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Abstract 1 

Background: Suicide is one of the leading causes of death in the United States and population risk 2 

prediction models can inform the type, location, and timing of public health interventions. Here, we 3 

report the development of a prediction model of suicide risk using population characteristics. 4 

Methods: All suicide deaths reported to the Nation Vital Statistics System between 2005-2019 were 5 

identified, and age, sex, race, and county-of-residence of the decedents were extracted to calculate 6 

baseline risk. County-wise annual measures of socioeconomic predictors of suicide risk — 7 

unemployment, weekly wage, poverty prevalence, median household income, and population density 8 

— along with two state-wise measures of prevalence of major depressive disorder and firearm 9 

ownership were compiled from public sources. Conditional autoregressive (CAR) models, which 10 

account for spatiotemporal autocorrelation in response and predictors, were used to estimate 11 

county-level risk.  12 

Results: Estimates derived from CAR models were more accurate than from models not adjusted for 13 

spatiotemporal autocorrelation. Inclusion of suicide risk/protective covariates further reduced 14 

errors. Suicide risk was estimated to increase with each standard deviation increase in firearm 15 

ownership (2.8%), prevalence of major depressive episode (1%) and unemployment (2.8%). 16 

Conversely, risk was estimated to decrease by 4.3% for each standard deviation increase in both 17 

median household income and population density.  Increased heterogeneity of risk across counties 18 

was also noted. 19 

Conclusions: Area-level characteristics and the CAR model structure can estimate population-level 20 

suicide risk and thus inform decisions on resource allocation and focused interventions during 21 

outbreaks.   22 
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Introduction 23 

Suicide rates in the United States have increased by over 30% during the last two decades, with 24 

suicide ranking among the ten most common causes of death for this period (1, 2). Along with drug 25 

overdoses and alcohol use related mortality, which have also seen large concurrent increases, 26 

suicides are responsible for the recent decrease in overall life expectancy in the US (3). Reducing 27 

suicide deaths is therefore an urgent public health challenge, and methods to predict suicide risk can 28 

be vital for determining optimal allocation of suicide prevention resources.  29 

To date, models to predict suicide risk have largely been at the individual-level, using patient 30 

demographic characteristics and clinical history to estimate patient risk (4). Some of these models 31 

have been deployed operationally to screen patients (5), with evidence suggesting their wider 32 

adoption can be hastened through improvements in predictive ability (6-8). In contrast to individual-33 

level models, population-level risk models have been less frequently attempted despite strong 34 

motivating factors in their favor including evidence of efficacy of population-level suicide prevention 35 

interventions, such as restrictions on access to lethal means (9-12). Population-level models can 36 

complement individual-level models as they can inform decisions on the type, location and timing of 37 

public health interventions, and provide valuable counterparts to clinical case management. In 38 

addition, when variables providing situational awareness, such as calls to crisis hotline services or 39 

posts to social media sites are also included in these models, near real-time changes in population 40 

risk can be detected, thus aiding the deployment of timely and responsive interventions. Similarly, 41 

geographically well-resolved risk estimates, can support deployment of more targeted interventions. 42 

Risk factors for suicide have been extensively studied and include demographic characteristics such 43 

as age, race/ethnicity, sex, socioeconomic status (SES)(13-18) and mental health history (19, 20). 44 

Studies assessing the effect sizes of a combination of these characteristics, however, are relatively 45 

fewer. Meta-analyses of reported effect sizes have found considerable heterogeneity (21). 46 

Differences also exist in population-level association studies of suicide rates and risk factors (22, 23). 47 

While understanding the direction and magnitude of effects is essential, here our focus is to build on 48 

known associations to predict future suicide risk.  49 

In this report, we describe the development of a predictive model for county level suicide risk in the 50 

US using area-level characteristics. A critical consideration when building such population-level 51 

models is the presence of spatiotemporal autocorrelation in the outcome and predictors. Inadequate 52 

accounting for this phenomenon, whereby proximate areal units during close time periods are likely 53 
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to have similar observations compared to those more distant in space and time, can lead to incorrect 54 

assumptions of independence and thereby to erroneous interpretations of effects.  55 

