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ABSTRACT 52 
 53 
The incidence of dengue virus disease has increased globally across the past half-century, with 54 
highest number of cases ever reported in 2019. We analyzed climatological, epidemiological, and 55 
phylogenomic data to investigate drivers of two decades of dengue virus disease in Cambodia, 56 
an understudied endemic setting. Using epidemiological models fit to a 19-year dataset, we first 57 
demonstrate that climate-driven transmission alone is insufficient to explain three epidemics 58 
across the time series. We then use wavelet decomposition to highlight enhanced annual and 59 
multiannual synchronicity in dengue cycles between provinces in epidemic years, suggesting a 60 
role for climate in homogenizing dynamics across space and time. Assuming reported cases 61 
correspond to symptomatic secondary infections, we next use an age-structured catalytic model 62 
to capture a trend of declining force of dengue infection through time, which drives observed 63 
patterns of increasing mean age of reported cases in Cambodia. Reported cases in >70 year-old 64 
individuals in epidemic years are best explained when additionally allowing for waning multitypic 65 
immunity and repeat symptomatic infections in older cohorts. We support this work with time-66 
resolved phylogenetic trees incorporating 122 dengue virus (DENV) genomes sequenced in the 67 
2019-2020 epidemic, which document introduction of DENV-2 Cosmopolitan genotype into 68 
Cambodia, yielding localized transmission and decreased genomic diversity compared to 69 
endemic DENV-1. Finally, we simulate an age-structured, mechanistic model of dengue dynamics 70 
to demonstrate how introduction of a genetically distinct lineage into a population with waning 71 
multitypic immunity could drive repeat infections within a serotype in older-age individuals and 72 
recover patterns from reported data. 73 

 74 
CLINICAL TRIAL NUMBERS: NCT04034264 and NCT03534245. 75 
 76 
SIGNIFICANCE STATEMENT 77 
The year 2019 witnessed the highest number of dengue cases ever reported, including in 78 
Cambodia, a Southeast Asian country with endemic transmission. We analyzed two decades of 79 
national dengue surveillance data for Cambodia to demonstrate how increasing temperature and 80 
precipitation enhance spatiotemporal synchronicity in epidemic years. We document how twenty 81 
years of demographic transition has increased the age of reported dengue infection and 82 
correspondingly depressed the force of infection through time. We show that introduction of a 83 
divergent DENV-2 genotype in Cambodia in 2019 likely drove repeated symptomatic infections in 84 
older-age individuals that contributed to a high burden epidemic. As climates warm, we are likely 85 
to see more synchronized dynamics globally and a shifting burden of symptomatic disease into 86 
older cohorts.  87 
 88 
 89 
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MAIN TEXT 90 
 91 
INTRODUCTION 92 

Dengue virus (DENV) transmission has increased dramatically over the past two 93 
decades, culminating in the year 2019 with the highest number of global cases ever reported 94 
(>5.2 million) to the World Health Organization (WHO) (1). Since nearly three-quarters of DENV 95 
infections are estimated to be clinically inapparent (thereby unreported), these counts represent a 96 
vast underestimate of the true scale of dengue burden on public health systems (2). DENV is a 97 
flavivirus primarily transmitted by the Aedes aegypti mosquito, an ubiquitous arthropod vector in 98 
tropical and subtropical regions (2). DENV is comprised of four antigenically distinct serotypes—99 
each of which is further subdivided among four to seven distinct genotypes; infection with one 100 
serotype is thought to result in lifelong immunity to that same serotype (homotypic immunity) but 101 
only temporary (up to two-year) protection against different serotypes (heterotypic immunity) (3). 102 
Heterotypic secondary infections are often more clinically severe due to an interaction with pre-103 
existing flavivirus-specific antibodies known as antibody-dependent enhancement (ADE) (4, 5). In 104 
regions with multiple circulating endemic flaviviruses, this interplay makes the dynamics of 105 
dengue difficult to interpret at local, subnational, or national levels. Dynamical inference is further 106 
challenged by the multifaceted disease ecology characteristic of any arbovirus—for which 107 
infections are also impacted by changes in human land use, behavior, or movement, as well as 108 
the distribution and abundance of arthropod vectors. Nonetheless, national health systems in 109 
DENV-endemic regions rely on mathematical models to inform resource allocation on a year-to-110 
year basis—ranging from vector control to hospital capacity for supportive care, given no 111 
currently available treatments for dengue. Improved understandings of the drivers of dengue 112 
transmission are therefore crucial for public health efforts, especially in resource-scarce settings.  113 

Southeast Asia (SEA) represents ~70% of global reported dengue cases (1). 114 
Surprisingly, while dengue is largely classified as an urban disease, only 46% of the SEA 115 
population is considered urban. For most SEA countries, roughly 35-55% of the total population is 116 
concentrated in urban areas co-localizing with the highest dengue burdens; Singapore reports the 117 
largest urbanized population percentage in SEA (100%), while Cambodia—with 16 million 118 
people—reports the lowest (24%) (6). Like many SEA countries, Cambodia nonetheless exhibits 119 
significant peri-urban sprawl surrounding major metropolitan centers like the capital city, Phnom 120 
Penh (7, 8). Dengue was first detected in Cambodia in 1963 (9), though passive surveillance—via 121 
reporting of clinically diagnosed cases from public health centers and hospitals to the national 122 
level—was not adopted until 1980, following political instability and civil war in the late 1970s (10). 123 
In 2001, the National Dengue Control Program (NDCP) was inaugurated in Cambodia, and in 124 
2002, the NDCP formally adopted the WHO clinical case definitions of dengue and its 125 
complications as criteria for the surveillance program (10, 11). The NDCP surveillance system is 126 
largely limited to clinicosyndromic diagnoses, meaning that reported cases often correspond to 127 
more severe heterotypic secondary DENV infections (12), which are reported collectively without 128 
the ability to systematically distinguish between serotypes (11). Nonetheless, the NDCP also 129 
instituted some active surveillance efforts in Cambodia in 2001, which included limited virological 130 
testing to identify distinct serotypes at sentinel sites in four provinces, which were expanded to 15 131 
provinces by 2021 (10, 11).  132 

Over the past two decades, all four dengue serotypes have been detected in Cambodia 133 
by virological surveillance (11), though cases have been largely dominated by one or two 134 
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serotypes in a given year—with DENV-1 and DENV-3 most common in the early 2000s and 135 
DENV-1 and DENV-2 predominant in the last decade (11). Cambodia witnessed three major 136 
dengue epidemics across this period–-in 2007, 2012, and 2019 (11). The first epidemic, in 2007, 137 
occurred coincidentally with a genotype replacement event in DENV-1 (13, 14), though cases 138 
were dominated by DENV-3, marking the last year of this serotype’s dominance in the region (10, 139 
14). The second epidemic, in 2012, has been largely attributed to DENV-1 (11, 15–17), and the 140 
third, in 2019, appears to have been driven by co-circulation of both DENV-1 and DENV-2 (11). 141 
Consistent with the global dengue phenomenon of 2019 (1), Cambodia suffered its worst dengue 142 
epidemic on record in this year, with approximately 40,000 total cases reported across all 25 143 
provinces—a likely drastic underestimation of the true disease burden (18). Indeed, the past 144 
twenty years of surveillance in Cambodia have witnessed, on average, steadily increasing 145 
dengue incidence, coupled with a steady increase in the mean age of reported dengue infection 146 
(11). The latter has been anecdotally attributed to an aging population following demographic 147 
transition, as similar phenomena have been reported previously in neighboring Thailand (19, 20), 148 
as well as in Nicaragua (21).  149 

Explosive periodic outbreaks are a hallmark of dengue virus disease, though the multiple 150 
drivers of these phenomena have long been debated (20, 22–28). Seasonal climate cycles are a 151 
strong predictor of annual cycling for many arboviruses, including dengue (29, 30), and climate 152 
has been implicated as a possible driver of multiannual dengue periodicity, as well. In Thailand, 153 
multiannual dengue cycles demonstrate coherence with El Niño phenomena (26), and epidemic 154 
years exhibit more synchronized dynamics across latitudes (26), as well as higher correlation with 155 
local temperature than do inter-epidemic periods (25). The interaction of demography and 156 
heterotypic immunity is also thought to play an important role in driving multiannual cycles for 157 
dengue (20, 22, 31, 32), which, in Thailand, show elongated periodicity as a result of declining 158 
birth rates and slower build-up of the susceptible population over the past half-century (20). 159 
Virology also plays a key role in many dengue epidemics, which have, historically, been linked to 160 
turnover in the dominant regional serotype (32–34) or to replacement of a dominant viral 161 
genotype with a serologically homotypic but phylogenetically divergent viral lineage (14, 35). 162 
Indeed, recent work links the magnitude of periodic dengue epidemics to antigenic evolution; 163 
large epidemics tend to result from the takeover of those DENV lineages most antigenically 164 
distinct from previously circulating strains of the same serotype or most antigenically similar to 165 
lineages of a different serotype (35). 166 

