The impact of antenatal balanced plate nutrition education for pregnant women on birth weight: a cluster randomized controlled trial in rural Bangladesh

Authors:
Morseda Chowdhury¹,², Camille Raynes-Greenow², Patrick J. Kelly², Ashraful Alam², Kaosar Afsana³, Michael J. Dibley²

Affiliations:
¹Health Nutrition and Population Programme, BRAC, BRAC Centre, 75 Mohakhali, Dhaka 1212, Bangladesh ²The University of Sydney, Faculty of Medicine and Health, Sydney School of Public Health, Camperdown, New South Wales 2006, Australia ³James P Grant School of Public Health (JPGSPH), BRAC University, Dhaka, Bangladesh

Corresponding author: Michael J Dibley, Room 328 Edward Ford Building (A27) Sydney School of Public Health, the University of Sydney, NSW 2006, Australia.
Phone: +61 2 9351 520 Email: michael.dibley@sydney.edu.au

Short running head: Balanced plate nutrition education & birth weight

Trial registration: The Australian New Zealand Clinical Trials Registry number ACTRN1261600080426

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Abstract

Background: Low birth weight (LBW) is a global public health problem with the highest prevalence in South Asia. It is strongly associated with maternal under nutrition. In South Asia, intra household food distribution is inequitable with lower dietary adequacy in women, regardless of pregnancy. Evidence that nutrition education improves diet during pregnancy and reduces LBW is weak.

Objective: We aimed to assess the impact of a nutrition education intervention for pregnant women on infant birth weight in a low-income population.

Design: We conducted a parallel, two arm, cluster-randomized controlled trial in rural Bangladesh, with 36 clusters randomized to receive the intervention (n=445 participants) or standard care (n=448). Eligible participants were ≤12 weeks gestation. Intervention participants received education about eating balanced meals to meet daily dietary requirements with the right proportions of food groups (a balanced plate) and practical demonstration from their first trimester until delivery. Primary outcomes were mean birth weight and the incidence of LBW. We included all participants in analyses.

Results: The mean birth weight difference between the intervention and control groups was 127.5 g (95% confidence interval (CI): 11.1, 243.9; p=0.032), and the intervention reduced the risk of LBW by 57% (relative risk (RR): 0.43; 95% CI: 0.25, 0.75; p=0.003). Post hoc analyses showed a higher birth weight and a greater reduction in LBW amongst adolescent mothers (mean difference: 299.1 g; 95% CI: 101.6, 496.6; p=0.003 and RR: 0.28; 95% CI: 0.11 to 0.71; p=0.007). The mean number of food groups consumed was significantly higher from the third month of pregnancy onwards in the intervention compared to the control group.
Conclusions: A community-based balanced plate nutrition education intervention effectively increased mean birth weight and reduced the proportion of infants with LBW in a rural population of Bangladesh.

Keywords: Low birth weight, maternal nutrition education, food demonstrations, dietary diversity, cluster RCT, Bangladesh
Introduction

Birth weight is a powerful predictor of infant survival. Low birth weight, defined as less than 2500 grams (g), is a composite measure of restricted fetal growth and short duration of gestation, major determinants of infant mortality, childhood growth and development, and adulthood well-being. The lower the birth weight, the higher the risk of mortality. Globally, in 2010, there were an estimated 18 million LBW babies, of whom 59% were term, but small for gestational age and 41% were preterm. An estimated 606,500 neonatal deaths occur annually in low and middle-income countries due to small for gestational age, which accounts for 22% of neonatal deaths. South Asia has the highest prevalence of LBW globally (34%). Bangladesh is ranked fourth in the global burden of LBW.

LBW is strongly associated with maternal under-nutrition, which induces suboptimal placental growth, thereby influencing nutrient delivery, altering fetal hormones, and contributing to restricted development. A World Health Organization study with 111,000 women reported that mothers in the lowest quartile of pre-pregnancy weight carried an elevated risk of IUGR of 2.55 (95% confidence interval (CI): 2.3, 2.7) and LBW of 2.38 (95% CI: 2.1, 2.5) compared to the upper quartile. In India, the odds ratio for LBW was three times greater in severe energy-deficient low BMI groups than normal BMI.

