five NVIDIA GTX 2080Ti and five NVIDIA RTX3090 GPUs. 

Each GPU was set up to run 4 models in parallel resulting in 40 models running in parallel 

over all GPUs. PyTorch49 version 1.8.1 with CUDA 11.1 was used. A run of the method for 

70,848 windows took 55.39 hours. 

Identifying significantly associated genes 
A null distribution of 1000 NLLs, NLLnull, was obtained from a set of NNs trained on the same 

covariate encodings along with 1000 simulated SNP data generated using the “dummy” 

command of PLINK 2.019.  The dummy data was also trained 16 times using the same 



22 
 

random seeds that were used in training the windows of all genes. The metric used for each 

dummy window was also the 20th percentile of the NLL across all 16 runs. Finally, the P-

value of gene window i was obtained as 1 - CDFnull(NLLi), where CDFnull is the cumulative 

distribution function of the skew normal distribution fit to NLLnull, and NLLi is the NLL for gene 

window i. Supplementary Figure 5 shows the effect of using different sets of 1000 null NLLS 

in determining the P-values. 

 

The P-value threshold θ1, to determine significant association was identified empirically. We 

split the 16 runs into paired groups of size 8. Along with the empirical P-value threshold θ1, 

we set a second threshold θ2=7.06x10-7, the value of the Bonferroni corrected P-value of 

0.05 for the number of gene windows tested (n=70,848). We then identified the value of θ1 

that would ensure that 95% of the significant windows would be significant at a genome wide 

significance level of θ2 if the method were run another 8 times (Supplementary Figure 2a). In 

other words, it would ensure 95% stability of the method between two iterations of 8 runs. 

We repeated the above process for groups of sizes 2, 3, 4, 5, 6, 7 and noticed that θ1 was 

directly proportion to the size of the groups. Hence, we needed lesser stringent θ1 thresholds 

to ensure 95% stability, as the number of runs grew larger (Supplementary Figure 2b). 

Observing this, we finally set θ1=1x10-25, the threshold for 8 runs because this would ensure 

95% stability when we identified significant genes using all 16 runs. The true θ1 for 16 runs 

would possibly be less stringent, but we decided to use this more stringent threshold to 

minimise the chance of false positives.  

LD pruning of significant gene windows 
After identifying the significant windows within different genes, we calculated the LD between 

the SNPs within these windows using LDLink50. SNPs with r2 >= 0.8 were considered to be 

in LD, and in turn, the genes they were mapped to were also considered to be in LD. The 

gene with the best NLL within a set of genes in LD was considered as the hit gene. 



23 
 

Enrichment and post-hoc analyses 
We used information from the Agora AD knowledge portal 

(https://agora.adknowledgeportal.org) to identify genes that have (i) significant eQTLs in the 

brain; (ii) change in RNA expression in post-mortem AD brains; (iii) change in protein 

expression in post-mortem AD brains.  

 

STRING v1217 was used to perform PPI analysis of the top 100 genes ranked by their test 

metric. The parameters for the analysis were (i) Organism analysed: Homo Sapiens; (ii) 

Statistical background set: Whole genome; (iii) Active interaction sources: Textmining, 

Experiments, Databases, Co�expression, Neighbourhood, Gene Fusion, Co�occurrence; 

(iv) Minimum required interaction score: Medium confidence (score=0.400); (v) Max 

number of interactors to show: 1st shell: none (query proteins only); 2nd shell: none.  

 

Pathway enrichment was performed using the R package fGSEA51. This enrichment was 

performed using the test metric for all analysed genes. The enrichment was performed for 

KEGG, Wiki and Reactome pathways, and GO terms present in the canonical pathways of 

MSigDB v2023.2.Hs21. fGSEA was also used to study the enrichment of DEG sets for 

different AD-related conditions, in different brain regions from two studies—meta-analysis of 

AD brain transcriptomic data24, and transcriptomic analysis between symptomatic AD, 

asymptomatic AD and controls25.  

 

The disease and trait enrichment analysis was performed with the R package disgenet2r, 

provided by DisGeNET22. The parameters for the analysis were (i) Organism analysed: 

Homo Sapiens [9606]; (ii) Identifier types used: [SymbolID]; (iii) Ontologies used: 

'CTD_human', 'UNIPROT', 'CLINGEN', 'CGI', 'ORPHANET', 'PSYGENET', 'CURATED', 

'HPO', 'INFERRED', ‘GWASCAT', 'GWASDB', 'CLINVAR', 'BEFREE’; (iv) Statistical Test 

Used: Fisher test with False Discovery Rate (FDR) p-value correction. At the time of running 

the analysis, the developers of the disgnet2r package released a new paid tool called 
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disgenetplus2r, which ceased the functionality of the old package. Hence, we were unable to 

perform the disease enrichment for TradGWAS (GWAS run on GWANN data using PLINK 

2.0). 