The past two decades of changing dengue dynamics in Cambodia have taken place 167 
alongside extensive, rapid, heterogenous development across much of SEA, with significant peri-168 
urban sprawl expanding beyond central mega-city limits and high-density population centers 169 
springing up around industry hubs (often factories) in otherwise rural areas (7, 8). Longitudinal 170 
phylodynamic studies of georeferenced DENV sequences from Thailand have demonstrated the 171 
importance of microscale transmission—particularly at the household level—in generating DENV 172 
diversity in urban Bangkok, predicting that DENV transmission will intensify as peri-urban settings 173 
in SEA become better connected (36). Nonetheless, investigations into the dynamical drivers of 174 
dengue transmission in rural and peri-urban settings have been limited to date. As climatic 175 
changes drive increases in the population at-risk for dengue infection in SEA and elsewhere (29, 176 
30, 37), better-designed active surveillance programs and improved targeting and evaluation of 177 
vector control interventions are greatly needed (38).  178 
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Here, we explore the dynamics of dengue virus transmission across the past two 179 
decades in peri-urban Cambodia, investigating the potential mechanisms that underly periodic 180 
epidemics, particularly the epidemic of 2019. We queried a 19-year dataset (2002-2020) of 181 
serotype-agnostic dengue case counts from the NDCP, aggregated at the province level, to, first, 182 
interrogate the role that climate played in driving epidemic spikes in 2007, 2012, and 2019, and 183 
second, more generally, explore the impact of climate on annual and multiannual cycling across 184 
the time series. We, third, fit catalytic models to the age-structured incidence of reported dengue 185 
disease to estimate the annual force of infection (FOI), at the province level, across this time 186 
series (20, 39, 40), then considered the national surveillance data in the context of our own active 187 
febrile surveillance study carried out in peri-urban Kampong Speu province from 2019-2020 (41). 188 
Whole genome sequencing of DENV from serum samples collected in part with our active 189 
surveillance program identified the first record of the DENV-2 Cosmopolitan lineage ever 190 
documented in Cambodia (42). Phylodynamic analysis of the spread of the DENV-2 191 
Cosmopolitan lineage in this region suggests that this new genotype drove pathogenic infections 192 
in older age individuals in 2019, contributing to the largest documented dengue outbreak on 193 
record for Cambodia. Finally, we constructed an age-structured discrete-time, dynamical model to 194 
simulate the interplay of climate, demography, immunology, and virology which combine to 195 
structure two decades of dengue dynamics in Cambodia. 196 
 197 
RESULTS 198 
Though warmer than average, epidemic years were not major climate anomalies. 199 

Because of the widely acknowledged role of climate as a driver of arboviral disease 200 
globally (29, 30), coupled with recent work out of Thailand highlighting coherence between El 201 
Niño climate anomalies and dengue epidemics (26), we first explored the influence of changing 202 
temperature and precipitation on dengue caseload in Cambodia. To this end, we first aggregated 203 
high-resolution temperature and precipitation data at the Cambodian province level, across two-204 
week intervals from 2002-2019 and sought to address the extent to which epidemic years 205 
represented climatic anomalies over this time period. We identified a characteristic annual 206 
variation in both temperature and precipitation, which was largely recapitulated across provinces 207 
and years. Temperature peaked in the first half of each year, between April and July, consistently 208 
across all provinces and preceding the peak in dengue caseload (Fig. S1). Precipitation peaked 209 
in the latter half of each year, between August and October (Fig. S2). Generalized additive 210 
modeling (GAMs) (43) demonstrated that, after controlling for intra-annual variation, temperature 211 
has increased significantly across the past two decades in all provinces; no significant interannual 212 
changes were detected for precipitation (Fig. S3-S4; Table S1). Additional GAMs and climate 213 
data normalized into z-scores indicated that the epidemic years of 2012 and 2019 were hotter 214 
than average for the time series, while 2007 was cooler, consistent with the observed interannual 215 
increase in temperature (Fig. S5). Years 2015-2016, which spanned a major El Nino event in 216 
SEA (but did not correspond to a dengue epidemic) (44), were also hotter than average. By 217 
contrast, 2007 had higher-than-average precipitation, while 2019 had lower-than-average 218 
precipitation, and 2012 did not deviate from the mean; in the years preceding all three major 219 
dengue epidemics, precipitation was not significantly different from average (Fig. S6). We 220 
concluded that, while both temperature and dengue incidence increased across our time series, 221 
epidemic years were not characterized by any remarkably aberrant climatic profile.  222 
 223 
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Climate-informed transmission rates failed to recover epidemic dynamics in a TSIR model. 224 
To more mechanistically interrogate the role of climate as a driver of dengue epidemics in 225 

Cambodia, we developed a simple, climate-informed time series Susceptible-Infected-Recovered 226 
(TSIR) model (45–48), which we fit to dengue case counts, aggregated over two week intervals at 227 
the province level, for the three inter-epidemic periods (2002-2006, 2008-2011, and 2013-2018). 228 
Though typically used to describe the transmission dynamics of perfectly immunizing childhood 229 
infections, such as measles (46, 47), TSIR has been applied to dengue dynamics previously and 230 
offers an effective means by which to isolate the impact of climate on transmission, despite 231 
oversimplifying the multiple serotype dynamics of dengue virus disease (49–53). 232 

We used biweekly transmission rates recovered from TSIR fits to the inter-epidemic 233 
periods, as well as climate-informed transmission rates for epidemic years projected at the 234 
province level from lagged temperature and precipitation data, to predict epidemic-year cases 235 
(Fig. 1; Methods; SI Appendix). We found that TSIR successfully recaptured the timing of annual 236 
dengue epidemics across the 22 provinces considered, with the recovered transmission rate 237 
peaking between May and August, slightly preceding reported cases. The magnitude and timing 238 
of transmission varied by province and between the three inter-epidemic periods, showing no 239 
consistent pattern of directional change in magnitude with time (Table S2). TSIR-estimated 240 
transmission was significantly positively associated with higher temperature and precipitation 241 
(lagged, respectively, such that climate variables preceded transmission by a median 3.5 months 242 
for temperature and 1 month for precipitation) in the corresponding province across all inter-243 
epidemic periods (Table S3-S4). More rapid transmission gains were observed for corresponding 244 
increases in temperature vs. precipitation (Fig. S7-S9; Table S4). Nonetheless, climate-informed 245 
transmission rates for epidemic years were not substantially different from rates fitted to inter-246 
epidemic periods, reflecting the absence of major climate anomalies across the time series (Fig. 247 
S10).  248 

 249 
Figure 1. Climate-informed TSIR insights into epidemic dynamics of DENV in Cambodia. Inset panels show 250 
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province level clinicosyndromic reported DENV cases (dashed black lines) with fitted TSIR output to the three inter-251 
epidemic periods (2002-2006, 2008-2011, 2013-2018; blue lines) and TSIR projections for epidemic years (2007, 2012, 252 
2019) under trained biweekly transmission rate (𝛽) estimates (pink lines), incorporating a factorial increase in the 253 
susceptible population (gold lines), using a climate-projected 𝛽 estimated from lagged temperature and precipitation data 254 
by province (green lines), or, finally, using both climate-projected 𝛽 and a factorial increase in the susceptible population 255 
(red lines). Parameter estimates are available for viewing in SI Appendix, Table S2, S5. The center map shows province 256 
level administrative boundaries for Cambodia, shaded by the mean biweekly temperature from the 2020 climate data. 257 
 258 

Despite recovering the intra-annual timing of transmission, as expected, TSIR 259 
underpredicted the magnitude of epidemic year caseloads for all provinces (Fig. 1). Climate-260 
informed transmission rates improved TSIR projections but still failed to recover epidemic peaks 261 
(Fig. 1). Inclusion of an amplification term in the susceptible population at the beginning of each 262 
epidemic year facilitated TSIR’s recovery of the epidemic year caseloads (Methods) (53). In the 263 
absence of climate input into the transmission rate, the proportional increase in the susceptible 264 
population needed to recover the epidemic peak was a median 1.8x for 2007, 2.10x for 2012, and 265 
2.17x for 2019 (Table S5). The proportional increase in the susceptible population needed to 266 
recover the epidemic peak was not significantly lower when epidemic year cases were projected 267 
using climate-informed transmission rates for 2007 and 2012 (paired student’s t-test: [2007] 268 
t=0.33, p>0.1; [2012] t=-0.52;p>0.1) and only marginally lower for 2019 (t=1.31, p=0.1), 269 
suggesting (at most) a minimal role for temperature and precipitation in driving epidemic 270 
dynamics (Table S5). For many provinces, the combination of climate-informed transmission rate 271 
with susceptible augmentation still fell short of effectively capturing epidemic caseloads, 272 
highlighting the need for alternative explanations for these high transmission years. 273 

 274 
Wavelet analysis showed enhanced synchrony in dengue dynamics across provinces and 275 
climate time series in epidemic years. 276 

Consistent with previous reports out of neighboring Thailand (26), wavelet decomposition 277 
of the biweekly dengue time series, at the province level, demonstrated statistically significant 278 
peaks in the amplitude and average wavelet power, of, respectively, both annual (Fig. 2A, S11A) 279 
and multiannual (Fig. 2B, S11B) cycles in dengue incidence during the three epidemic years (54). 280 
As also witnessed in Thailand (26), we observed significantly elevated synchronicity between 281 
provinces in the timing and amplitude of yearly dengue incidence, as measured both by pairwise 282 
Pearson’s correlation coefficient (Fig. 2C) and cross-wavelet power (Fig. S11), in epidemic vs. 283 
non-epidemic years. Synchronicity in the annual incidence data was negatively associated with 284 
geographic distance between provinces, though patterns were less clear than have been 285 
previously described in neighboring regions (26) (Fig. S12). High synchronicity between annual 286 
case data for paired provinces was significantly positively associated with high temperature, 287 
precipitation, and population size of a focal province (Fig. S12; Table S6).  288 
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 289 
Figure 2. Wavelet reconstructions show heightened synchrony in epidemic years for Cambodian dengue. 290 
Reconstructed A annual and B multiannual dengue cycles by province, by year from NDCP incidence per 100,000 291 
population. C Mean pairwise Pearson’s correlation coefficient (𝜌) for annual dengue incidence between focal province and 292 
all other provinces through time. D Mean 𝜌 comparing province-to-province reconstructed multiannual dengue cycles 293 
across a 5-year sliding window, with overlapping window frames plotted (partially translucent) atop one another. In all 294 
panels, epidemic years are highlighted by vertical red or black bars. Top panels indicate the distribution of corresponding 295 
values (median = solid line; max-to-min range = gray shading) observed across all provinces within each timestep. X-axis 296 
labels are marked on January 1 of the corresponding year. 297 
 298 
 299 