Consistent with the mechanisms and epidemiological evidence is the high prevalence of LBW in rural Bangladeshi women who have a chronic shortfall of food energy throughout pregnancy. In South Asia, intra-household food distribution is inequitable with lower energy share, animal source food, and dietary adequacy in women, regardless of pregnancy. There is little data on nutrition education’s effects on birth weight in low or middle-income countries, although four meta-analyses have assessed impacts. The first in 1993 found nutrition education significantly increased the consumption of protein and vitamins, and birth
weight of infants by 300 g. However, the studies lacked statistical power or did not report estimates of effect size. The second meta-analysis in 2012 found a 105 g (95% CI: 18, 193 g) increase in mean birth weight with nutrition education and counseling in pregnancy. When stratified by the study site, the effect failed to reach significance in low and middle-income countries (152 g; 95% CI: -81, 384 g). The third meta-analysis in 2014 reported that dietary counselling significantly increased birth weight in three studies (149 g; p=0.039), but two had a small sample size, and another had methodological limitations. The fourth, a Cochrane review, identified two small trials that reported significantly higher birth weight in the intervention group (mean difference 489.8 g, 95% CI: 427.9, 551.6 g). There are no reports of trials of antenatal nutrition education in rural Bangladesh.

Thus, the evidence for nutrition education to improve diet and maternal and neonatal health indicators, including birth weight, remains weak. Most evidence comes from trials with design or analysis limitations and high-income countries where counselling is by professional dietitians or nutritionists. There is a critical knowledge gap about antenatal nutrition education’s efficacy and its potential to reduce LBW in South Asia, including Bangladesh. Filling this gap can potentially contribute to the World Health Assembly’s global goal of a 30% reduction in the LBW rate by 2025. Therefore, we investigated the impact of antenatal nutrition education with demonstrations of a nutritionally energy-protein balanced diet on infants’ birth weight in a low-income population.

Subjects and Methods

Study design and participants

We conducted a two-arm, parallel, cluster randomized controlled trial (cRCT). The James P. Grant School of Public Health; BRAC University Ethical Review Committee; Dhaka; Bangladesh approved the study protocol (No 53, 25th May 2015).
We have described the study design. In brief, the study was in the rural district of Sherpur, which has a low human development index, a high percentage in the lowest economic quintile (37.1%) compared to the national average (21.7%) and 48% below the poverty line. The Food Security Atlas of Bangladesh classifies Sherpur as having a high/very high household food insecurity level. In 2016 in Sherpur the neonatal mortality (41/1000 live births) and under-five mortality (59/1000 live births) were higher than the national average (30 and 47/1000 respectively).

Sherpur has five sub-districts: Jhenaigati (population 160,452), Nakla (189,685), Nalitabari (251,361), Sherpur Sadar (497,179) and Sreebardi (259,648). Pregnant women, self-reporting to a hospital or formal practitioner (doctor, nurse, or Family Welfare Visitor), receive nutrition education as part of antenatal care (ANC). BRAC (a national NGO; formerly known as Bangladesh Rural Advancement Committee) implements a community-based Maternal, Neonatal, and Child Health (MNCH) program characterized by prospective pregnancy surveillance and basic ANC led by community health workers (CHW) known as Shasthya Kormi. One Shasthya Kormi serves an area of ~10,000 people, along with ten health volunteers (Shasthya Shebika). The Shasthya Kormi are village women who have basic 10-years schooling and have received training on health, nutrition, and sanitation issues for six weeks, followed by bi-monthly refreshers.

In our study, a cluster was the catchment area of one Shasthya Kormi, which provided logistical convenience and minimized intervention spills into the control group. Shasthya Kormi, with at least six months’ experience in MNCH, were eligible. Participants were pregnant women 15-49 years, gestation 12 weeks or less, permanently residing in the area, and not expecting to move from the usual residence until birth. We used the established BRAC pregnancy detection system using monthly menstrual surveillance to identify new pregnancies. Women with delayed menstruation for six weeks or more underwent a urine test.
We excluded pregnant women with self-reported chronic disease. All women excluded from the study continued to receive standard care and counselling as in the control clusters. A Shasthya Kormi visited each confirmed pregnant woman, screened for eligibility, and obtained verbal informed consent. Recruitment took place from 1st October-31st December 2016.

Randomization and masking

We used proportionate stratified sampling to randomly select 36 of 135 Shasthya Kormi clusters (4, 5, 7, 13, and 7 from the five sub-districts). The clusters were dispersed across the sub-districts and sufficiently separated to minimize the risk of contamination. We selected 36 as the maximum number of Shasthya Kormi, who could be overseen by a single BRAC supervisor, and we randomized with 1:1 allocation. All eligible pregnant women served by one Shasthya Kormi received the intervention or standard care as per the random assignment. We could not mask families or the research team to group allocation; however, we blinded researchers assessing primary and secondary outcomes to the study hypotheses. We also used an objective outcome (birth weight), which is less prone to ascertainment bias.