With deaths by suicide, spatial autocorrelation can indicate an underlying spatially correlated risk 56 

factor or a form of neighborhood effect, whereas temporal autocorrelation can be due to the same 57 

population being observed in adjacent periods, subject to the same long-term socioeconomic (SES) 58 

and environmental stressors. Furthermore, suicidal behavior has been described with contagion 59 

hypotheses and theories (24, 25). For example, acts of intentional self-harm that are directly and 60 

causally related to each other in suicide clusters, outbreaks immediately following sensationalistic 61 

media reporting of high-profile deaths by suicide (26-28), or fictional depictions of suicide (29, 30) 62 

can be seen as a contagious process (31) and lead to spatial and temporal autocorrelation (32).  63 

Here, we model area-level risk of suicides with spatiotemporal extensions of conditional 64 

autoregressive (CAR) models, a family of Bayesian inference models commonly used in case of 65 

unmeasured spatial autocorrelation (33, 34). Comprehensive reviews of these methods are available 66 

elsewhere (35, 36). The CAR model form used in this study is an ANOVA-style decomposition of the 67 

variation in disease risk into separate sets of spatial random effects, temporal random effects and 68 

independent space-time interactions (henceforth CAR-ANOVA).  69 

Our overall objective was to develop and evaluate the feasibility of a model for suicide risk in US 70 

counties while accounting for spatiotemporal autocorrelation in predictors and outcome. The model 71 

thus built was used to: 72 

 Quantify the effect estimates of SES covariates on suicide risk;  73 

 Quantify annual national suicide risk in the US and changes in heterogeneity of county-level 74 

risk during years 2005-2016; and 75 

 Assess the accuracy in predicting yearly county-level suicide mortality risk and measure 76 

improvements relative to commonsense baseline risk estimates. 77 

  78 
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Materials and Methods 79 

We used a variety of public data sources for estimates of area-level suicide mortality risk factors. 80 

Detailed mortality records were obtained through a request to the National Center for Health 81 

Statistics. The explanatory variables are briefly described here and in Table 1 (see Appendix Text 1 82 

for additional details).   83 

 Proportion of population living in poverty and median household Income: Annual county-level 84 

measures of poverty prevalence and median household income as estimated by the US Census 85 

Bureau’s Small Area Income and Poverty Estimates (SAIPE) program (37). 86 

 State prevalence of major depressive episodes: Estimates of the proportion of population in a 87 

state with at least one major depressive episode during the previous year as available in the 88 

National Surveys on Drug Use and Health (NSDUH) dataset (38). As data at county resolution 89 

were not available, prevalence was assumed to be the same in all counties in a state. 90 

 State prevalence of firearm-owning households: Annual estimates of the proportion of adults 91 

who live in a household with firearms for each state in the US, provided by the RAND’s 92 

Household Firearm Ownership Database(39). Ownership rates were assumed to be the same 93 

in all counties in a state. 94 

 Average weekly wage: County-level estimates of annual average weekly wage across all 95 

industries as reported to the Quarterly Census of Employment and Wages program (40) of 96 

the US Bureau of Labor. 97 

 Unemployment rate: County-level estimates of unemployment estimated from standard 98 

surveys state unemployment insurance systems by the Labor and Unemployment 99 

Statistics(41) program of the US Bureau of Labor. 100 

 Population Density: Annual county-level population density estimated from intercensal and 101 

postcensal population estimates and county land area (42).  102 

Suicide Mortality (outcome) 103 

Records of all-cause deaths were obtained from the US National Vital Statistics System (43). Deaths 104 

resulting from suicide were identified using International Classification of Diseases, Tenth Revision 105 

underlying cause-of-death codes X60-X84, Y87.0, and U03(44). County estimates for total population 106 

and population stratified by age and gender were obtained from the Bridged-Race Intercensal (2005-107 

2009)(45) and Postcensal (2011-2019) (46) datasets and used to calculate annual, county-level 108 

suicide mortality risk. 109 
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Conditional Autoregressive (CAR) Models 110 