 

Finally, we used TargetDB26 to get a picture of the tractability or suitability of the new 

GWANN hits for intervention by modalities such as small molecules or antibodies. 

TargetDB26 obtain scores for tractability as well as a multi-parameter optimisation score 

which takes into account structural information, structural druggability, chemistry, biology, 

disease links, genetic links, literature information and safety information about the target. We 

further queried the Open Targets Platform27 to identify the known drugs and diseases 

associated with the novel GWANN hits. 

Quantification and Statistical Analysis 
All NNs were run in Python. Stability testing of the NNs and calculation of P-values by 

comparing against the null distribution were run in R. To fit a skew normal distribution to the 

NLLs obtained from dummy data, the ‘selm’ function in R was used. Finally, the P-value was 

calculated using the ‘psn’ function in the ‘sn’ package. When selecting the final NN 

architecture, comparison between the number of genes discovered by each architecture was 

performed using a two-sample t-test (‘ttest_ind’) in Python with the Scipy package. In box 

and whisker plots, the whiskers represent standard deviation. In line plots, the shaded 

intervals represent standard deviation.  

 

Key Resources Table 

REAGENT or RESOURCE SOURCE IDENTIFIER 
Deposited Data 
Data on brain eQTLs, RNA 
change in brain, and protein 
change in brain 

https://agora.adknowledgeportal.org site version 3.3.0, 
data version 
syn13363290-v66 

Differentially expressed genes 
used in post-hoc enrichment 

https://doi.org/10.3233/jad-181085 Supplementary 
Table 1-3 
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analysis for (1) AD vs controls, 
(2) non-AD vs controls, and (3) 
only AD vs controls 
Differentially expressed genes 
used in post-hoc enrichment 
analysis for (1) AD vs controls, 
(2) Asymptomatic AD vs 
controls, and (3) AD vs 
asymptomatic AD 

https://doi.org/10.1016/j.bbi.2019.05.009 Supplementary 
data 3 

Gene position mapping MAGMA Gene Positions GRCh37  N/A 
GWAS Catalog data GWAS Catalog Data format v1.0, 

Data release 2024-
01-19 

KEGG pathway data MSigDB v2023.2.Hs KEGG Legacy N/A 
Reactome Pathway data MSigDB v2023.2.Hs Reactome N/A 
Wiki Pathway data MSigDB v2023.2.Hs Wiki N/A 
GO data MSigDB v2023.2.Hs GO N/A 
Software and Algorithms 
Python https://www.python.org/ 3.9 
PyTorch https://pytorch.org/ 1.8.1+cu111 
R https://www.r-project.org 4.2.0 
disgenet2r https://www.disgenet.org/ 0.99.3 
fGSEA https://github.com/ctlab/fgsea 1.26.0 
STRING https://string-db.org/ 12.0 
targetDB https://github.com/sdecesco/targetDB 1.3.3 
PLINK https://www.cog-genomics.org/plink/2.0/ 2.0 
LDLink https://ldlink.nih.gov/?tab=ldmatrix 5.6.6 
 

Figure legends 
 

Figure 1. NN architecture used in the GWANN method. The top-left branch generates a 

1D encoding from the SNPs input (green), while the bottom-left branch does so for the 

covariate input (red). The right trunk merges the encodings of both branches to output 

whether the input belongs to cases (blue output) or controls (red output). 

 

Figure 2: Manhattan plot after running GWANN on family history of AD. Significant hits 

identified at an empirically defined P-value threshold of P-value < 1x10-25 (red line). After 

calculating the LD between significant genes, the gene with the best negative log loss within 
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an LD block was identified as the hit gene. The P-values lower than 6.95x10-159 have been 

cropped to a value of 6.95x10-160. The black line marks the Bonferroni corrected threshold for 

the number of gene windows that were tested, P-value = 7.06x10-7. 

 

Figure 3: Overlap of GWANN hits with previous studies. (a) Heatmap showing the 

presence of significant evidence for the terms on the x-axis for the GWANN hits. (b) 

Heatmap showing the count of previous GWAS where the GWANN hits were identified to be 

associated with the phenotypes on the x-axis. (c) Heatmap showing the overlap between 

GWANN hits (GWANN), a GWAS run using PLINK 2.0 on the same data as GWANN 

(TradGWAS), and the largest European AD GWAS (EADB GWAS)12. (d) Similar heatmap to 

(c) but instead of using the GWANN and TradGWAS hits, the top 100 genes from both 

methods were considered for the overlap with the EADB GWAS hit genes. The sample size 

of each method is mentioned in the x-axis of the heatmaps, and the diagonals show the 

number of genes of each method considered while calculating the overlap. 