For multiannual cycles, we observed a trend of steadily increasing synchronicity (Fig. 2D) 300 
and cross-wavelet power (Fig. S11D) between provinces through time, though no peaks occurred 301 
in epidemic years. Again consistent with recent work from Thailand (25), cross-wavelet power 302 
between raw dengue incidence and the corresponding, province level mean temperature and 303 
total precipitation (grouped biweekly) peaked in epidemic years (Fig. S13 AB). At the multiannual 304 
scale, cross-wavelet power between province level reconstructed dengue cycles and the time 305 
series of temperature and precipitation largely increased across the time series (Fig. S13CD), 306 
though values were highest slightly preceding the 2019 epidemic and overlapping the 2015-2016 307 
El Niño event (44). The same pattern was observed when comparing monthly reconstructed 308 
multiannual dengue cycles and the Oceanic Niño Incidence (ONI), the monthly measure of El 309 
Niño activity (Fig. S13E). For temperature, precipitation, and ONI, cross-wavelet power with 310 
multiannual dengue cycles appeared to peak earlier in more southern provinces and move 311 
gradually northward over several years (Fig. S13DE). All told, wavelet analyses suggested a role 312 
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for climate in synchronizing annual dengue epidemics across provinces, but only minimal support 313 
for a hypothesis of multiannual climate cycles driving periodic epidemics across our time series. 314 
In contrast to reports from two decades prior in Thailand (20), the periodicity of multiannual 315 
dengue cycles across provinces also did not increase in duration throughout our time series, 316 
despite decreasing birth rates over the same period (Fig. S14). This perhaps reflects the relative 317 
slowdown in both birth and death rate declines in Cambodia over the past two decades, when 318 
compared with the dramatic declines witnessed twenty years prior (Fig. S14).  319 
 320 
Mean age of reported dengue infection increased across the study period, corresponding 321 
to a declining force of infection.  322 
 Previous work has reported a trend of increasing mean age of reported dengue infection 323 
across the past two decades in Cambodia at the national level (11); we confirmed this to be 324 
consistent at the province level, as well (Fig. 3A,B; Fig. S15; Table S7). At the national level, the 325 
mean age of reported dengue infection increased from 6.79 years (95% CI: 5.85-7.72) in 2002 to 326 
10.34 years (95% CI: 9.41-11.27) in 2020 (p<0.001). Increases in age of reported cases were 327 
even more severe in more remote provinces: in the distant northeastern province of Mondul Kiri, 328 
for example, the mean reported age of infection increased from 3.72 years (95% CI: 1.97-5.47) in 329 
2002 to 21.18 years (95% CI: 20.84-21.53) in 2020 (Fig. 3A; Fig. S15; Table S7).   330 
 331 

 332 
Figure 3. Demographic transition underpins declining force of infection and increasing age of reported dengue 333 
incidence in Cambodia. A Mean age of reported dengue infection, by province in the last year of the NDCP time series 334 
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(2020). B Age distribution of reported dengue cases by year, with violin plots highlighting changes in the interquartile 335 
range of cases. The interannual trend in the mean age of dengue infection is plotted as a solid red line, with 95% 336 
confidence intervals by standard error shown as a narrow, translucent band behind it (Table S7). Epidemic years (2007, 337 
2012, 2019) are highlighted by a light blue, dashed line in the background. C National (black) and province level (colored) 338 
estimates for the annual force of infection from 1981 (the birth year of the oldest individual in the first year of the NDCP 339 
time series) to 2020. 95% confidence intervals from the hessian matrix are shown as translucent shading. FOI estimates 340 
are compared against national birth and death rates for Cambodia across the time series, with epidemic years highlighted 341 
by vertical dashed lines. D Age modifiers to the FOI fit as shared across all provinces for 2002-2010 and 2011-2020 342 
subsets of the data, with 95% confidence intervals by profile likelihood shown as translucent shading (note that the 343 
likelihood profile was flat in age categories 30+ for years 2002-2010 and 60+ for years 2011-2020 so no FOI modification 344 
was applied here). E Cumulative increase in the proportion of cases reported by age at the national level, colored by year. 345 
Data are shown as dotted lines and model output as solid lines. Model includes national FOI estimates from C, age 346 
modification terms from D, and time-varying waning multitypic immunity as shown in the inset. 347 
 348 

To interrogate the mechanistic drivers of this pattern, we estimated the annual force of 349 
infection (FOI, or 𝜆), the rate at which susceptibles become infected, by fitting a catalytic model 350 
with multiple serotype exposures to the province level data for every year in the dataset (2002-351 
2020) and the 22 years preceding the onset of the time series, dating back to the birth year of the 352 
oldest individual in the first year of the data (Fig. 3C) (20, 39, 40).  As in previous models for 353 
dengue (20, 39), we assumed that reported cases represented secondary, symptomatic 354 
infections more likely to report to public hospitals and clinics. Resulting patterns in FOI by 355 
province largely mirrored those recovered at the national level (Fig. S16), demonstrating a 356 
consistently high FOI in the early 1990s, roughly corresponding to the years in which individuals 357 
born in Cambodia’s 1980s birth pulse (which followed severe population reductions resulting from 358 
civil war in the late 1970s) would likely be experiencing secondary infections. The FOI 359 
subsequently demonstrated a gradual decline across the time series, interspersed with minor 360 
local peaks during epidemic years. 361 

 362 
Age-structured FOI modifications and waning multitypic immunity in 2019-2020 improved 363 
the model’s ability to recapture observed data. 364 

Inspired by previous studies in other systems (19–21), we next fit 26 (thirteen per 365 
decade) multiplicative age modification parameters, shared across all provinces and a subset of 366 
years, to allow for modulation of annual FOI across individuals in different age categories (Fig. 367 
3D). Incorporation of age modifiers improved model fits to the data across all provinces (Table 368 
S8). Consistent with recent work in Thailand (19), we identified a high hazard of infection in 369 
adolescents (13-15 year-olds) across the time series. In the second decade of the time series, we 370 
additionally noted an elevated age-specific hazard of infection in 30-39 year-olds and 50-59 year-371 
olds, corresponding to reported symptomatic infections in older age individuals.  372 

This support for elevated infection rates in older age individuals led us to revisit our 373 
assumption that reported cases corresponded to clinically apparent secondary infections only. 374 
Visualization of the age distribution of reported cases by year at both the national (Fig. 3B) and 375 
province levels (Fig. S15) indicated that, in addition to increases in the mean reported age of 376 
dengue infection, the past two decades of dengue incidence in Cambodia have also witnessed 377 
expansion in the age range of reported cases—such that approximately 1% of reported cases 378 
(712/68597) in 2019 occurred in individuals over the age of 45, with 61 infections reported in 379 
individuals >70 years in age. We also observed an isolated spike in the age distribution of 380 
reported cases in some provinces in the earlier epidemic years of 2007 and 2012 (Fig. S15). To 381 
allow for symptomatic infections in older age-individuals, we modified the two-serotype catalytic 382 
modeling framework presented in previous work (20, 21, 39) to permit individuals to wane from a 383 
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state of multitypic immunity back to that of monotypic immunity subject to renewed hazard of 384 
symptomatic re-infection (SI Appendix). Using this new modeling framework, we estimated a 385 
shared parameter across all provinces, which corresponded to the rate of waning multitypic 386 
immunity (𝜎). No signature of waning multitypic immunity was observed across the time series as 387 
a whole; however, when we allowed 𝜎 to vary by year, we estimated a significant signature of 388 
waning multitypic immunity in 2019 and 2020 data only (Fig. 3E, inset). In general, incorporating 389 
𝜎 improved model fits to the data when added both to the FOI-only model and the FOI model 390 
modified by age class (Table S8). Our best fit FOI model including both age modifications and 391 
time-varying multitypic waning immunity effectively recaptured the observed cumulative 392 
proportion of cases per age class per year at national (Fig. 3E) and province (Fig. S17) levels. In 393 
general, cases accumulated more slowly across age classes with advancing years, tracking 394 
declining FOI. 395 
 396 
 397 
DENV genotyping in Kampong Speu province from 2019-2020 suggests a possible clade 398 
replacement event in DENV-2. 399 

The high burden of pathogenic cases in older individuals in 2019 next led us to ask 400 
whether the virology of the DENV strains associated with the epidemic could play a role in driving 401 
observed patterns in the data. To address this question, we leveraged serum samples amassed 402 
during an active febrile surveillance study that we carried out in Kampong Speu province, 403 
adjacent to the Cambodian capital city of Phnom Penh, between July 2018 and December 2020 404 
(41, 42). In this study, we screened 760 samples collected from 697 unique individuals who 405 
reported to participating sites with fever during the study period, identifying 123 PCR-positive 406 
DENV infections. All patients reported within a self-identified window of five days since fever 407 
onset. From this data subset of positive DENV cases, we sequenced and published 122 whole 408 
DENV genomes (57 DENV-1, 61 DENV-2, and 4 DENV-4; Table S9), representing one-third of 409 
full genome DENV-1 sequences and over half of DENV-2 sequences currently available for 410 
Cambodia—thus emphasizing the considerable challenges faced in undertaking genomic 411 
epidemiology in resource-scarce settings (42). Maximum likelihood phylogenetic analysis of the 412 
resulting genomes demonstrated that most DENV-2 sequences recovered in 2019 and 2020 413 
belonged to the DENV-2 Cosmopolitan III lineage, the first record of this genotype reported in 414 
Cambodia, though its introduction has been reported recently in several other neighboring 415 
countries in SEA (55–58). All DENV-1 sequences clustered in the Genotype 1 lineage, consistent 416 
with previously reported genotype records in Cambodia (Fig. S18). In our study, sequences 417 
collected from 2019 were largely split between DENV-1 (N=52) and DENV-2 (N=35) serotypes 418 
(59.8% vs. 40.2% respectively), while sequences collected in 2020 were dominated by DENV-2 419 
(N=26/31, 83.9 %). In 2019 and 2020, respectively, 26/35 (74.3%) and 24/26 (92.3%) of DENV-2 420 
sequences belonged to the Cosmopolitan III lineage, with the remaining sequences clustering in 421 
the Asian-1 DENV-2 lineage previously reported in Cambodia. 422 

