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Abstract

Defining the human factors associated with severe vs mild SARS-CoV-2 infection has become 
of increasing interest. Mining large numbers of public gene expression datasets is an effective 
way to identify genes that contribute to a given phenotype. Combining RNA-sequencing data 
with the associated clinical metadata describing disease severity can enable earlier 
identification of patients who are at higher risk of developing severe COVID-19 disease. We 
consequently identified 358 public RNA-seq human transcriptome samples from the Gene 
Expression Omnibus database that had disease severity metadata. We then subjected these 
samples to a robust RNA-seq data processing workflow to quantify gene expression in each 
patient. This process involved using Salmon to map the reads to the reference transcriptomes, 
edgeR to calculate significant differential expression levels, and gene ontology enrichment using 
Camera. We then applied a machine learning algorithm to the read counts data to identify 
features that best differentiated samples based on COVID-19 severity phenotype. Ultimately, we 
produced a ranked list of genes based on their Gini importance values that includes GIMAP7 
and S1PR2, which are associated with immunity and inflammation (respectively). Our results 
show that these two genes can potentially predict people with severe COVID-19 at up to ~90% 
accuracy. We expect that our findings can help contribute to the development of improved 
prognostics for severe COVID-19.
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Introduction

Human infections with severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has 
resulted in hundreds of millions of confirmed cases and millions of deaths globally. In addition, 
countless others have been hospitalized and a subset of the infected population has 
experienced severe health consequences--particularly those who are elderly, 
immunocompromised, or have other underlying conditions. The genetic material for this 
pathogen consists of a monopartite positive-sense single-stranded RNA molecule that is 
approximately 30 kb in length that contains multiple open reading frames [1]. Since the virus 
was first detected in late 2019, the scientific community has performed multiple studies to better 
understand the underlying mechanism(s) of entry and pathogenesis [2–6]. 

Human pathogenesis studies performed early in the SARS-CoV-2 pandemic showed that the 
virus induces the interferon response and interleukin-6, as well as other cytokines and 
chemokines that contribute to COVID-19 [7–9]. Interestingly, multiple studies have shown that 
the majority of infections are either mild or asymptomatic [10–13]. The large diversity in the 
human response to infection, combined with large numbers of infections, contributed to strained 
hospital capacity [14–16]. Various factors contribute to these observed differences in disease 
severity, and the demand for robust biomarkers associated with COVID-19 disease severity has 
continually grown. Some studies have identified associations between acute infection and the 
host response [17,18]. Other studies have evaluated associations between disease severity and 
aspects of the adaptive immune system [19–23] and quantified viral RNA [24–29]. A recent 
study has used neural networks to predict patient survival outcomes with high accuracy [30], 
which can be useful when whole transcriptome data are available. However, to our knowledge, 
a meta-analysis on transcriptional biomarkers associated with mild versus severe infection has 
not been previously reported. 

The aim of the current study is to perform a meta-analysis of existing human transcriptomics 
data from collected blood samples to predict transcriptional prognostic markers. Since presence 
of the virus is possible with existing diagnostics, such markers of disease severity could then 
contribute to making informed decisions concerning the care of infected patients who seek 
treatment at the hospital.

Methods

Identification of Relevant Datasets

An established process that combines automated and manual methods was used to identify and 
analyze the samples from published SARS-CoV-2 human transcriptomics studies with metadata 
specifying the severity of infection in May, 2021. Samples from patients having either “mild” or 
“asymptomatic” infections were manually labeled by one reviewer as “mild”, while those recorded 
as “hospitalized”, “ICU”, or “death” were labeled as “severe”. Records (GSE152418 (PBMC), 
GSE157103 (whole blood), GSE166424 (whole blood)) in the Gene Expression Omnibus (GEO) 
database [31–33], within the National Center for Biotechnology Information (NCBI), were queried 
and manually reviewed for relevance (Figure 1). Specifically, studies were selected based on the 
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presence of three predefined criteria: 1) the host organism was human, 2) the data were 
generated as part of a RNA-sequencing experiment, and 3) the study included samples collected 
during acute SARS-CoV-2 infection together with disease severity metadata. In total, we identified 
and processed 358 relevant samples across three independent RNA-sequencing studies.