Procedures

Intervention Shasthya Kormi received two days of nutrition training, including a balanced diet and counselling techniques. They also practiced community counselling skills under supervision and received one-day training on taking consent and data collection. Enrolled participants were visited monthly to provide ANC that included standard nutrition advice. In intervention clusters, balanced plate intervention replaced the standard nutrition advice using a culturally appropriate diet for Bangladeshi pregnant women. This contained seven-food groups (cereal, lentil, animal protein, vegetables, fruits, milk, and oil), giving a daily 2500 kcal energy and included essential micro and macronutrients. The balanced plate was a
combination of foods in appropriate portion sizes to meet requirements. Before the trial, we conducted focus groups to identify locally preferred foods and dietary restrictions. We pilot tested the menu to assess community acceptability and the feasibility of incorporating it into ANC services.

We delivered the intervention individually. Initially, participants received information on a balanced diet and benefits for maternal and fetal health. Then, they learned to prepare a “balanced plate” by demonstrating the right proportions of food groups using the prescribed menu. The community health worker displayed different combinations of food on the plate, with appropriate alternatives, such as replacing meat (an expensive protein source) with cheaper eggs or farm fishes. We emphasized foods commonly missed in the regular diet, such as milk, fruits, and coloured vegetables. Women were encouraged to increase their frequency of food intake to three meals and two snacks per day. To demonstrate measurements, we used a bowl of 250 ml commonly found in most homes. The community health worker invited family decision-makers to observe the demonstration and assist in making a balanced plate.

Delivering the intervention took 45 minutes: 10 for individual counselling, 10 for household counselling, and 25 for demonstration. To help recall messages, we provided a pictorial food chart and a written menu. At the first visit, the community health worker delivered eight nutrition messages with a practical demonstration. In subsequent visits, they emphasized messages that were less familiar or difficult to remember. In the counselling, they excluded messages that were easy to recall, such as drinking eight glasses of water or cooking with oil. They also dropped the messages if it was clear the women practiced the behaviour. As the number of messages decreased, the community health worker reduced the visit time to 25 minutes. The mean number of intervention visits was 3.4.

Home visits continued until birth or the end of the pregnancy; ANC from other sources was not discouraged. Husbands were encouraged to re-allocate family budgets to purchase...
nutritious food and mothers-in-law to re-distribute family food to increase their daughter-in-law’s share. In the control group, pregnant women received the same frequency of home and standard nutrition advice except for the balanced plate demonstrations. Standard advice included recommendations to consume all food groups and take iron-folic acid and calcium supplements.

Shasthya Kormi collected demographic, socio-economic, and reproductive data at enrolment plus birth weight measurements within 72 hours of birth. Families notified birth or pregnancy loss (miscarriage, abortion, and stillbirth) immediately to their nearby *Shasthya Shebika*. One field supervisor oversaw the 36 *Shasthya Kormi*, recorded field activities, and conducted follow-up interviews with 5% of participants to confirm visits and measure protocol adherence.

Outcomes

Primary outcomes were the mean birth weight of live-born infants and the proportion of newborns with birth weight less than 2500 g. The *Shasthya Kormi* had many years of experience measuring birth weight, but we retrained them with their standard equipment, a 5 kg Salter spring balance scale with an accuracy of 100 g. They calibrated the scales with a standard weight every week. We also checked the scales monthly during refresher training. For mothers who birthed in health facilities, we recorded the birth weight measured at the facility.

For secondary outcomes, the *Shasthya Kormi* used structured forms to record fetal loss during pregnancy, birth outcome, delivery information, and neonatal or maternal death. They also used semi-structured questionnaires to collect dietary data, with the food list adapted from Food and Nutrition Technical Assistance II Project (FANTA-2).24 These questionnaires...
captured information about foods, beverages, and supplements consumed 24 hours before the interview. From this data we formed ten food groups as follows: (1) grains, white roots and tubers; (2) pulses (beans, peas and lentils); (3) nuts and seeds; (4) dairy; (5) meat, poultry and fish; (6) eggs; (7) dark green leafy vegetables; (8) other vitamin A-rich fruits and vegetables; (9) other vegetables; and (10) other fruits. *Shasthya Kormi* collected dietary data monthly, and we calculated the mean number of food groups consumed to assess diet quality.\(^{25}\) We defined animal source protein as consumption of any combination of dairy, meat, poultry, fish or egg food groups.