We constructed serotype-specific Bayesian timetrees (59, 60) from DENV sequences to 423 
assess the divergence time of 2019-2020 lineages from sequences previously reported from 424 
Cambodia and from neighboring SEA countries across our 2002-2020 study period (Fig. 4; Table 425 
S9). The majority of DENV-1 lineages (detailed in Fig. S18) diverged relatively recently from 2015 426 
and 2016 Cambodian sequences last reported within this serotype (Fig. 4A), with a time to Most 427 
Recent Common Ancestor (tMRCA) of approximately 7.9 years (MRCA at February 2013, 95% 428 
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HPD: July 2012 – September 2013). BLAST analysis indicated that this cluster of DENV-1 429 
Cambodia sequences demonstrated the highest identity to sequences recovered from China in 430 
2019, while another, rarer subset of DENV-1 sequences more closely resembled those recovered 431 
from Thailand in 2019 and 2020 (61). By contrast, DENV-2 sequences in the Cosmopolitan III 432 
lineage demonstrated high divergence from previously reported sequences for Cambodia (which 433 
have been recorded only in the Asian-1 lineage), with a tMRCA of approximately 88.5 years 434 
(MRCA at 1932, 95% HPD: 1927-1937). BLAST analysis indicated that DENV-2 Cosmopolitan 435 
sequences recovered from Cambodia in 2019 and 2020 showed the highest similarity to 436 
sequences previously derived from recent DENV-2 Cosmopolitan outbreaks in Singapore, 437 
Malaysia, Sri Lanka, and Thailand (53, 57, 61). Locally, within our regional data subset for SEA, 438 
sequences tightly clustered in both geographic space and time were highly phylogenetically 439 
related (Fig. S19), consistent with previous studies emphasizing the importance of microscale 440 
transmission dynamics for DENV (36). 441 

 442 

 443 
Figure 4. Bayesian time trees highlight geospatial structuring in evolutionary relationships for Cambodian 444 
dengue. A Map of Southeast Asia with countries colored corresponding to sequences derived from each country, as 445 
shown in tip points on phylogenetic timetrees constructed using BEAST 2 for DENV-1 and B DENV-2. X-axis highlights 446 
divergence times between corresponding sequences. Reference sequences from GenBank are represented as triangle 447 
tips and sequences contributed by active febrile surveillance in this study as circles. Cambodia and corresponding 448 
sequences are shaded purple. Clade bars indicate the genotype of corresponding sequences within each serotype: 449 
genotype-1 for DENV-1 and Asian-1 and Cosmopolitan III for DENV-2. A detailed inset of geographic localities for 2019-450 
2020 Cambodia sequences can be viewed in Fig. S19. C Number of effective transmission chains for circulating DENV 451 
estimated across populations of varying densities. Black (urban) and gray (rural) circles with corresponding 95% 452 
confidence intervals depict estimates for Thailand from Salje et al. 2017 (36), while triangles depict estimates from our 453 
Kampong Speu active febrile surveillance study for DENV-1 (green) and DENV-2 (blue). D Proportion of sequence pairs 454 
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for Kampong Speu DENV-1 (green) and DENV-2 (blue) genomes which are derived from the same transmission chain 455 
(i.e. share a MRCA <6 months since the earlier sequence in the pair) across progressively longer Euclidean distances 456 
separating the localities from which the sequences were recovered. 457 
 458 

Prior genomic analysis of geolocated DENV sequences in Thailand has demonstrated 459 
the importance of microscale, household-level transmission in driving DENV dynamics, 460 
particularly in the highly urbanized setting of Bangkok (36). In Bangkok, human population size 461 
was shown to be positively correlated with the number of distinct DENV transmission chains (a 462 
measure of phylogenetic diversity) circulating in the region (Fig. 4C). In more rural settings in 463 
Thailand, this relationship was less pronounced, but the authors predicted that increasing 464 
urbanization of these regions would drive corresponding increases in DENV diversity in the 465 
future. We compared patterns in DENV genomic diversity captured in geolocated sequences from 466 
2019 and 2020 in peri-urban Cambodia with those previously investigated in Thailand (Fig. 4C), 467 
building transmission chains from sequence pairs which shared a MRCA within the past six 468 
months. The number of transmission chains recovered for endemic DENV-1 in our study region 469 
closely matched that predicted by population size in urban Bangkok. For DENV-2, which showed 470 
less overall diversity than DENV-1, the lower number of transmission chains per population size 471 
better approximated that recovered from rural regions in Thailand, in keeping with a hypothesis of 472 
recent invasion (Fig. 4C). We further demonstrated a tighter coupling between phylogenetic 473 
relatedness and the physical, geographic distance between paired sequences for DENV-2 vs. 474 
DENV-1 sequences, consistent with epidemic invasion behavior and the tight clustering of cases 475 
in space and time (Fig. 4D).  476 
 477 
Mechanistic simulations of clade replacement in an age-structured model captured 478 
patterns qualitatively similar to those seen in the data. 479 
 To consolidate findings from TSIR and FOI analysis with insights gleaned from genomic 480 
epidemiology in 2019-2020, we constructed a mechanistic, age-structured discrete time 481 
deterministic epidemic model in biweekly timesteps (SI Appendix) (62–64) to simulate two- and 482 
three-serotype dengue infections in a population demographically structured to mimic that of 483 
Cambodia over the past half-century. We initiated simulations incorporating seasonal variation in 484 
transmission as estimated by TSIR (Fig. 1) and annual variation in FOI corresponding to the time 485 
series of national estimates (Fig. 3), then modified dynamics to test hypotheses of potential 486 
drivers underlying the spike in cases and corresponding expansion in age structure witnessed in 487 
the three epidemics identified in the NDCP data (Fig. 5). As with our FOI analysis, we modeled 488 
secondary infections as reported cases, except when testing hypotheses of tertiary case 489 
detection or waning multitypic immunity and reinfection. 490 
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 491 
Figure 5. Simulations of genotype or serotype introduction events recapitulate observed variation in the age 492 
structure of reported dengue cases from Cambodian data. A Structure of deterministic simulation outlining 493 
hypotheses of possible mechanisms underlying patterns in observed data for Cambodia: (H0) normal demographic 494 
simulation, (H1) 2-circulating serotypes with a climate-driven FOI spike in epidemic year 2019, (H2) novel genotype 495 
invasion and clade replacement with waning immunity in 2019, (H3) novel serotype invasion and 10% tertiary case 496 
detection in 2019, (H4) 3 endemic circulating serotypes and progressively increasing rates of tertiary case detection (from 497 
0 to 100%) across time series. B Total reported cases (solid line = mean FOI; translucent shading = 95% confidence 498 
interval for FOI), C age distribution of reported cases by year (black = secondary; blue = tertiary), and D cumulative 499 
proportion of reported cases by age, by year from each corresponding simulation. 500 
 501 
 502 

For simplicity, we focused our analysis on drivers of the 2019 epidemic, simulating 503 
scenarios by which 2-circulating serotype dynamics were interrupted by a climate-driven spike in 504 
FOI in the epidemic year (H1), a genotype invasion and clade-replacement event with waning 505 
immunity within the serotype (H2), or a third serotype invasion (H3), then compared these to a 506 
hypothesis of 3-serotype circulation and increasing detectability of tertiary infections through time 507 
(H4) (Fig. 5A). We found that all hypotheses could recover high overall caseloads in epidemic 508 
years (Fig. 5B), though climate-driven increase in FOI (H1) did little to alter the mean age or age 509 
distribution of reported infection beyond baseline (Fig. 5C). By contrast, H2, H3, and H4 all 510 
elevated the mean age of infection, expanded the age distribution of cases, and produced a more 511 
gradual proportional accumulation of cases by age (Fig. 5D), in keeping with patterns in the 512 
observed data. Impacts on the age distribution of reported cases were less extreme for our H4 513 
simulations but could be easily modified by varying the rate of increase in the proportion of 514 
tertiary cases detected with time, which we did not estimate from the data. To highlight the link 515 
between the underlying simulated transmission dynamics and our prior inference from the 516 
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observed data in Fig. 3, we additionally fit our two-serotype catalytic FOI model with waning 517 
immunity to the simulated data generated for each hypothesis. Using this approach, we 518 
successfully recovered the input FOI in all simulations (Fig. S20), and the model structure 519 
estimated a signature of waning immunity for H2 and H3 simulations, which produced simulated 520 
data that closely resembled the true data (e.g. elevated mean age of reported infection and 521 
expansion of age distribution of reported cases in epidemic year). 522 
 Though we focused simulations on hypothesized drivers of the 2019 epidemic, we also 523 
repeated analyses with H1, H2, and H3 alterations introduced in 2007 to highlight their 524 
downstream impacts on the rest of the time series (Fig. S21). By definition, H4 did not define a 525 
change in a specific year. High epidemic FOI (H1) simulations for 2007 recovered the same spike 526 
in cases but had minimal impact on the age of reported infection, while both hypotheses of 527 
genotype invasion and clade replacement with waning immunity (H2) and third serotype invasion 528 
(H3) recovered a pattern consistent with the observed data: that of increasing mean and 529 
distribution of reported infection age concentrated around the epidemic year, which returned to 530 
baseline following the perturbation. Age increases were more extreme for H3, despite being 531 
suppressed by the increased overall FOI resulting from the introduction of a third serotype with 532 
equivalent FOI into the system. To date, no evidence of serotype invasion or turnover has been 533 
presented for the 2019 Cambodian epidemic, though serotype exchange is thought to have 534 
played a role in the 2007 epidemic (10, 14). Genotype invasion and clade replacement events 535 
within a serotype have been described in Cambodia in 2007 (13, 14) and 2019 (this paper). 536 
 537 
DISCUSSION 538 