A CAR model under Poisson distribution assumption is specified as: 111 

𝑦𝑐𝑡  ~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(µ𝑐𝑡𝜃𝑐𝑡) 112 

𝑙𝑛(𝜃𝑐𝑡) =  𝛽0 + 𝒙𝑐𝑡
𝑇 𝜷 + 𝜓𝑐𝑡 113 

𝛽~𝑁(µ𝛽 , 𝛴𝛽  ) 114 

where 𝑦𝑐𝑡 denotes observed count of suicide deaths in county c during year t, µ𝑐𝑡 is the expected 115 

suicide deaths in county c in year t and 𝜃𝑐𝑡 is the risk relative to µ𝑐𝑡 (see Appendix Text 2). 𝒙𝑐𝑡 =116 

 (𝑥𝑐𝑡1 … 𝑥𝑐𝑡𝑝) is a vector of p covariates for county c during year t, with c = 1, …, C for the C counties 117 

in the US and t = 1,…,N, for N years in the study period; 𝜷 =  (𝛽1 … 𝛽𝑝) is the vector of covariate 118 

regression parameters whose Gaussian prior is defined by mean µ𝛽 and diagonal variance matrix 𝜮𝛽. 119 

𝜓𝑐𝑡 a latent component encompassing one or more sets of spatiotemporally autocorrelated random 120 

effects. The CAR-ANOVA(47) model decomposes spatiotemporal variation, 𝜓𝑐𝑡, into an overall spatial 121 

effect across the study period (𝝓), an overall temporal trend over the study area (𝜹), and a set of 122 

independent space-time interactions (𝜸);  𝝓 =  (𝜙1 … 𝜙𝐶) and 𝜹 =  (𝛿1 … 𝛿𝑁)  are modeled by the 123 

CAR prior proposed by Leroux and others (34). 124 

𝜓𝑐𝑡 = 𝜙𝑐 + 𝛿𝑡 + 𝛾𝑐𝑡 125 

𝛾𝑐𝑡 ∽ 𝑁(0, 𝜏𝐼
2) 126 

𝜙𝑐|𝜙−𝑐 , 𝑾 ∽ 𝑁 (
𝜌𝑆 ∑ 𝑤𝑐𝑗𝜙𝑗

𝐶
𝑗=1

𝜌𝑆 ∑ 𝑤𝑐𝑗
𝐶
𝑗=1 + 1 − 𝜌𝑆

,
𝜏𝑆

2

𝜌𝑆 ∑ 𝑤𝑐𝑗
𝐶
𝑗=1 + 1 − 𝜌𝑆

) 127 

𝛿𝑡|𝛿−𝑡 , 𝑫 ∽ 𝑁 (
𝜌𝑇 ∑ 𝑑𝑡𝑗𝛿𝑗

𝑁
𝑗=1

𝜌𝑇 ∑ 𝑑𝑡𝑗
𝑁
𝑗=1 + 1 − 𝜌𝑇

,
𝜏𝑇

2

𝜌𝑇 ∑ 𝑑𝑡𝑗
𝑁
𝑗=1 + 1 − 𝜌𝑇

) 128 

𝜏𝑆
2, 𝜏𝑇

2 , 𝜏𝐼
2 ∽ 𝐼𝑛𝑣𝑒𝑟𝑠𝑒 − 𝐺𝑎𝑚𝑚𝑎 (𝑎, 𝑏) 129 

𝜌𝑆, 𝜌𝑇 ∽ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚 (0, 1) 130 

Here, W is the C x C spatial adjacency matrix, with wcd = 1 if counties c and d are adjacent to each other 131 

and 0 otherwise (counties are adjacent if they share at least one boundary point in the shape file; a 132 

county is not adjacent to itself). Analogously, D is the N x N temporal adjacency matrix, with dtj = 1 if 133 

|t - j| = 1 (i.e. consecutive years) and 0 otherwise.  The priors for the spatial (𝜏𝑆
2), temporal (𝜏𝑇