Data Pre-Processing 

The fastq files containing the RNA-sequencing data were obtained from the Sequence Read 
Archive (SRA) at NCBI [34] using the sratools software. These files were divided into “case” and 
“control” categories based on whether they had “severe” or “mild” disease. The Automated 
Reproducible MOdular Workflow for Preprocessing and Differential Analysis of RNA-seq Data 
(ARMOR) was then used to preprocess and analyze the RNA-seq data [35]. Briefly, this ARMOR 
workflow uses the python-based snakemake workflow language [36]  to perform steps including:   
trimming of sequencing adapters and low-quality regions from the originally-generated RNA-
sequencing reads with TrimGalore   
(https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/), calculate quality control 
metrics with FastQC (www.bioinformatics.babraham.ac.uk/projects/fastqc/), as well as map and 
quantify reads to the human GRCh38 transcriptome with Salmon [37]. Differential gene 
expression was calculated from the read counts with edgeR [38]. Gene ontology terms were 
calculated from the list of significant gene identifiers produced by edgeR by using the DAVID 
resource [39].

Machine Learning 

The salmon counts for each gene in each GEO sample identifier were compiled into a 
table. The counts for each sample were then normalized using  a z-score transformation. These 
samples into test and training sets, with 70% of samples assigned to a training set and the 
remaining 30% of samples assigned to a test set. A random forest classification method (using 
the R randomforest package) was then trained and used to identify the genes that were most 
useful in classifying samples as coming from patients with either “severe” or “mild” COVID-19 
disease. This random forest algorithm calculated the Gini impurity values for each feature, which 
were then sorted to rank the importance of genes based on the original training set. This process 
was repeated for subsets of the best-scoring features to quantify their accuracy, specificity, and 
sensitivity.

Results

Transcriptomics Meta-Analysis Identifies Significant Genes, Enriched Terms, and Signaling 
Pathways
We began by identifying publicly available RNA-sequencing data generated from either whole 
blood samples or peripheral blood mononuclear cells (PBMCs) that had been previously collected 
from patients infected with SARS-CoV-2 and  had associated disease severity metadata. We then 
assigned these samples to either “high severity” or “low severity”. We processed these RNA-seq 
files using an automated computational workflow that performed quality control, trimmed reads, 
mapped them to the human transcriptome, and calculated significant differentially-expressed 
genes. We then used these genes to identify enriched Gene Ontology (GO) terms.

Overall, we identified 8176 significant differentially expressed genes after applying a multiple 
hypothesis correction with log2 fold-change values ranging from -4.2 to 3.78 (Figure 2). We found 
that the most significant differentially expressed genes included ASPH, C5orf30, DGKH, 
SLC26A6. We then subjected this list of significant DEGs to Gene Ontology enrichment. This 
analysis produced 90 significant GO terms including immune response, apoptosis, and I-kappaB 
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kinase/NF-kappaB signaling (Table 1). It is possible that a subset of these results may contain 
bias due to the heterogeneity of the samples. However, we expect that the robust statistical 
analysis of these samples minimized such effects.

We then used the signaling pathway impact analysis algorithm to calculate which intracellular 
signaling pathways were best represented by the list of DEGs. This analysis identified nine 
pathways that were significantly affected by severe COVID-19 (Table 2). We observed that five 
of these significant pathways dealt directly with T-cell receptor (TCR) signaling, while a sixth 
described a Zap70 immunological synapse. Interestingly, all six of these immune-related 
pathways were predicted to be inhibited during severe COVID-19.