Statistical analysis

We required 720 pregnant women to achieve 80% power to detect a difference of 100 g in birth weight between groups. We assumed a mean birth weight of 2531 g (standard deviation (SD) 415 g) in the control group based on the findings from a similar trial in Bangladesh.\(^{26}\) We set a significance level of 0.05 (two-sided), and assumed an intra-cluster correlation coefficient (ICC) of 0.03\(^{27}\), and 36 clusters with an average of 10-15 live births per cluster per month. To adjust for 10% pregnancy loss and 15% loss to follow-up based on similar trials,\(^{26,28}\), we inflated the required sample size to 900 pregnant women.

We analysed the data with Stata version 15 and conducted intention to treat analyses. We assigned the intervention randomly at the cluster level, but assessed outcomes at the individual level. We estimated the mean between-group difference in birth weight using linear regression and the relative risk for LBW using binomial regression. For both, we included the study group as a covariate and adjusted for cluster randomization using Generalised Estimating Equations (GEE).\(^{29}\) Similarly, we estimated the mean number of food groups consumed using GEE linear regression with the treatment group as a covariate and adjusting for baseline imbalances by including covariates.
We conducted post hoc subgroup analyses for age, education, family income, and place of delivery. We added an interaction term to assess whether there was a difference in intervention effect for any sub-group, using a significance level of 0.01.

Role of the funding source

The funders had no role in study design, participant selection, data collection, and data analyses. The corresponding author had full access to the study’s data and final responsibility for the decision to publish.

Results

We identified 2,154 newly pregnant women from August 2015 to February 2016 in the selected clusters. Of these women, 937 did not meet the eligibility criteria (603 had a gestation of >12 weeks, 147 were not permanent residents, and 187 had planned to move out of the study area for childbirth) and 324 declined to participate. We recruited 893 participants, 445 in 18 intervention, and 448 in 18 control clusters, and we lost 44 participants during follow-up, 25 (5.6%) intervention, and 19 (4.2%) control. Birth weight was missing for 22 participants (Figure 1). There were 42 pregnancy losses (abortion or stillbirth), and six neonatal deaths within 24 hours of birth.

There were no important differences in baseline characteristics between the groups (Table 1). There were small differences for mother’s age, mother’s and father’s education, and parity but not enough to warrant an adjustment in analyses. Slightly more intervention participants received four or more ANC visits, but for antenatal care from health centres, this trend reversed (Table 1). When we combined both ANC data sources, the intervention participants received slightly more ANC (intervention 61.7% vs. control 55.6%). There was a slightly higher percentage of intervention participants delivered in a facility (20.7% vs. 16.6%) but
this variable reflects the small differences in ANC. Mean birth weight was higher in facility
deliveries (2,915 g, SD 560 g) than in-home births (2,769 g, SD: 410 g).

Supervisors attended 5% of balanced plate demonstrations to observe the appropriateness of
message delivery, the use of the menu and food chart, demonstration, problem-solving, and
counselling. There were approximately 6-7 of 8 messages delivered in 80% of the
participants. The time taken for the demonstrations gradually decreased with increasing
numbers of visits. Counselling family members were largely dependent on availability;
husbands were present at 15-20% of visits, other family members at >80% of visits.

We found a statistically significant difference in mean birth weight and LBW (Tables 2 and
3). The mean difference in birth weight between groups was 127·5 g (95% CI: 11.1, 243-9;
p=0.032) adjusted for clustering. The estimated relative risk (RR) of LBW was 57% lower in
the intervention group (RR: 0.43; 95% CI: 0.25, 0.75; p=0.003) adjusted for clustering.

We conducted subgroup analyses of mother’s age, education, and family income (Tables 2
and 3) and found a significant intervention effect on birth weight in adolescents vs. non-
adolescents. Mean difference in birth weight between groups was greater in adolescents
(299·1 g; 95% CI: 101·6, 496·6; p=0.003; vs 95·6 g; 95% CI: -17·3, 208·4; p=0.097) (p-value
for interaction 0.009) as was reduction in LBW (RR: 0.28; 95% CI: 0.11, 0.71; p=0.007 vs
RR: 0.54; 95% CI: 0.29, 0.98; p=0.044), although this was not statistically significant (p-
value for interaction 0.22). There was no evidence of treatment modification by the mother’s
education or family income (Tables 2 and 3).