2) and 134 

space-time interaction (𝜏𝐼
2) random effects variances are specified by an Inverse-Gamma distribution 135 

with a=1 and b=0.01; spatial (𝜌𝑆) and temporal (𝜌𝑇) dependence parameters have uniform priors in 136 

the unit interval (1 indicates strong dependence; 0 independence).  137 
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The models were fit in a Bayesian setting using Markov chain Monte Carlo simulations. Parameters 138 

whose full conditional distributions have a closed form distribution are Gibbs sampled and the rest 139 

are updated using the Metropolis adjusted Langevin algorithm (48). For each model, three Markov 140 

chains each 110,000 in length with a burn-in of 10,000 were generated and a thinning factor of 1,000 141 

was applied to remove correlation among the samples (49-51). Convergence was verified with the 142 

Geweke diagnostic statistic (52). Implementations of the methods are per CARBayesST package (53, 143 

54) in R (55). 144 

Statistical Analysis and Evaluation 145 

To ascertain that methods that explicitly accommodate spatiotemporal autocorrelation are 146 

necessary, we initially built Poisson log-linear models and verified the presence of autocorrelation in 147 

their residuals using the Moran’s I statistic (56). Further, in the interest of model parsimony, to 148 

identify variables with marginal contribution to model quality, we built log-linear models with all 149 

possible combinations of predictors considered (27 – 1) and compared their goodness-of-fit (Akaike 150 

Information Criterion (AIC)) against that of a model built using all available predictors. A model with 151 

a subset of 5 predictors (excluding weekly wage, unemployment rate, and depression prevalence 152 

variables) was found to have an AIC very close to the full model. 153 

Subsequently, we built CAR-ANOVA models with: i) the full set of predictors; ii) the select subset of 154 

predictors; and iii) no covariates i.e. a null model, to measure the predictive skill from accounting for 155 

autocorrelation alone. In addition, a reference model, with the expected deaths in a county estimated 156 

from differential risk by age, race, and sex of the county’s population was also used (see Appendix 157 

Text 2). This model did not capture spatial patterns or temporal trends in suicide mortality and 158 

provides a benchmark estimate to assess improvements from CAR models. The select model is our 159 

primary model in this study and all reported findings, unless otherwise stated, are based on its 160 

estimates.  161 

To estimate yearly risk over the study period, we computed average risk across all counties for each 162 

MCMC sample, and report median and 95% interval ranges over all samples. Estimates of yearly 163 

county-specific risk are median over all samples’ estimates for the specific year and county.  164 

Outcome and predictor data overlap for the years 2005-2016. We defined this as our study period, 165 

and all models were trained on data for these years. As mortality outcome data and most of the 166 

predictors are available for three additional years (2017-2019), we use these surplus years’ data to 167 

calculate the out-of-sample (OOS) predictive model skill, by assuming unavailable predictors remain 168 

unchanged since their last known values. For temporal OOS validation, risk for a given year is 169 
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predicted with models fit using data up to, but not including, the given year. For spatial OOS validation 170 

we used 10-fold cross validation: partitioned the counties into ten roughly equal folds, trained the 171 

models 10 times with one partition of the counties withheld in each iteration, and used the fit models 172 

to predict risk in holdout counties. We compared the model errors over the fit period (2005-2016) 173 

and under the two OOS settings, temporal (2017-2019) and spatial.  174 

Errors were calculated using the symmetric proportional error (SPE), 𝑠𝑝𝑒𝑐𝑡 =  
𝑦𝑐𝑡−�̂�𝑐𝑡

𝑦𝑐𝑡+�̂�𝑐𝑡
, where yct and  175 

�̂�𝑐𝑡 denote observed and predicted deaths, respectively. SPE has a well-defined range and indicates 176 

the direction of the error. A division-by-zero issue was avoided by imposing a small lower bound on 177 

�̂�. An aggregate measure of SPE, the Mean SPE (MSPE), was used to compare model accuracy on both 178 

in-sample and OOS predictions. The mean in-sample error for a model was calculated as 179 