Drawing from two decades of national surveillance data and a more recent genomic 539 
cohort study, we queried the mechanisms that underly dengue virus transmission and drive 540 
periodic dengue epidemics in Cambodia. All told, our study highlights the complex interplay of 541 
climate, demography, immunology, and virology that dictates the dynamics of dengue virus 542 
disease in endemic settings.  543 

Our investigations of climate effects on dengue transmission in Cambodia mirror those 544 
previously reported in Thailand (25, 26), Sri Lanka (53), and China (49), emphasizing the role of 545 
temperature, and—to a lesser extent—precipitation, in synchronizing annual dynamics in 546 
epidemic years. Consistent with prior work that highlights a role for El Niño in driving multiannual 547 
dengue cycles in other systems (26, 27, 65, 66), we observed synchrony between reconstructed 548 
multiannual dengue cycles in Cambodia and the ONI; however, this synchrony appeared to peak 549 
during the robust 2015-2016 El Niño, which did not correspond to one of the three major dengue 550 
epidemic years in our dataset. The muted impact of El Niño on dengue dynamics in Cambodia 551 
could reflect an increased homogenization of caseloads at higher temperatures in more recent 552 
years (25)—which is likely to mask more subtle effects on transmission—or may also be a 553 
consequence of less pronounced latitudinal variation (and corresponding climate differences) in 554 
Cambodia, as compared to other countries where these phenomena have been studied (e.g. 555 
Thailand). Nonetheless, our analysis suggests that warmer temperatures do play a role in driving 556 
epidemic dynamics for Cambodian dengue, and likely contributed to high caseloads in 2019. As 557 
temperatures increase globally, dengue transmission is likely to accelerate, and variation in both 558 
the timing of annual dengue transmission and multiannual peaks in caseload may become more 559 
homogenous.  560 
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In addition to climate, our data and corresponding analysis emphasizes the importance of 561 
human demography and prior immunity in structuring dengue transmission globally. Consistent 562 
with studies conducted elsewhere (19–21), we observed a pattern of increasing mean age of 563 
reported dengue infection that we effectively recaptured by modeling a declining force of infection 564 
through time—which we attributed to declining birth and death rates consistent with Cambodia’s 565 
demographic transition. Certainly, other mechanisms of demographic change (e.g. immigration 566 
and emigration) could also impact infection dynamics. Cambodia experienced a net negative 567 
migration rate across the time series investigated (67); as the majority of Cambodian migrants are 568 
young adults who seek employment in neighboring Thailand (68), it is possible that their 569 
emigration could lower the force of dengue infection even further. However, the Cambodian 570 
migrant population comprises <0.5% of the total national population (67), suggesting that birth 571 
and death rates are still likely the dominant drivers of observed patterns in the data. Nonetheless, 572 
migration rates can be 10-fold higher in border provinces and could have correspondingly 573 
elevated impacts in these regions (68).  574 

The declining force of infection for dengue through time is somewhat counterintuitive 575 
considering recent explosive epidemics in Cambodia and across the globe. Nonetheless, we 576 
provide evidence for a high frequency of reported cases in older age individuals that underlies the 577 
high case burden in epidemic years. Our study is unique from previous investigations in 578 
recognition, not only of escalation of the mean age of reported dengue infection, but also of the 579 
expanding age range of reported disease. Indeed, symptomatic individuals > 70 years in age 580 
during the 2019 epidemic are difficult to reconcile under assumptions by which reported cases 581 
correspond to clinically apparent secondary infections only. In our modeling framework, we take a 582 
novel approach to account for these infections by allowing for waning multitypic immunity and 583 
repeated symptomatic infections in older age individuals.  584 

Recent analyses out of the Thailand system highlight a similarly surprising uptick in case 585 
reports among older individuals in more recent years (19), which the authors attribute to 586 
increased detectability in tertiary and quaternary infections with time. The authors offer a series of 587 
hypothetical explanations for increasing case detectability across their time series: that tertiary 588 
and quaternary dengue infections might be more pathogenic (and therefore more detectable) due 589 
to an abundance of comorbidities in older individuals, that immunopathology may be exacerbated 590 
in older patients who experienced longer durations between repeat infections; or that waning 591 
multitypic immunity could allow for repeat infections in the oldest age cohorts (our hypothesis). 592 
Our analyses in the Cambodia system are not mutually exclusive with any of these explanations; 593 
however, we hypothesize that, were comorbidities or immunopathogenesis in older individuals 594 
driving patterns in the observed data, we would expect to see an hour-glass shape in 595 
symptomatic cases, with reduced reporting in middle-aged individuals who have progressed 596 
beyond secondary exposures but are at lower risk for both comorbidities and immunopathology. 597 
Instead, we see a gradual tapering in the age-frequency of infection, which expands in range with 598 
time (Fig. S15), consistent with the hypothesis of waning multitypic immunity. This latter 599 
hypothesis, when considered in light of a genotype replacement event, can also explain isolated 600 
expansion in the age range of reported cases witnessed in conjunction with epidemic year 2007 601 
and 2012 in our time series, while the first two hypotheses cannot. 602 

Our deterministic model simulations demonstrate how short-term (1–3 year) spikes in the 603 
age distribution of reported cases, independent of the mean annual trend in the time series, can 604 
be achieved both via introduction of a novel genotype with waning immunity or via introduction of 605 
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a novel tertiary serotype into an endemic, two-serotype system (equally plausible would be 606 
introduction of a quaternary serotype into an endemic three-serotype system). Though limited in 607 
scope, PCR-based sentinel surveillance data provide no support for serotype turnover associated 608 
with the 2019 dengue epidemic in Cambodia (11). By contrast, genome sequencing data from our 609 
own febrile cohort study in Kampong Speu province offer support for a genotype replacement 610 
event. Recent analyses of the Thailand dengue system link transitions in serotype dominance 611 
and clade replacement of genotype sublineages within a single serotype to epidemic magnitude 612 
(35). This work suggests that large epidemics typically result from the invasion, expansion, and 613 
evolution of viral lineages that diverge from previously circulating lineages of the same serotype 614 
but are more closely related to co-circulating viruses of endemic heterotypic serotypes, reflecting 615 
the viral fitness advantage afforded by ADE (31). In Thailand, the most severe epidemics were 616 
linked to clade replacement of a resident viral genotype by an evolutionarily fitter DENV lineage 617 
within the same serotype, resulting in a ‘selective sweep’, which subsequently reduced overall 618 
viral diversity and, consequently, diminished between-serotype antigenic differences (35). In the 619 
2019 epidemic in Cambodia, the Cosmopolitan genotype introduction, followed by serotypic and 620 
genotypic homogeneity in 2020, are consistent with the dynamics of clade replacement within the 621 
DENV-2 serotype. Indeed, clade replacement dynamics have been previously witnessed in 622 
conjunction with epidemic outbreaks in Cambodia (13, 14) and elsewhere (53, 57, 69–71).  623 

As one major limitation of this study, we did not obtain virus isolates and undertake 624 
antigenic cartography (72), which would be needed to resolve whether the invading Cosmopolitan 625 
III DENV-2 genotype in Cambodia in 2019 was, indeed, antigenically distinct from previously 626 
circulating Asian-1 lineages and, potentially, more antigenically similar to endemic heterotypic 627 
viruses. Indeed, because much of our inference is derived from serotype-agnostic national 628 
surveillance data, we are unable to rigorously evaluate the role of a possible genotype 629 
replacement event in particularly driving a high burden of disease in the oldest-age (>70 years) 630 
individuals in the dataset. Unfortunately, our febrile cohort was derived from an ongoing childhood 631 
cohort study (41), largely limiting the resulting sequence data to younger cases. Genotyped 632 
infections in the oldest-age individuals would do much to illuminate these hypotheses—and could 633 
provide even more insights if paired with serotyping prior to the 2019 epidemic.  634 

Several published studies offer regional explanations for the global dengue phenomenon 635 
of 2019. Recent analyses from Brazil, for example, argue that a low FOI in 2017 and 2018 636 
resulting from new public health interventions and behavioral modifications implemented in the 637 
wake of the Zika virus epidemic, drove a resurgence in cases in 2019 and an expansion of 638 
specific lineages of DENV-1 and DENV-2 that had been circulating cryptically for much of the 639 
past decade (73). Independent work in the same region indicates that the DENV-2 lineage 640 
responsible for the Brazilian outbreak additionally caused a clade replacement event within the 641 
serotype (70). Reports from other 2019 dengue epidemics in Bhutan and Bangladesh point to 642 
increased monsoon activity coincident with mass movement of people for school and religious 643 
holidays as key drivers of the surge in South Asia (74, 75)–while others still highlight a role for 644 
reintroduction of previously extinct serotypes, combined with high rainfall and insecticide 645 
resistance in these same regions (76). Notably, these latter studies lack data on both host 646 
susceptibility and viral phylogenetics needed to query the hypotheses presented here. Dengue 647 
surged worldwide in 2019, though the factors driving this surge appear to be somewhat 648 
heterogenous across ecosystems. Nonetheless, our study lends support for the role of climate in 649 
synchronizing epidemic dynamics across landscapes; it is possible that optimal climate conditions 650 
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may facilitate expansion of low prevalence lineages which possess an intrinsic fitness advantage 651 
(e.g. higher replication rate, shorter incubation period (77)) over resident genotypes, thus driving 652 
epidemics. Previous modeling studies have suggested that invading dengue lineages may 653 
circulate at low prevalence in a host population for many years prior to detection, expansion, and 654 
displacement of resident clades in the same serotype (78).  655 

