Abstract
Robotic exoskeletons have considerable, but largely untapped, potential to restore mobility in individuals with neurological disorders, and other conditions that result in partial or complete immobilization. The growing demand for these devices necessitates the development of technology to characterize the human-robot system during exoskeletal-assisted locomotion (EAL) and accelerate robot design refinements. The goal of this study was to combine controlled experiments with computational modeling to build a virtual simulator of EAL. The first objective was to acquire a minimum empirical dataset comprising human-robot kinematics, ground reaction forces, and electromyography during exoskeletal-assisted and unassisted locomotion from an able-bodied participant. The second objective was to quantify the dynamics of the human-robot system using a subject-specific virtual simulator reproducing EAL compared to the dynamics of normal gait. We trained an able-bodied participant to ambulate independently in a Food and Drug Administration-approved exoskeleton, the ReWalk P6.0 (ReWalk Robotics, Yoknaem, Israel). We analyzed the motion of the participant during exoskeletal-assisted and unassisted walking, sit-to-stand, and stand-to-sit maneuvers, with simultaneous measurements of (i) three-dimensional marker trajectories, (ii) ground reaction forces, (iii) electromyography, and (iv) exoskeleton encoder data. We created a virtual simulator in OpenSim, comprising a whole-body musculoskeletal model and a full-scale exoskeleton model, to determine the joint kinematics and moments during exoskeletal-assisted and unassisted maneuvers. Mean peak knee flexion angles of the human subject during exoskeletal-assisted walking were 50.1° ± 0.6° (left) and 52.6° ± 0.7° (right), compared to 68.6° ± 0.3° (left) and 70.7° ± 1.1° (right) during unassisted walking. Mean peak knee extension moments during exoskeletal-assisted walking were 0.10 ± 0.10 Nm/kg (left) and 0.22 ± 0.11 Nm/kg (right), compared to 0.64 ± 0.07 Nm/kg (left) and 0.73 ± 0.10 Nm/kg (right) during unassisted walking. This work provides a foundation for parametric studies to characterize the effects of human and robot design variables, and predictive modeling to optimize human-robot interaction during EAL.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
WAB and SP received support from the Department of Veterans Affairs (https://www.va.gov/) grant VA RR…D # 1 I01 RX003561-01A2. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
This human subject study was approved by the Institutional Review Board at New Jersey Institute of Technology. The approval number is 2008001531R001.
I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Data Availability
All empirical data and virtual simulator code from this study will be freely available at simtk.org