1

|𝑇1|𝐶
∑ ∑ |𝑠𝑝𝑒𝑐𝑡|𝑡∈𝑇1

𝐶
𝑐=1 , 𝑇1 =  {2005, … , 2016}, the mean temporal OOS error as 180 

1

|𝑇2|𝐶
∑ ∑ |𝑠𝑝𝑒𝑐𝑡|𝑡∈𝑇2

𝐶
𝑐=1 , 𝑇2 = {2017, … ,2019}, and spatial OOS error as 181 

1

|𝑇1∪𝑇2|𝐶
∑ ∑ ∑ |𝑠𝑝𝑒𝑐𝑡|𝑡∈𝑇1∪𝑇2𝑐 ∈𝐶ℎ

10
ℎ=1 , where 𝐶ℎ denotes counties held out in fold h. Wilcoxon signed 182 

rank test was used to assess statistical significance in the difference of errors for each pair of model 183 

forms (57). 184 

Results 185 

Figure 1 shows the median and 95% credible interval of the posterior effect estimates for each 186 

standard deviation change in predictor value (see Appendix Table 1 for values). Suicide mortality 187 

risk is 2.8% higher for each 11% increase in state’s firearm ownership rate and by 1% for each 0.7% 188 

increase in prevalence of major depressive disorder in the state. Conversely, risk was lower by 4.3% 189 

for each $12,000 increase in annual median household income in the county, and by 4.3% for each 190 

5.8 increase in population per square mile in the county (see Appendix Table 2 for effect estimates 191 

per unit change in predictor value). A not statistically significant decrease of 0.3% for each $162 of 192 

weekly wage was also estimated.  193 

The protective effect of poverty seen in the full model (lower by 3.4% for each 6.4% increase in 194 

poverty prevalence in the county) needs more careful examination and interpretation, ideally in 195 

conjunction with measures of rurality, societal fragmentation and poverty persistence (58, 59) and 196 

interactions with other predictors in the model. The findings are not anomalous however, as previous 197 

studies have reported mixed associations between poverty prevalence and suicide rates at the 198 

population-level, with results varying by study design including geographical resolution and 199 
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population strata analyzed (22). At the individual-level, however, the negative impact of poverty on 200 

suicide rates is more consistent across studies (60, 61). 201 

Overall, the effect estimates of the variables in the select model remained largely unchanged when 202 

additional covariates were introduced i.e. in the full model (Figure 1A). Both the select and full models 203 

also detected strong spatial dependence (𝜌𝑆 = 0.97) and temporal dependence (𝜌𝑇 =  0.91) 204 

(Appendix Table 2). 205 

Heterogeneity in suicide risk  206 

The model’s estimate of annual average suicide risk nationally showed a clear increasing trend from 207 

1 in 2005 to 1.27 in 2016, with smaller increases in 2009, immediately after the onset of the 2008 208 

recession, and in 2013 (Figure 1B). This trend is consistent with increases in mortality rates reported 209 

by multiple studies for the US overall and in almost all demographic groups (1). 210 

Results also showed an increase in the heterogeneity in county-specific suicide risk during the study 211 

period (Figure 1C), indicative of a widening gap between low-risk counties and high-risk counties. 212 

Neither trend estimate was found to be sensitive to the set of covariates included in the model 213 

(Appendix Figure 2). Although beyond the scope of our current analysis, these county-specific risk 214 

estimates can help categorize counties — for example, counties with relatively stable risk especially 215 

those that remained in the highest or lowest deciles, or counties that experienced the largest year-216 

to-year changes — and hence help identify areas in greater need of preventive resources, or 217 

conversely identify areas where interventions appear to be effective.   218 

Comparison of model errors 219 

Figure 2 shows that the select model’s predictive ability was comparable to that of the full model, 220 

with in-sample errors of select smaller than full, spatial OOS errors larger and temporal OOS not 221 

significantly different (p = 0.46). This finding implies that two of the covariates did not contribute to 222 

model quality in the presence of the other predictors, possibly due to collinearities, yielding a more 223 

parsimonious model dependent on fewer data sources.  224 

Both the select and full models had lower error than the null model in all three settings (fit, temporal 225 

and spatial OOS) and the differences were statistically significant (p < .05), indicating that the 226 

inclusion of covariates improves the model over what is gained by accounting for spatiotemporal 227 

autocorrelation in suicide mortality alone. Furthermore, all three CAR-ANOVA models had lower 228 

errors than the reference model, indicating an improved predictive ability from including 229 

spatiotemporal associations. Errors from the reference model were 7%-14% larger than errors from 230 