Here, we propose the novel introduction of the DENV-2 Cosmopolitan genotype, coupled 656 
with a subtle climate-driven increase in FOI, and overlaid on the background of an aging 657 
population with correspondingly aging multitypic immunity, as one possible explanation for 658 
Cambodia’s largest recorded dengue epidemic to date. Our study emphasizes the extraordinary 659 
dearth of publicly available DENV sequence data for Southeast Asia; indeed, DENV is sequenced 660 
so infrequently in Cambodia that it is impossible to know whether 2019 truly marked the first year 661 
of DENV-2 Cosmopolitan introduction to the country, or simply the year of intensified expansion 662 
and consequential epidemic dynamics. More broadly, our work illustrates the importance of the 663 
combined forces of climate, demography, immunology, and virology in driving increasingly severe 664 
dengue epidemics. As the global burden of dengue continues to expand, ongoing serological and 665 
genomic surveillance is needed to improve epidemic forecasting in Southeast Asia and around 666 
the world. 667 
 668 
 669 
METHODS 670 
 671 
Ethics 672 

This study was approved by the National Ethics Committee on Human Research and the 673 
National Institutes of Health (NIH) Institutional Research Board. Written informed consent was 674 
obtained from the individual participant or the parent or guardian of the child participants enrolled 675 
in this study. This study was registered at clinicaltrials.gov as NCT04034264 and NCT03534245.  676 
 677 
Enrollment and sample collection 678 

Nursing staff at the Kampong Speu (KPS) Referral Hospital identified, consented, 679 
enrolled, and collected demographic data from study participants. Participants, aged 6 months to 680 
65 years of age, presented to the outpatient department with a documented fever of 38°C or 681 
greater in the previous 24 hours. Participants with clinical symptoms and signs consistent with 682 
dengue were first screened for infection using SD Bioline DengueDuo rapid tests for NS1 antigen, 683 
pan-dengue IgM and IgG. Sera was collected and processed as described elsewhere for RNA 684 
extraction, and confirmatory qRT-PCR testing for DENV-1 – 4 was performed for rapid-test 685 
positive participants (41).  686 

 687 

Cambodia national dengue data 688 
We obtained a 2002-2020 time series of age-structured dengue cases reported at the 689 

national level from clinicosyndromic surveillance efforts administered by the National Dengue 690 
Control Program (NDCP) of the Cambodian Ministry of Health. Since inception of the national 691 
surveillance system in 2002, each Cambodian province reports cases on a monthly basis to the 692 
national authorities who compile these reports for public health use and reporting to the World 693 
Health Organization. The date of each case and the corresponding age and gender of each 694 
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patient are reported, in addition to the province in which the case was diagnosed (25 total). We 695 
binned cases to every-two-week (biweekly) intervals for application to TSIR modeling and 696 
summarized by age class within each year for application to FOI models. We note that one 697 
province (Tboung Khmum) was created only recently, such that the corresponding time series 698 
spanned from 2016-2020. As a result, this province was eliminated from both TSIR and FOI 699 
analyses. 700 

 701 
Spatially-resolved climate data 702 

Climate variables, including daily mean temperature (0C) and total daily precipitation 703 
(mm) from 2002 to 2019 were downloaded from the ERA5 Daily Aggregates dataset for each 704 
Cambodian province (N=25) using Google Earth Engine (79). Comparable data were not 705 
available for 2020. The spatial resolution for the ERA5 data set is approximately 31 km; however, 706 
we aggregated climate data to the size of each province using the Cambodia Administrative 707 
Boundaries Level 1 shapefile (80) during the extraction process, then computed the mean 708 
temperature (0C) and total precipitation (mm) over biweekly intervals, from January 1, 2002 to 709 
December 31, 2019, while accounting for leap years.  710 
 711 
Climate analyses 712 

We first investigated the climate data to identify intra- and interannual trends and identify 713 
any years within the dataset that might be considered climatic anomalies. For both temperature 714 
and precipitation, we constructed two generalized additive models (GAMs) in the Gaussian 715 
family. The first GAMs incorporated a response variable of, respectively, biweekly mean 716 
temperature or total precipitation, at the province level, across the time series, with a fixed 717 
predictor of the interaction of year (as a numeric) with province, a cyclic smoothing spline by 718 
biweek of year, and a random effect of province. As a result, each GAM fit 25 distinct slopes and 719 
25 distinct y-intercepts to the corresponding temperature or precipitation data to describe the 720 
interannual climate trend for each province, while controlling for intra-annual variation (Fig. S3-721 
S4; Table S1). We next constructed two GAMs with the same response variables but 722 
incorporating predictor variables of year (a factor) as a random effect and a cyclic smoothing 723 
spline by biweek of year. These GAMs enabled us to identify specific years that significantly 724 
deviated from the mean climate trends (Fig. S5-6; Table S1). Finally, we reduced temperature 725 
and precipitation time series by province into z-scores by subtracting, respectively, the mean 726 
biweekly temperature and precipitation of the entire time series from each biweekly datapoint per 727 
province, then dividing by the standard deviation. We visualized z-scores to highlight years in 728 
which many provinces exhibited z-scores outside the 95% confidence intervals, representing a 729 
climate anomaly (Fig. S5-6). 730 

 731 
TSIR modeling 732 

We next fit time series Susceptible-Infected-Recovered models (45–47) to the province 733 
level time series for the three inter-epidemic periods (2002-2006, 2008-2011, and 2013-2018), in 734 
order to highlight the extent to which epidemic year case loads deviated from projections based 735 
on susceptible reconstruction by birth rates alone. The TSIR model leverages an input time series 736 
of case counts, births, and total population to estimate the susceptible population and disease 737 
transmission rate at intervals corresponding to the generation time of the pathogen in question 738 
(here, roughly two weeks (81)). Under TSIR assumptions, the transmission rate is held constant 739 
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from year to year, though allowed to vary intra-annually to reflect seasonal dynamics. Using the R 740 
package tsiR (45), we fit the TSIR model individually to an input time series of biweekly dengue 741 
case counts by province. Because births were reported only annually at the national level for 742 
Cambodia (67), we divided these among biweeks of each year and scaled them spatially by the 743 
relative population size of each province. For each inter-epidemic period, we reconstructed the 744 
susceptible population from the regression of cumulative cases on cumulative births, using either 745 
a Gaussian or a linear regression, depending on which approach provided the better fit to each 746 
data subset, as summarized in Table S2. The new province, Tboung Khmum, was excluded from 747 
TSIR analysis because case reporting only began in this region in 2016. Provinces Ratanak Kiri 748 
and Mondul Kiri were additionally excluded, due to poor performance of regression models for 749 
susceptible reconstruction within each region (Table S2; R2 for 2007/2012/2019 data subsets for 750 
Ratanak Kiri: 0.24/0.54/0.36; and for Mondul Kiri: 0.15/0.20/0.51). 751 

While fitting TSIR, we allowed the transmission rate (𝛽) to vary across 26 biweekly 752 
intervals in a single year and the homogeneity parameter (𝛼) to vary with each model fit. Using 753 
the model trained on each inter-epidemic period, we first projected cases in the subsequent 754 
epidemic years (2007, 2012, 2019) while reconstructing the susceptible population from 755 
corresponding epidemic year births alone. This first exercise demonstrated the ineffectiveness 756 
with which simple TSIR assumptions were able to recover case counts reported from epidemic 757 
years; therefore, we next sought to quantify the increase in the assumed susceptible count 758 
needed to capture reported cases. Previously, Wagner et al. 2020 (22) demonstrated analytically 759 
that, under short time horizons, the susceptible population (𝑆!) in a two-strain DENV system, in 760 
which a new secondary serotype invades a population previously dominated by a single endemic 761 
serotype, can be approximated by the equation: 762 

𝑆! ≈ 𝑆 +	
𝑅"𝜌#𝑁
𝐼"

≈ 𝑆∗ -1 +	
𝜌#𝛾𝛽

𝜇(𝛾 + 𝜇)3 763 

in which 𝑆 corresponds to individuals naïve to all prior infection, while 𝑅" and 𝐼"correspond to 764 
individuals recovered from or infected with the endemic strain only, and 𝑁 and 𝜌# respectively 765 
represent the total population size and the rate of exogenous importation of a new serotype. 𝑆∗ 766 
then corresponds to the steady-state value of the Susceptible population under assumptions of a 767 
single endemic serotype only, while 𝜇, 𝛾, and 𝛽 encompass the rates of birth, death, and 768 
transmission of exogenous infections of the new serotype. Building on these assumptions, we 769 
first calculated the factorial increase in the reconstructed susceptible population needed to 770 
recover case counts for the three epidemic years.  771 
 772 
Panel regression and climate-informed TSIR 773 

To evaluate whether consideration of epidemic-year climate factors could improve TSIR 774 
predictions of epidemic cases, we next followed previous work to explore the extent to which 775 
biweekly transmission was predicted by climate (53). Because dengue is a vector-borne disease, 776 
we hypothesized that transmission should be lagged from climate effects on the vector population 777 
and, correspondingly, first conducted cross correlation analysis to determine the optimal lag 778 
between the time series of biweekly mean temperature and total precipitation on transmission at 779 
the province level. In keeping with prior work for dengue (53), we considered only lag times of up 780 
to one year in which the climate predictor led the empirical transmission rate; however, we 781 
deviated from previous studies by allowing the optimal lag to vary by province and inter-epidemic 782 
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period. We found that the optimal time lag between peak climate predictor and peak dengue 783 
transmission ranged from 0.5 to 5 months (1 – 11 biweeks) for temperature (median = 3.5 784 
months) and from 0.5 to 9 months (1 – 18 biweeks) for precipitation (median = 1 month), 785 
consistent with prior analyses from Sri Lanka (53) (Table S3).  786 