Machine Learning Identifies GIMAP7 and S1PR2 as Robust Biomarkers
Prior to predicting relevant biomarkers, we first wanted to confirm whether the intracellular 
transcriptional response in blood was strongly associated with the disease severity metadata that 
was recorded with each record. We consequently constructed a table with all transcripts from 
each gene represented as columns and the read mapping data represented as rows. We then 
used this table to generate a receiver-operator characteristic (ROC) curve (Figure 3). In this case, 
the area under the curve (AUC) represents the percent specificity and sensitivity for the host 
transcriptomic data to predict disease severity. We calculated the AUC of the curve across all 
transcripts to be 96.6%, which indicates that the host transcriptional response strongly contributes 
to disease severity.

We then subjected the same tabular data to a machine learning algorithm to enable us to predict 
the features (e.g. expressed genes) that were most associated with the disease severity 
phenotype (Table 3). We ranked our random forest output by descending order of the Mean 
Decrease in Gini Impurity value, which is a measure of entropy. Transcripts from genes with larger 
Gini Impurity values represented those that could be used to most accurately predict the recorded 
disease phenotype.

We next wanted to reduce the selected markers to the smallest number that would provide the 
best performance. To do so, we generated a ROC curve for the six expressed genes having the 
highest Gini Impurity values and calculated its AUC to be 94.3%. We repeated this process for 
only the top two expressed genes (GIMAP7 and S1PR2) and only the top expressed gene 
(GIMAP7). This analysis quantified the AUC to be 89.8% for the two combined genes and 84.4% 
for only the top gene. Specifically, the mean and median read counts for each of these two genes 
were approximately three times higher in the samples with low disease severity than in the 
samples with high disease severity.

Figure 1: Flow diagram to visualize the process used to filter relevant public studies, samples, 
and files.
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Table 1: The most significant Gene Ontology Terms generated from DAVID.

GO Term Count % P-
Value

Correct
ed P-
Value

protein binding 5518 69.4 3.10E-
105

9.70E-
102

RNA binding 731 9.2 2.80E-
21

4.30E-18

identical protein 
binding

802 10.1 2.20E-
14

2.30E-11

metal ion binding 1188 15 2.90E-
13

2.20E-10

regulation of 
catalytic activity

215 2.7 7.90E-
12

5.10E-08

apoptotic process 296 3.7 1.10E-
11

5.10E-08

DNA repair 158 2 2.60E-
11

8.00E-08

catalytic activity 89 1.1 6.40E-
11

3.90E-08

regulation of 
transcription, 
DNA-templated

456 5.7 7.60E-
11

1.80E-07

positive regulation 
of I-kappaB 
kinase/NF-kappaB
  signaling

115 1.4 2.00E-
10

3.60E-07

ATP binding 710 8.9 5.00E-
10

2.60E-07

protein 
phosphorylation

255 3.2 1.30E-
09

2.00E-06
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ubiquitin protein 
ligase binding

168 2.1 5.40E-
09

2.40E-06

protein transport 221 2.8 7.50E-
09

1.00E-05

protein 
ubiquitination

244 3.1 9.30E-
09

1.10E-05

innate immune 
response

281 3.5 1.30E-
08

1.40E-05

adaptive immune 
response

217 2.7 1.60E-
08

1.50E-05

ubiquitin-protein 
transferase activity

141 1.8 1.80E-
08

7.10E-06
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Table 2: Significant Intracellular Signaling Pathways During Severe COVID-19.