Modeling suicide mortality using SES indicators 

10 
 

the null model (Appendix Figure 3), suggesting that the CAR-ANOVA models could be of value even 231 

in settings where SES predictors of suicide mortality are not available.   232 

Geweke and Gelman-Rubin diagnostic tests (Appendix Table 3) and visual inspection of trace plots 233 

(Appendix Figure 4) indicated model convergence. Scatter plot of predicted suicide deaths against 234 

observed deaths in the temporal OOS period, showed possible overprediction at lower counts 235 

(Appendix Figure 5) but otherwise reasonable estimates. 236 

Autocorrelation in residuals 237 

As a primary motivation for the use of the CAR models was to account for spatiotemporal 238 

autocorrelation, to test whether the CAR model form was adequate to capture autocorrelation, we 239 

looked for autocorrelation in models’ residuals. A visual inspection of the spatial distribution of in-240 

sample (Figure 3) and temporal OOS residuals (Figure 4, bottom row) showed no clear spatial 241 

structure. Formal Moran’s I test found no statistically significant spatial autocorrelation in spatial 242 

OOS setting for any year; however, for a majority of the years in both in-sample and temporal OOS 243 

settings significant autocorrelation was detected (p < .05). Reassuringly however, the magnitude of 244 

the autocorrelation with the CAR-ANOVA models, was considerably lower than the reference 245 

(Appendix Figure 6).  246 

This reduction but not elimination of spatial autocorrelation could be indicative of the insufficiency 247 

of the specific CAR model form used and/or of the covariates considered. In addition, two of the 248 

predictors — prevalence of major depressive episode and firearm ownership — were only available 249 

at state-wise resolution, a shortcoming addressed by assuming all counties in a state to have identical 250 

values, which may have contributed to an increase in residual spatial autocorrelation.  251 

Discussion 252 

Prediction models of suicide typically only consider clinical characteristics in high-risk clinical 253 

population and general population settings, yet suicide risk is also spatially and temporally 254 

determined. Our results demonstrate that predictions of suicide death are improved when aspects of 255 

the social environment are used to model risk, and thus aid suicide prevention efforts. Absence of 256 

evidence of over-fitting in out-of-sample validation lends confidence to future risk estimates with 257 

these models.  258 

Given that the primary objective of this study was an evaluation of the feasibility of a predictive 259 

model, the covariates considered are not exhaustive. A more comprehensive review of domain 260 

literature can help identify a more robust set of predictors not collinear with the predictors 261 
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considered (62). Additional stratifications of the current predictors or other SES indicators, such as 262 

measures of social cohesion, access to healthcare, unemployment rates in specific sectors of the 263 

economy, as well as prevalence of depression stratified by age, prescription rates for antidepressant 264 

and pain management medications and housing quality (crowded living conditions, access to green 265 

spaces, ambient vehicular noise) could also be tested. When used at sub-national scales by a state or 266 

local public health agency, additional predictors of local relevance that do not have national coverage 267 

may also be viable.  268 

The predictions from the models presented here are at annual resolution and hence not responsive 269 

to real-time changes in risk. While the model structure does not preclude generation of weekly or 270 

monthly risk estimates, a barrier to such an operational deployment is the paucity of reliable, timely 271 

measures of suicidal activity (thoughts or attempts). Identification of sources for near real-time 272 

situational data, and development of nowcast models to translate data feeds into measures of suicidal 273 

ideation in the community, could significantly aid the translation of the models discussed here into a 274 

surveillance setting. 275 

One potentially good source of information on ideation is the volume of calls to crisis hotline centers. 276 

With the forthcoming launch of a national suicide prevention number (9-8-8) in mid-2022, a unified 277 

system with wide coverage is at hand. Similarly, with the deployment of the National Emergency 278 

Medical Services Information System (NEMSIS), timely information on EMS requests is also available 279 