To assess bias in ascertaining birth weight, we stratified by participants birthed in a facility
and whose babies were weighed by independent observers and those who birthed at home
and found no evidence of treatment modification (p=0.78).
After adjustment for ANC, the use of iron and folic acid, and clustering, the reduction in mean birth weight and LBW was smaller in the intervention group (Supplemental Tables S1 and S2). The adjusted difference was 121.8 g (95% CI: 11.7, 231.9; p=0.030), which is 5.7 g less than the unadjusted analysis (Table 2). The adjusted relative risk of LBW was 0.53 (95% CI: 0.29, 0.98; p=0.042), which was smaller than the unadjusted relative risk in Table 3.

The mean number of food groups consumed increased in the intervention group and was significantly higher from the third month of pregnancy. The largest difference was in the eighth month of pregnancy when intervention participants consumed 5.6 food groups/day (95% CI: 5.19, 6.14) compared to 3.8 (95% CI: 3.40, 4.12) in control participants (Fig 2).

Starting from the fifth month of pregnancy, the intervention group’s mean number of food groups exceeded five (the number for adequate dietary diversity\(^25\)). The mean number of animal-source protein foods consumed was significantly higher from the fourth month of pregnancy (Figure 2).

Discussion

We demonstrated that antenatal nutrition education with practical demonstrations of preparing a balanced diet increases infant birth weight and reduces LBW in rural Bangladesh. There was a small birth weight reduction after adjusting for differences in antenatal care and iron/folic acid use. The effect of the intervention was greater in adolescent mothers. The findings provide strong evidence of the effectiveness of a sustainable intervention suitable for implementation in community-based health care systems. They demonstrate the potential impact of nutrition education to improve intrahousehold food distribution as a tool to reduce low birth weight in Bangladesh and across South Asia.

The process evaluation of the trial\(^30\) provided insights into why the intervention was so impactful. It identified key elements in the intervention strategy, such as practical
demonstration of portion sizes; addressing local food perceptions; demystifying animal-source foods; engaging husbands and mothers-in-law; leveraging women’s social networks; and harnessing community health workers’ social role, that played a crucial role in achieving the desired adherence. In particular, the approach of involving the mothers-in-law and husbands changed their attitudes towards a fairer allocation of foods to pregnant women. The husbands adhered to the messages and purchased more and nutritious foods for their wives by adjusting the shopping budget and even working extra hours.

Comparison with other studies

Our intervention appears more effective than interventions using micronutrient or food supplements. A large cluster RCT (22,405 pregnancies) in Bangladesh assessed the impact of antenatal micronutrient supplementation and found a 54 g (95% CI: 41, 66) increase in birth weight and a 12% reduction (RR: 0.88; 95% CI: 0.85, 0.91) in LBW. Another cluster RCT of lipid-based micronutrient supplementation showed a 41 g birth weight increment without a significant effect on LBW. Providing micronutrient supplements even with additional food energy is unlikely to address the fundamental problems of insufficient food intake in pregnancy related to food taboos and inequitable intra-household food distribution. The earlier MINIMat RCT (3267 singleton newborns), which tested early and late starts to food supplements with micronutrients in pregnancy, found no significant main-effects on birth weight. However, the combination of multiple micronutrients and early food supplementation did improve infant survival. The lack of a control group without food supplements might explain the lack of birth weight response. In contrast, an observational study in Bangladesh reported a 118 g increase in birth weight with daily 608 kcal food supplements combined with iron-folic acid sustained for more than four months. Although this evidence is weak, it supports using food-based solutions to address nutrition problems.
Adolescent pregnancy has an increased risk of adverse birth outcomes, including LBW. If severely undernourished, the growing pregnant adolescent and foetus compete for nutrients. A recent study from rural Bangladesh found a cessation of linear growth, weight loss, and fat and lean body mass depletion in pregnant adolescents. This greater nutritional susceptibility helps explain the greater effect of the balanced plate education in this group.

The balanced-plate intervention significantly increased maternal dietary diversity (Fig 2). Change in dietary patterns is the likely cause of the higher birth weight in the intervention group. A recent cohort study followed 374 women from their first antenatal care visit to assess associations between dietary diversity during pregnancy and LBW in rural Ethiopia. The LBW risk doubled with a dietary diversity score of less than four food groups (ARR: 2.06; 95% CI: 1.03, 4.11). A facility-based case-control study from rural Ethiopia, which examined iron, folic acid and nutrition counselling, snack consumption, dietary diversity, and maternal undernutrition, also reported similar findings.