 

Figure 4: Post-hoc enrichment analysis after GWANN analysis. (a-d) Gene set 

enrichment analysis for Reactome (a), Wiki (b), KEGG (c), and GO (d) using GWANN 

summary metrics. (e-f) Genes were ranked according to the metric 1 – NLLNN, where NLLNN 

was the negative log loss of the neural network for a given gene. (e) Disease and trait 

enrichment using the top 100 genes. (f) Enriched protein-protein interaction network (P-value 

< 1 x 10-16) for the top 100 genes. The colours within the nodes highlight the trait categories 

enriched by the protein encoded by the gene. 
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Tables 
 

Gene Genomic interval P-value Gene Genomic interval P-value 

APOE 19:45406673-45414451 6.95x10-160 SRGAP2B 1:144042910-144042910 1.06x10-39 

BIN1 2:127863681-127867174 3.07x10-92 HSP90AB4P 15:58981684-58987724 5.71x10-36 

NRG3 10:83832534-83855173 2.09x10-57 LINGO2 9:28386903-28396747 1.11x10-34 

LRRC7 1:70399066-70428546 3.15x10-53 PALD1 10:72301529-72311482 1.70x10-34 

ROR1 1:64591756-64611493 2.07x10-51 PCDH9 13:67345123-67362138 7.27x10-32 

RPS6KC1 1:213372832-213408630 1.68x10-50 ADAM10 15:59012608-59042081 1.69x10-31 

APH1B 15:63589709-63603802 9.95x10-47 SPI1 11:47374633-47390692 1.01x10-30 

AKR1C6P 10:4942736-4956083 1.24x10-46 SMYD3 1:245922632-245930742 1.80x10-28 

SORL1 11:121432788-121448972 9.62x10-46 SYNPO 5:150015017-150033470 1.62x10-27 

 
Table 1. GWANN hit genes associated with family history of AD. P-values lower than 

6.95x10-159 have been cropped to a value of 6.95x10-160. 

 
  AD vs Cont Non-AD vs Cont Only AD vs Cont 

Patel et. al. - A24 

Cerebellum 3.48x10-2 

(PCDH9) 
3.48x10-2 
(PCDH9) 

3.48x10-2 
(PCDH9) 

Frontal 1.24x10-2 
(SORL1) 5.65x10-2 

1.81x10-2 

(SORL1) 

Parietal 8.75x10-7 
(APOE, SORL1, 
PCDH9) 

1.02x10-15 
(APOE, BIN1, 
LRRC7, SORL1) 

2.50x10-3 
(PCDH9) 

Temporal 1.24x10-2 

 9.26x10-1 1.24x10-2 

   
AD vs Cont AsymAD vs Cont AD vs AsymAD 

Patel et. al. - B25 

Cerebellum 
8.49x10-1 4.88x10-1 4.82x10-1 

Entorhinal 4.20x10-3 
(BIN1, SORL1, 
SYNPO) 

8.89x10-1 
4.20x10-3 
(BIN1, SRGAP2B, 
SYNPO) 

Frontal 
8.89x10-1 1.92x10-1 1.50x10-1 

Temporal 1.88x10-2 
(SYNPO) 9.07x10-1 

2.56x10-2 
(SYNPO) 

 
 

Table 2. Enrichment of DEGs identified in two transcriptomic studies on AD brains. 

The genes mentioned in parentheses were the GWANN hits in the leading edge of the 

GSEA for each condition and brain region. 
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Supplementary files 
 

Supplementary Table 1. GWANN summary statistics for all gene windows and all runs. 

The columns containing the metric for each run is in the format NLL_x, where x represents 

the random seed used for the run. NLL and P-value are the aggregate metric and 

significance values respectively.  

 

Supplementary Table 2. Results of the GSEA using Reactome, KEGG, Wiki and GO. 

 

Supplementary Table 3. Results of the disease and trait enrichment using DisGeNET. 

 

Supplementary Table 4. Enriched EFO traits obtained from STRING after constructing 

the PPI network.  

 

Supplementary Table 5. Results of target tractability for drug development using 

TargetDB. 

 

Supplementary Table 6. List of neurological disorders and their associated UKB fields 

used to filter controls from the GWANN cohort.  

 

Supplementary Table 7. Enrichment of DEGs identified in two transcriptomic studies 

on AD brains using summary stats from the GWAS run on the GWANN data using 

PLINK 2.0. 
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