Once optimal lags for temperature and precipitation were obtained, inspired by previous 787 
work (48, 49, 53, 82), we next constructed a suite of regression models, incorporating a response 788 
variable of the log of biweekly province level transmission with the corresponding predictors of 789 
optimally lagged biweekly mean temperature and total precipitation for the province in question. 790 
We constructed separate regressions for each inter-epidemic period (2002-2006, 2008-2011, and 791 
2013-2018) and tested the sensitivity of transmission to climate predictors using a standard linear 792 
regression, a linear regression for precipitation paired with a Brière function for temperature (53, 793 
83), and a GAM (Fig. S8-10; Table S4). We then used lagged temperature and precipitation 794 
corresponding to each epidemic year in each province to project climate-informed transmission 795 
rates for 2007, 2012, and 2019. Results were qualitatively similar across all regression structures; 796 
as such, we report only GAM-projected transmission rates here (SI Appendix). Using climate-797 
informed transmission rates, we again simulated TSIR to recover epidemic year predictions of 798 
caseload at the province level, which we evaluated against projections by TSIR fitted to the inter-799 
epidemic periods and incorporating a proportional increase in the susceptible population. 800 
Because climate-derived transmission rates still failed to recover epidemic year peaks, we 801 
allowed for yet another susceptible amplification term to determine the relative increase in the 802 
susceptible population still needed to recover epidemic dynamics even after accounting for 803 
climate (Table S5). 804 
 805 
Wavelet analyses 806 
 We next used wavelet decomposition in the R package ‘WaveletComp’ (54) to explore 807 
annual and multiannual periodicity in dengue epidemics and corresponding climate variables. We 808 
converted biweekly case totals by province from the 2002-2020 NDCP dataset into incidence 809 
rates per 100,000 population, then, as in previous work (25, 26), used a Morlet wavelet with 810 
nondimensional frequency (𝜔 = 6) to extract, detrend, and reconstruct annual cycles in dengue 811 
incidence with a maximum period of two years (52 biweeks) and multiannual cycles with periods 812 
ranging from two to 20 years (Fig. 2AB). We additionally calculated the average wavelet power in 813 
each biweekly timestep for both annual and multiannual cycles per province (Fig. S11AB). Next, 814 
we investigated synchronicity in dengue incidence across space by computing the Pearson’s 815 
correlation coefficient (𝜌) between province pairs, using the annual raw incidence and the 816 
reconstructed annual and multiannual cycles. All results for annual cycles were qualitatively 817 
similar to those for the annual raw incidence and are, therefore, not reported here. For annual 818 
incidence, we computed 𝜌 for each province pair combination in yearly timesteps, then calculated 819 
the annual average 𝜌 for each focal province compared against all other provinces (Fig. 2C). For 820 
multiannual cycles, we computed 𝜌 for all pairwise province combinations across a sliding 5-year 821 
window. As with annual incidence, we then calculated the average 𝜌 for each focal province per 822 
year, compared against all other provinces. Because 5-year cycles overlapped, 𝜌 was averaged 823 
over multiple overlapping comparisons for each pairwise combination for all but the first and last 824 
year in the time series (Fig. 2D). For another measure of synchronicity, we additionally computed 825 
the cross-wavelet power spectrum for all province pairs, using both annual incidence rates in 826 
yearly timesteps and multiannual reconstructed cycles in 5-year intervals. As with the Pearson’s 827 
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correlation coefficient, we averaged the output of these analyses (here, significant values for 828 
cross-wavelet power) for each focal province, as compared with all other provinces, at the 829 
appropriate timestep (Fig. S11CD). Because patterns in synchronicity were most pronounced at 830 
the annual incidence scale, in order to identify statistical correlates of high synchronicity years 831 
and localities, we finally constructed a GAM with a response variable of 𝜌, as reported in Fig. 2C, 832 
a fixed predictor of the interaction of focal province and geographic distance to the province under 833 
comparison; smoothing predictors of biweekly mean temperature, total precipitation, and mean 834 
population size for the focal province; and a random effect of year (Fig. S12; Table S6).  835 
 Because this last analysis indicated some predictive role for climate in driving synchrony 836 
in dengue incidence, we next investigated coherence between case data and climate variables, 837 
as previously compiled for TSIR from 2002-2019 (Fig. S13). We first computed mean cross-838 
wavelet power as a measure of synchrony between the biweekly time series of raw dengue 839 
incidence and mean temperature (Fig. S13A) and total precipitation (Fig. S13B) per province. We 840 
next calculated mean cross-wavelet power between reconstructed multiannual dengue cycles 841 
over a 5-year interval and the same two climate variables, again per province (Fig. S13CD). 842 
Finally, we reconstructed monthly multiannual dengue cycles for each province to compute 843 
average cross-wavelet power with the Oceanic Niño Index (ONI), a monthly time series that 844 
quantifies the intensity of the El Niño Southern Oscillation, which has been previously associated 845 
with dengue dynamics in SEA (Fig. S13E) (26, 27, 65, 66).   846 
 Lastly, we extracted the mean period from reconstructed multiannual dengue cycles by 847 
province and at the national level, to compare with publicly available demographic data (birth 848 
rates, death rates, population size (67)) that informed downstream analyses (Fig. S14).  849 
 850 
Quantifying mean age of reported infection 851 
 Our next analyses shifted the focus from climate to demographic drivers of dengue 852 
incidence. To this end, we first quantified the interannual trend in the mean age of reported DENV 853 
infection, by province, across our 2002-2020 time series. We fit a GAM with a response variable 854 
of age to a fixed predictor of the interaction of year and province, while also including a random 855 
effect of province, to allow both slope and y-intercept to vary by the locality over which the date 856 
were compiled. We visualized these interannual trends across the age distribution of reported 857 
cases by province (Fig. S15) and also summarized at the national level (Fig. 3AB; Table S7).  858 
 859 
Force of Infection estimation 860 

We next used the age-stratified, province level surveillance data to estimate the annual 861 
FOI for DENV in Cambodia across the 19-year time series from 2002-2020. Methods for 862 
estimating FOI from age-stratified serological data for single-strain pathogens are well 863 
established (40, 84–87), and prior work has adapted these methods to account for the role of pre-864 
existing heterotypic immunity in DENV infection (39) and modified them for application to age-865 
structured incidence data, in lieu of serology (20). We applied the model developed by Ferguson 866 
et al. 1999 (39) and Cummings et al. 2009 (20) to age-structured incidence recovered from the 867 
NDCP data, at the province level, assuming reported cases to represent secondary infections and 868 
all individuals in the dataset to eventually experience exposure to multiple DENV serotypes 869 
across their lifetimes. We allowed for a unique FOI across each year in the time series but first 870 
assumed a constant FOI across all age cohorts within a single year. As in prior work, this method 871 
additionally supported the estimation of FOIs that predated our data time series, albeit with 872 
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diminished confidence as compared to our data-associated years. Specifically, we estimated one 873 
FOI per year per province, in addition to a summary FOI at the national scale, for all years 874 
predating the start of the 2002 time series and corresponding to the year of birth for the oldest 875 
individual in the first year of the corresponding subset of the data (Fig. S16; Table S8). For the 876 
national data (and for Takeo province), this corresponded to a 40-year time series, dating back to 877 
1981, the birth year of the oldest individual (22 years) in the first year of the dataset (SI Appendix; 878 
Table S8). No FOIs were estimated for the Tboung Khmum province for which the NDCP only 879 
began reporting data in 2016. We estimated mean FOI per serotype under assumptions of two 880 
circulating dengue serotypes in the region. Because FOI was estimated as a serotype average, 881 
these estimates would be proportionally depressed if instead accounting for three or four 882 
circulating dengue serotypes in the system. To highlight links to demography, we plotted FOI 883 
estimates collectively in comparison to national reported birth and death rates in Fig. 3C (67). 884 

After fixing FOI by province, we next followed prior work (20) to estimate FOI modifiers by 885 
age cohort, shared across all provinces and all years of the data. Because of the wide range in 886 
the age distribution of cases across the time series under consideration, we fit thirteen age-887 
specific modifiers to the fixed FOI values, which we allowed to vary between the first and second 888 
decades of the dataset, such that 26 FOI-modification terms were estimated in total (Table S8).  889 
Finally, after observing the extremely high age distribution of reported cases in the later years of 890 
the time series, we modified our previous model to allow for a rate of waning immunity from 891 
multitypic back to monotypic immunity (𝜎), such that older individuals could experience renewed 892 
pathogenic infections likely to be reported in the data (SI Appendix). As with age-modification 893 
terms, we estimated waning multitypic immunity shared across all provinces and all years in the 894 
dataset after fixing FOI. Because little signal of waning multitypic immunity was evident across 895 
the entire time series, we next allowed 𝜎 to vary by year across the dataset. We compared fits of 896 
the FOI-only, FOI with age modification, FOI with waning multitypic immunity, and FOI with both 897 
age modification and waning multitypic immunity models to the data (Table S8), then simulated 898 
the resulting accumulation of cases with age from the best fit model at national (Fig. 3E) and 899 
province levels (Fig. S17). 900 

 901 
Viral sequencing 902 

Metagenomic Next-Generation Sequencing (mNGS) was applied to serum samples 903 
collected from all patients reporting with symptoms in our febrile cohort study. Briefly, pathogen 904 
mNGS libraries were prepared from isolated pathogen RNA and converted to cDNA Illumina 905 
libraries using the NEBNext Ultra II DNA Library Prep Kit (E7645) according to manufacturer’s 906 
instructions. Library size and concentration were determined using the 4150 Tapestation system, 907 
Agilent, and Qubit 4 Flurometer, Invitrogen (for quantitation only). External RNA Controls 103 908 
Consortium collection, ERCC, ThermoFisher, were used as indicators of potential library 909 
preparation errors and for input RNA mass calculation. Samples were sequenced on a NovaSeq 910 
(Illumina) instrument and an iSeq100 (Illumina) instrument using 150 nucleotide paired-end 911 
sequencing. A water (“no template”) control was included in each library preparation.  912 