There was a significant six-fold increase in the adjusted odds of LBW with an inadequate minimum dietary diversity score (AOR: 6.65; 95% CI, 2.31, 19.16). A cross-sectional study from Ghana also reported a protective effect of higher dietary diversity scores for LBW (AOR: 0.10; 95% CI: 0.04, 0.13 per standard deviation change score, p=<0.0001). This evidence supports our findings that improved and more diverse dietary intake leads to a reduction in LBW.

Participants in the intervention group consumed more animal-sourced protein foods (Fig 2), reaching a peak at eight months of pregnancy of two animal-sourced foods/day. A large cross-sectional study of pregnant women in Shaanxi province, northwestern China, reported an average weekly consumption of five animal-sourced foods. As the frequency of animal-sourced food increased by one time/week, the average birth weight increased by 3.24 g (95%
Unlike increasing animal-sourced foods in the diet, the consumption of excess protein supplements (>20% of energy as protein) can harm fetal growth. Despite earlier evidence of a positive impact of nutrition education on pregnancy outcomes, the delivery method has received little attention. It is particularly important in low literate and poor self-efficacy populations, such as in rural Bangladesh, where women require dietary counselling to be accessible, feasible, and sanctioned by the community. A review of over 300 studies found that nutrition education is more likely to be effective when focusing on behaviour and action than knowledge alone. And it is also likely to be more effective if grounded in theory. Fishbein and Yzer note that “any given behaviour is most likely to occur; if one has a strong intention to perform the behaviour; if a person has the necessary skills and abilities required to perform the behaviour; and if no environmental constraints are preventing the behavioural performance.” To positively impact dietary behaviour, we designed our intervention to embrace all aspects of this theory. We adopted an innovative counselling technique, including a practical demonstration of a balanced diet and engaged family decision-makers. Similar nutrition counselling intervention was found effective in increasing age-specific complementary feeding practices in rural Bangladesh. In Bangladesh, the main source of nutrition education for pregnant women is through ANC, but the contact time is insufficient to affect nutrition change. Thus, WHO. Proposes upskilling CHWs in delivering dietary advice is an appropriate approach to complement health services. In our study, we integrated the balanced plate intervention into BRAC’s existing ANC package delivered by CHWs. The same staff in a recent intervention demonstrated their successful counselling on breastfeeding and complementary feeding. Previously, we also found that CHWs can positively influence family decision-makers to increase pregnant women’s iron-folic acid consumption.

Strengths and limitations of this study
The evidence presented from this trial is robust. Key strengths are the cluster, randomized controlled trial design with sufficient statistical power to detect clinically important changes in outcomes. The delivery of the trial treatments through an established home-based antenatal care service led to a balance between the treatment groups in the level of antenatal contacts with community health workers. The unblinded intervention was counterbalanced by objective outcomes and blinding participants and data collectors to the aims and hypotheses. The trial had a very high follow-up (93%). We used intention-to-treat analyses and adjusted for unbalanced baseline factors and clustering. Our intervention, based on well-designed qualitative formative research, was logistically simple and culturally appropriate. The key to our success was conducting the trial within existing ANC frameworks. The delivery strategy resonates with maternal and child nutrition recommendations to achieve adequate coverage of nutrition-specific interventions by reaching populations in need. However, we acknowledge some limitations. First, the Shasthya Kormi, who delivered the intervention, also collected birth weight data. Measuring birth weight and providing nutrition counselling are routine tasks for these staff. By blinding the SK to study outcome, we would expect non-differential bias. Also, we found no difference in the effects between women who had birth weight measured by hospital staff versus those who birthed at home with birth weight measured by the SK. Secondly, using catchment areas as clusters might introduce contamination, with the possibility of Shasthya Kormi exchanging information. However, this would have biased results towards a null effect. To prevent this, we trained intervention and control group Shasthya Kormi separately at regular refresher sessions. Thirdly, we could not quantify food intake and intra-household food distribution, which might have provided further evidence of pathways to the impact we observed. Finally, we excluded over 30% of pregnant women identified mainly because they were already in the second or third trimester when we detected their pregnancy. There is no information about the characteristics of these excluded
women and thus no way to compare them to the women included in the trial. This limits our
assessments of the external validity of the trial findings.