(63, 64).  Aggregate event data at county resolution from these and/or similar sources, if made 280 

publicly available every week, could support the development of nowcast systems. Such models are 281 

in use in numerical weather prediction (65, 66), macroeconomic analyses (67, 68) and influenza 282 

surveillance (69-71), among other domains.  283 

Indicators of suicidal crisis or ideation may also be inferred from posts to thematically-related social 284 

media sites (72-76), queries on search engines (77) or access logs to suicide prevention forums and 285 

related websites. Sources of ideation among teens and young adults, among whom suicide is in the 286 

top 3 common causes of death, could be particularly valuable (78). Coupled with such measures of 287 

situational awareness, the CAR models might flag anomalous changes in population-level suicide risk, 288 

and thus inform decisions on resource allocation and focused interventions during ongoing 289 

outbreaks. Reducing suicide deaths, alongside unintentional drug overdose deaths, may prove 290 

critical to public health efforts aimed at reversing declines in life expectancy in the US. 291 

Limitations of the study include ad hoc independent variable selection, the assumption of 292 

geographical homogeneity for predictors lacking county-level data, a potentially simplistic spatial 293 
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adjacency matrix that did not reflect population mobility and mixing, inflated error estimates in zero-294 

death counties (see Appendix Text 3), and potential underestimates of suicide deaths and risk in 295 

certain racial/ethnic groups due to inconsistent suicide certification practices (79).  296 
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Figures and Tables 

 

Variable Data  
Source 

Description Available 
Period 

Geographical 
resolution 

Mean 
(SD) 

y NVSS Observed suicide-related deaths 2003 - 2019 County 12.3 (32) 

unemp BLS Unemployment rate 2003 - 2019 County .067 (.03) 

wage.wk BLS Weekly wage, US$ 2003 - 2019 County .664 (.16) 

poverty.percent SAIPE Proportion of population living in poverty 2003 - 2019 County .162 (.06) 

median.hh.income SAIPE Median household income, US$ 2003 - 2019 County .044 (.01) 

firearm.rate RAND Proportion of population living in firearm-owning 
households 

2005 - 2016 State .412 (.11) 

mde NSDUH Proportion of population with major depressive episode 2005 - 2018 State .069 (.01) 

pop.density Census Population per square mile, log 2005 - 2019 County 3.77 (1.8) 

 

Table 1. Variables used in the study, along with data source, description, available period and geographical resolution. Mean and standard 

deviations are reported for 2005-2016 for all variables. 
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Figure 1. (A: top) Posterior median and 95% credible intervals of the effect estimates from CAR-

ANOVA models, for one standard deviation change in variable. The variable descriptions are listed in 

Table 1.;  (B: bottom, left)Median and 95% CI for national suicide risk; (C: bottom, right) Interquartile 

(IQR) range of county-level risk as estimated by the select model. Higher IQR indicates greater 

heterogeneity and an increase in IQR with time indicates a widening gap between low and high-risk 

counties. 
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Figure 2. (left) Mean symmetric proportional error for in-sample, temporal out-of-sample and spatial out-of-sample estimates. The vertical 

dashed line denotes error from the reference model; (right) Wilcoxon signed rank test for each pair of models. Significance (p < .05) in the 

‘two.sided’ column indicates that the difference in errors of Model X and Model Y is not symmetric around 0. p < .05 in the ‘lesser’ panel 

column indicates errors in Model X (x-axis) are lower than Model Y. Actual p -value are shown as text when errors are not significantly 

different. To interpret this plot, for a pair of models, verify that the difference is significant under the ‘two-sided’ test, and if true, check for 

significance under the ‘lesser’ or ‘greater’ panel columns.  

487 
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 488 

Figure 3. Symmetric proportional in-sample errors for select model. Negative error indicates model estimate exceeds observed. Counties 

with no observed deaths are shown in grey.  
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Figure 4. Observed suicide deaths (top row), out-of-sample estimates (middle row) and symmetric proportional errors for select model. 

Negative error indicates model estimate exceeds observed. Counties with no observed deaths are show in grey. 