Pathway Name pSize NDE pNDE tA pPERT pG pGFdr pGFW
ER

Status SourceDB

1 Generation of second 
messenger molecules

30 22 0.0957
12292

-
17.5118
75

2.00E-
06

3.15E-
06

0.00276
1614

0.0027
61614

Inhibit
ed

Reactome

2 Translocation of ZAP-
70 to Immunological 
synapse

16 11 0.3318
54607

-
8.05626
4706

2.00E-
06

1.01E-
05

0.00302
5319

0.0088
52201

Inhibit
ed

Reactome

3 Degradation of the 
extracellular matrix

50 32 0.3408
40926

20.4183
8026

2.00E-
06

1.04E-
05

0.00302
5319

0.0090
75956

Activat
ed

Reactome

4 Extracellular matrix 
organization

147 87 0.6251
11691

30.6639
7972

2.00E-
06

1.82E-
05

0.00399
5325

0.0159
81302

Activat
ed

Reactome

5 TCR signaling 113 64 0.8034
78219

-
25.4660
7983

2.00E-
06

2.30E-
05

0.00400
4748

0.0201
87975

Inhibit
ed

Reactome

6 Downstream TCR 
signaling

92 47 0.9689
8519

-
39.9496
465

2.00E-
06

2.74E-
05

0.00400
4748

0.0240
28487

Inhibit
ed

Reactome

7 Role of mef2d in t-cell 
apoptosis

24 17 0.1945
83144

-12.912 2.00E-
06

6.13E-
06

0.00105
4871

0.0010
54871

Inhibit
ed

BioCarta

8 TCR signaling in naive 
CD8+ T cells

47 37 0.0054
81099

-
61.2685
6962

0.0012 8.51E-
05

0.00787
3905

0.0130
98797

Inhibit
ed

NCI

9 TCR signaling in naive 
CD4+ T cells

59 45 0.0066
9294

-
34.9932
4227

0.0012 0.0001
02259

0.00787
3905

0.0157
47811

Inhibit
ed

NCI

pSize: the number of nodes in the pathway.
NDE: number of differentially expressed genes based on unadjusted p-value. 
PNDE: hypergeometric p-value for enriched DEGs in pathway. 
tA: total net accumulated perturbation (tA). 
pPERT: bootstrap p-value. 
pG: unadjusted global probability. 
pGFdr: FDR correction of pG p < 0.05. 
pGFWER: Bonferroni-corrected pG. 
Status: predicted effect (Activated/Inhibited) on signaling pathway based on the direction of the tA value.
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Table 3: List of top 10 expressed genes that best predicted SARS-CoV-2 disease severity in 
human blood cells.

Gene 
Symbol

DEG 
Log2FC*

DEG 
FDR**

Gini 
Impurity

Severity 
Level

Mean 
(Read 

Counts)

Standar
d 

Deviatio
n (Read 
Counts)

Median 
(Read 

Counts)

High 1150.79 840.69 932
GIMAP7 -1.16 9.94E-23 0.44

Low 3208.53 1999.66 2796

High 44.81 67.55 36
S1PR2 -1.27 1.3E-17 0.41

Low 137.56 163.18 70

High 148.06 111.09 112
PRR5L -1.01 2.6E-17 0.4

Low 387.78 201.51 351

High 834.23 247.90 816.5
RABGAP1L -0.745 8.64E-17 0.38

Low 1800.47 1233.70 1368

High 246.87 127.21 222.5
TRERF1 -0.642 5.77E-16 0.35

Low 477.12 201.68 451

High 109.62 93.16 81
GPR174 -1.32 2.49E-23 0.33

Low 329.52 238.31 286

High 52.33 38.58 43.5
CRTAM -1.01 4.26E-19 0.32

Low 133.43 78.61 119

High 30.68 29.67 22.5
GPR68 -1.35 9.96E-18 0.31

Low 98.79 71.99 84

High 567.39 564.07 449.5
CD2 -1.28 1.37E-18 0.3

Low 1732.99 1329.63 1386
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High 44.76 37.26 36
GPR18 -1.17 2.2E-20 0.3

Low 123.45 74.27 115

*Log2FC: log2 fold-change values (positive and negative values represent upregulation and 
downregulation, respectively)
**FDR: Corrected p-values using false-discovery rate

Figure 2. Volcano plot of all differentially expressed genes in severe vs. mild human 
infection with SARS-CoV-2. Genes that are up or down regulated from blood samples collected 
from patients having severe symptoms or mild symptoms during infection with SARS-CoV-2. 
Genes showing statistically significant up-regulation (blue), down-regulated (red), or no significant 
change (green). X-axis shows the log2 fold-change values while the y-axis displays false-
discovery rate-adjusted p-values to account for multiple hypothesis testing.
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Figure 3. Receiver-operator characteristic (ROC) curve constructed from all expressed 
genes in severe vs. mild human infection with SARS-CoV-2. Constructing a ROC curve from 
all RNA-sequencing read quantification values achieved an area-under-the-curve (AUC) value of 
greater than 96%. 