Raw fastq files were uploaded to the CZID portal, a cloud-based, open-source 913 
bioinformatics platform, to identify microbes from metagenomic data (https://czid.org) (88). 914 
Potential pathogens were distinguished from commensal flora and contaminating microbial 915 
sequences from the environment by establishing a z-score metric based on a background 916 
distribution derived from 16 non-templated “water-only” control libraries. Data were normalized to 917 
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reads mapped per million input reads for each microbe at both species and genus levels. Taxa 918 
with z-score less than 1, base pair alignment less than 50 base pairs, NT log(1/e) less than 10 919 
and reads per million (rpM) less than 10 were removed from analysis. Microbial sequences from 920 
the samples are available for access in the National Center for Biotechnology Information (NCBI) 921 
Sequence Read Archive. 922 

 923 
Construction of consensus genomes 924 

We attempted to construct full-genome DENV sequences from any samples which were 925 
confirmed to be DENV-positive by RT-qPCR and which generated at least one reliable contig 926 
mapping to any serotype of DENV in the CZID pipeline. To generate full genome consensus 927 
sequences, we ran the ARTIC network’s Nextflow consensus genome pipeline (89), mapping 928 
each sequence to the closest GenBank accession number hit in the original mNGS run of CZID, 929 
using a cutoff of 5 reads per nucleotide site to make a consensus call (sites with <5 reads were 930 
called as "N"). Sequences were additionally run through the CZID integrated consensus genome 931 
pipeline, again mapping to the closest hit identified in GenBank from the original mNGS 932 
assembly. Resulting consensus sequences from both assembly pipelines were then aligned with 933 
reference sequences and visually examined in Geneious Prime. Raw reads from mNGS were 934 
then mapped to each full genome contig in turn and examined manually to determine the correct 935 
call for each base pair.  936 

Using these methods, we generated full or near-full genome sequences for 57 DENV-1, 937 
61 DENV-2, and 4 DENV-4 samples, representing 122 of the 123 DENV-positive patients 938 
identified in our dataset. All contributed genomes were >10,000 bps in length and had a 939 
maximum of 90 Ns (corresponding to <1% of the DENV genome). Resulting sequences were 940 
uploaded to NCBI as individual FASTA files (Table S9).  941 
 942 
Phylodynamic and phylogenetic analysis 943 

We supplemented our own Cambodia sequences with all other Cambodian sequences 944 
for DENV-1 and DENV-2 available in GenBank at the time of analysis, selecting all full or partial 945 
genome nucleotide sequences >10,000 bp in length up to a collection date of December 31, 2020 946 
(DENV-1: tax id 11053, 192 sequences, including 57 contributed by this study; DENV-2: tax id 947 
11060, 116 sequences, including 61 contributed by this study). We further supplemented these 948 
Cambodia sequences with genomes collected from other major Southeast Asian countries (nine), 949 
which were Laos, Myanmar, Malaysia, Thailand, Vietnam, Brunei, Indonesia, the Philippines, and 950 
Singapore. All countries were represented in both the DENV-1 and DENV-2 datasets. To avoid 951 
overrepresenting certain countries outside of Cambodia, we limited sequence selection to a 952 
maximum of three randomly selected genomes collected per year from each available year per 953 
country, beginning in 2002, the year in which we began our national time series.  954 

After selection, sequences were aligned separately by serotype in the program MAFFT 955 
(90), and the best fit nucleotide substation model for each set of data was evaluated in the 956 
program ModelTest-NG (91). For both DENV-1 and DENV-2, a GTR+I+G4 nucleotide was 957 
determined to offer the best fit to the data. Using this best fit nucleotide substitution model, we 958 
next built a Bayesian phylogenetic tree for each set of DENV genomes in the program BEAST 2 959 
(60). We incorporated the date of sample collection for each sequence (or the midpoint of the 960 
year of collection if the date was not reported), and, after Salje et al. 2017 (36), we specified a 961 
strict molecular clock at a rate of 7.9x10-4 s/s/y (92) and a Coalescent Bayesian skyline prior in 962 
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our models. We ran Markov Chain Monte Carlo chains in BEAST 2 for 150 million iterations, 963 
logging results every 10,000 iterations. After chains completed, we removed the initial 10% of 964 
iterations as burn-in and evaluated parameter convergence in Tracer v1.6 (parameters were 965 
deemed to have converged at ESS values ≥ 200). We summarized resulting phylogenetic trees 966 
in TreeAnnotator and visualized summary trees in the R package ggtree (93) (Fig. 4AB; Fig. 967 
S19). 968 

Finally, we computed a Maximum Likelihood phylogenetic tree to illustrate the 969 
phylogenetic placement of our new Cambodia sequences in relation to all previously described 970 
genotypes of DENV-1 and DENV-2. For this analysis, we included all Cambodian sequences of 971 
DENV-1 and DENV-2 available in NCBI, as well as a broadly representative subset of sequences 972 
within all known genotypes of DENV-1 (genotypes I, II, and III) and DENV-2 (genotypes Asian-I, 973 
Asian-II, Asian-American, American, Cosmopolitan I, Cosmopolitan II, and Cosmopolitan III). As 974 
with Bayesian timetrees, sequences were first aligned in MAFFT (90), and the best fit nucleotide 975 
substitution model was computed in ModelTest-NG (91). As before, we found that a GTR+I+G4 976 
best represented both sequence subsets; using this model, corresponding phylogenetic trees 977 
were then constructed in the program RAxML (94). Following best practices outlined in the 978 
RAxML-NG manual, 20 ML inferences were made on each original alignment and bootstrap 979 
replicate trees were inferred using Felsenstein’s method (95), with the MRE-based bootstopping 980 
test applied after every 50 replicates (96). Resulting phylogenies were then visualized in ggtree 981 
(93) (Fig. S18).  982 

 983 
Estimating transmission chains from sequence data 984 

Lastly, we followed methods outlined in Salje et al. 2017 (36) to calculate the proportion 985 
of sequences within each DENV serotype that could be attributed to the same transmission chain 986 
on our Bayesian timetrees, defined as having a most recent common ancestor within the past six 987 
months in the same season. The reciprocal of the proportion of sequences sharing a transmission 988 
chain corresponds to the effective number of transmission chains circulating in a given 989 
population. Thus, to compare our estimates of transmission chain density against those 990 
previously reported for Thailand (36), we computed the total effective number of transmission 991 
chains observed in our 2019-2020 sequence dataset, separately for DENV-1 and DENV-2, at the 992 
World Bank reported population density for Kampong Speu province (67) (Fig. 4C). We also 993 
compared the proportion of DENV-1 vs. DENV-2 sequences determined to share a transmission 994 
chain to the Euclidean distance separating the precise GPS coordinates of the collection points of 995 
each sequence pair (Fig. 4D). 996 
 997 
Mechanistic modeling of age-structured dengue dynamics 998 

Finally, we constructed a mechanistic, age-structured discrete time deterministic 999 
epidemic model in biweekly timesteps (SI Appendix) (62–64) to simulate two- and three-serotype 1000 
dengue infections in a population demographically structured to mimic that of Cambodia over the 1001 
past half-century. Using publicly-available national data for Cambodian birth rates (1960-2020) 1002 
(67), population age structure (1950-2020) (97), and age-specific mortality rates (1950-2020) 1003 
(98), we simulated the dynamics of two or three circulating DENV serotypes out to endemic 1004 
equilibrium, incorporating seasonal intra-annual variation in transmission as estimated from TSIR. 1005 
We then introduced the annual national FOI from 1999-2020, as previously estimated by fitting 1006 
catalytic models to the NDCP data (Fig. 3) and tracked the corresponding increase in the mean 1007 
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age of simulated dengue cases. We modified dynamics to test hypotheses of potential drivers 1008 
underlying the spike in cases and corresponding expansion in age structure witnessed in the 1009 
three epidemics identified in the NDCP data (Fig. 5).  As highlighted in the ‘Results’ section, we 1010 
focused our analysis on drivers of the 2019 epidemic, simulating scenarios by which 2-circulating 1011 
serotype dynamics were interrupted by a climate-driven spike in FOI in the epidemic year (H1), a 1012 
genotype invasion and clade-replacement event with waning immunity within the serotype (H2), 1013 
or a third serotype invasion (H3), then compared these to a hypothesis of 3-serotype circulation 1014 
and increasing detectability of tertiary infections through time (H4) (Fig. 5A). To highlight the link 1015 
between the underlying dynamics and our prior inference from the observed data, as well as 1016 
check that our simulated dynamics recapitulated those witnessed in the actual data, we fit our 1017 
original Ferguson-Cummings two-serotype catalytic FOI model to the simulated data generated 1018 
from our mechanistic model for each hypothesis to recapture the input FOI (Fig. S20). Holding 1019 
FOI constant, we then estimated a time-varying signature of waning monotypic immunity for all 1020 
simulated time series (Fig. S20) and compared results. Finally, we repeated analyses with H1, 1021 
H2, and H3 alterations introduced in 2007 to highlight their downstream impacts on the rest of the 1022 
time series (Fig. S21). 1023 
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available in GenBank, under accession numbers reported in Table S9. All bioinformatics code for 1028 
the initial mNGS assembly is available at https://github.com/chanzuckerberg/idseq-workflows and 1029 
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Further information on how to use ½ reaction volumes and FastSelect® are available upon 1032 
request. Code for generation of consensus genomes is available from the Artic Network at 1033 
https://artic.readthedocs.io/en/latest/. Raw data and detailed instructions of all specific analyses 1034 
undertaken to produce the figures and results presented here are available in our open access 1035 
github repository at: https://github.com/brooklabteam/cambodia-dengue-national. All other 1036 
reasonable data requests can be made to authors directly. 1037 
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