Discussion

Previous work has shown that combining multiple datasets in meta-analyses can augment the 
signal-to-noise ratio in order to gain new biological and mechanistic insight(s) [9,40–43]. As such, 
the goal of our study was to predict prognostic markers of SARS-CoV-2 disease severity through 
a transcriptomics meta-analysis of human blood samples. We found statistically significant 
differentially expressed genes, enriched Gene Ontology terms, modulated signaling pathways, 
and a ranked list of biomarkers that could potentially be combined to predict which patients are at 
risk of severe disease.

At least one prior study has generated single-cell RNA-sequencing data to better understand the 
host response to SARS-CoV-2 infection [44]. Their findings showed adaptive immune 
components play a role in disease severity. Interestingly, our data confirm results from some prior 
experiments that show certain aspects of the T-cell response may be downregulated during 
SARS-CoV-2 infection [45–47]. A modified distribution of the ZAP70 kinase on the plasma 
membrane of T-cells contributes to the signal transduction and amplification of the TCR [48]. 
Interestingly, CD3/ZAP70 protein has been shown to interact with TREM-2 in the T-cells of 
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patients infected with SARS-CoV-2 [49]. The ASPH and C5orf30 genes, which were identified as 
significant DEGs in our study, have been identified previously as markers of severe infection [50].

These prior studies support our finding that GIMAP7 could be important in severity given its 
presence on the surface of T-lymphocytes [51]. In the time since GIMAP7 was initially identified 
[52], it has subsequently been shown to be a potential marker for various cancer types, which 
further supports its immune-related role [53–56]. Although the underlying mechanism for this 
protein is yet to be characterized, we are not surprised by its role in other immune-related 
diseases or in SARS-CoV-2 disease severity. Information  about the S1PR2 gene is more sparse, 
although it appears to have a role in inflammation and other immune-related functions [57–61]. 
Specifically, S1PR2 on T-cells recruits lymphocytes to damaged tissues and may contribute to 
the recirculation of cells in the adaptive immune system to the lymphatic system [62].

The GIMAP7 gene, together with a subset of the enriched GO terms, had been found in an earlier 
study on transcriptional biomarkers for SARS-CoV-2 [63]; however, it was not highly ranked. This 
is logical since DEGs are often identified as biomarkers. In addition, as the sample size increases 
among a more diverse patient population, we expect that the genes most capable of differentiating 
disease severity should become more accurate.

It is important to note that these samples were taken while the early variants were circulating. As 
such, further testing would be required to confirm whether these biomarkers are still consistent 
predictors of infection severity in patients infected with more recent variants. We anticipate that 
qRT-PCR (quantitative Reverse Transcriptase Polymerase Chain reaction), and possibly flow 
cytometry could be used to quantify these biomarkers in relevant samples.  Additional 
experiments are needed to confirm whether these findings can be replicated in samples across 
different age and/or risk groups.

These results present a potential predictor for the severity levels of patients infected with SARS-
CoV-2. Considering the diversity of reactions that patients have to the virus, incorporating these 
biomarkers as additional data points to assess patient risk of severe disease could be pivotal in 
augmenting both personal and public health decision making processes [64–66]. This is 
especially relevant when resources may be limited and priority must be given to those with the 
greatest risk of severe infection. These results in particular are useful because they illustrate both 
up and down regulation association that best differentiate each patient in a population, rather than 
just identifying genes with statistically significant changes across the populations being compared. 
This approach allows us to detect the directionality of biomarkers such as GIMAP7 and S1PR2 
that were not as highly ranked by edgeR.

In conclusion, the findings from this study could contribute to ongoing efforts relating to triaging 
patients when hospitals are approaching their capacity limit. We envision that creating an assay 
to quantify the presence of a subset of the features identified in this study could be useful in 
identifying patients who are at higher risk of developing severe disease. The results of such a 
prognostic assay could contribute to triage efforts and to treatment decisions being made in the 
clinic.
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