Conclusions and policy implications

Our results indicate that a balanced plate nutrition education during pregnancy increases birth
weight and reduces LBW. Our trial offers a pragmatic food-based strategy for resource-poor
settings. The CHW-led intervention is simple, feasible, and easy to implement in a country
with a shortage of human health resources. The intervention is also scalable through existing
public and private community health infrastructure.
References

45. Alive & Thrive. *Alive & Thrive’s approach and results in Bangladesh: Rapid improvements in infant and young child feeding practices resulting from a large-scale program.* Dhaka, Bangladesh: Alive & Thrive;2015.

Acknowledgments

This study is part of research towards a Ph.D. at The University of Sydney funded by Endeavour Postgraduate Scholarship (Ph.D.); Department of Education and Training, Australian Government. The study received partial support from the James P. Grant School of Public Health, BRAC University, Bangladesh, and the Sydney Medical School, The University of Sydney, Australia. We thank the Shasthya Kormi and the Shasthya Shebika of BRAC, and the pregnant women and their families in Sherpur for their time in this study.

Funding:

The study was funded by James P. Grant School of Public Health; Bangladesh, and Sydney Medical School Foundation; Australia

Author contributions:

MC conceived the overall study, developed the study design and data collection methods, and conducted the data analysis, interpreted data, and wrote the first draft of the manuscript. MJD and CRG provided critical input regarding study design, sample size calculation, and outcome evaluation and the statistical analysis plan. KA provided practical guidance in formulating the implementation strategy. AA provided crucial input on formative research and process evaluation design. PK provided technical support for data analyses. CRG and MC obtained funds for the intervention. CRG provided critical input to all drafts and approved the final version for submission. MJD, KA, PK and AA critically reviewed the manuscript and approved the final version for submission. MC, MJD, CRG, PK, KA and AA agreed to be accountable for all investigations necessary to resolve questions related to accuracy or integrity of all or any part of the work.

Competing interests:

None to declare
Data and materials availability:

The data described in this manuscript, the code book, and the analytic code will be made available upon request pending approval by the investigators of an application to use the data.
Supplemental Information

S1 Table: The mean birth weight and the adjusted mean difference in birth weight of balanced-plate intervention compared to usual programs.

S2 Table: Percentage of low birth weight and adjusted relative risk of balanced-plate intervention compared to usual programs.
Table 1: Cluster, baseline maternal and household, and antenatal care and delivery characteristics by study arm

<table>
<thead>
<tr>
<th>Cluster characteristics</th>
<th>Intervention (n=382)</th>
<th>Control (n=397)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of clusters</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td>Mean (SD) population in clusters in 2016</td>
<td>9775 (2007)</td>
<td>9639 (1763)</td>
</tr>
<tr>
<td>Mean (SD) number of households in clusters</td>
<td>2315 (288)</td>
<td>2321 (419)</td>
</tr>
<tr>
<td>Mean (SD) number of women of reproductive age</td>
<td>2639 (542)</td>
<td>2631 (481)</td>
</tr>
<tr>
<td>Mean (SD) number of pregnant women enrolled per clusters</td>
<td>24.7 (1.0)</td>
<td>24.9 (0.5)</td>
</tr>
</tbody>
</table>

Baseline maternal and household characteristics

Mother’s age (years):

- Mean (SD): 23·0 (4·6) for Intervention, 24·0 (4·3) for Control
- 15-19: 80 (21·7) for Intervention, 64 (17·0) for Control
- 20-34: 280 (76·1) for Intervention, 307 (81·4) for Control
- >34: 8 (2·2) for Intervention, 6 (1·6) for Control
- Missing: 14 for Intervention, 20 for Control

Mother’s education:

- No education: 82 (22·0) for Intervention, 89 (23·1) for Control
- Primary: 250 (67·2) for Intervention, 242 (62·7) for Control
- Secondary: 27 (7·3) for Intervention, 35 (9·1) for Control
- Higher: 13 (3·5) for Intervention, 20 (5·2) for Control
- Missing: 10 for Intervention, 11 for Control

Monthly family income (SD) in Bangladesh Taka

- Less than 5000: 87 (23·9) for Intervention, 79 (21·2) for Control
- 5000 to less than 10,000: 190 (52·2) for Intervention, 209 (56·2) for Control
- 10,000 or more: 87 (23·9) for Intervention, 84 (22·6) for Control
- Missing: 18 for Intervention, 25 for Control

Father’s education:

- No education: 130 (35·0) for Intervention, 151 (39·7) for Control
- Primary: 188 (50·7) for Intervention, 169 (44·5) for Control
- Secondary: 34 (9·2) for Intervention, 39 (10·3) for Control
- Higher: 19 (5·1) for Intervention, 21 (5·5) for Control
- Missing: 11 for Intervention, 17 for Control

Marital Status

- Married: 372 (97·4) for Intervention, 386 (97·3) for Control
- Not married: 10 (2·6) for Intervention, 11 (2·7) for Control

Parity:
<table>
<thead>
<tr>
<th>Category</th>
<th>Intervention (n=382)</th>
<th>Control (n=397)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean (SD)</td>
<td>1·8 (1·2)</td>
<td>1·9 (1·3)</td>
</tr>
<tr>
<td>0</td>
<td>36 (10·3)</td>
<td>48 (12·6)</td>
</tr>
<tr>
<td>1</td>
<td>134 (38·5)</td>
<td>115 (30·3)</td>
</tr>
<tr>
<td>≥2</td>
<td>178 (51·2)</td>
<td>217 (57·1)</td>
</tr>
<tr>
<td>Missing</td>
<td>34</td>
<td>17</td>
</tr>
<tr>
<td>Previous pregnancy loss</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>67 (19·3)</td>
<td>87 (22·9)</td>
</tr>
<tr>
<td>No</td>
<td>281 (80·8)</td>
<td>293 (77·1)</td>
</tr>
<tr>
<td>Missing</td>
<td>34</td>
<td>17</td>
</tr>
<tr>
<td>Gestation at enrolment (weeks) Mean (SD)</td>
<td>10·1 (3·2)</td>
<td>9·6 (3·2)</td>
</tr>
<tr>
<td>Missing</td>
<td>27</td>
<td>2</td>
</tr>
<tr>
<td>Antenatal care and delivery characteristics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iron Folic Acid Supplements</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean number consumed (SD)</td>
<td>45.6 (61.8)</td>
<td>29.0 (46.8)</td>
</tr>
<tr>
<td>Any use</td>
<td>117 (30.6)</td>
<td>70 (17.6)</td>
</tr>
<tr>
<td>None</td>
<td>265 (69.4)</td>
<td>327 (83.4)</td>
</tr>
<tr>
<td>Antenatal care visit by SK</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean number of visits (SD)</td>
<td>3.8 (2.6)</td>
<td>3.6 (2.2)</td>
</tr>
<tr>
<td><4 visits</td>
<td>158 (41.1)</td>
<td>198 (49.9)</td>
</tr>
<tr>
<td>≥4 visits</td>
<td>224 (58.6)</td>
<td>199 (50.1)</td>
</tr>
<tr>
<td>Antenatal care in health centers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean number of visits (SD)</td>
<td>0.7 (1.1)</td>
<td>1.0 (1.4)</td>
</tr>
<tr>
<td>No Visit</td>
<td>227 (59.4)</td>
<td>246 (51.9)</td>
</tr>
<tr>
<td><4 visits</td>
<td>143 (37.4)</td>
<td>169 (42.6)</td>
</tr>
<tr>
<td>≥4 visits</td>
<td>12 (3.1)</td>
<td>22 (5.5)</td>
</tr>
<tr>
<td>Place of delivery</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Facility</td>
<td>79 (20.7)</td>
<td>66 (16.6)</td>
</tr>
<tr>
<td>Home</td>
<td>280 (73.3)</td>
<td>323 (81.4)</td>
</tr>
<tr>
<td>Unknown</td>
<td>23 (6.0)</td>
<td>8 (2.0)</td>
</tr>
<tr>
<td>Mode of delivery</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>331 (86.7)</td>
<td>361 (90.9)</td>
</tr>
<tr>
<td>C-Section</td>
<td>33 (8.6)</td>
<td>34 (8.6)</td>
</tr>
<tr>
<td>Unknown</td>
<td>18 (4.7)</td>
<td>2 (0.5)</td>
</tr>
<tr>
<td>Time of birth weight measurement</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Within 24h</td>
<td>266 (69.6)</td>
<td>290 (73.1)</td>
</tr>
<tr>
<td>24 to 48h</td>
<td>75 (19.6)</td>
<td>61 (15.4)</td>
</tr>
<tr>
<td>48 to 72h</td>
<td>13 (3.4)</td>
<td>19 (4.8)</td>
</tr>
<tr>
<td>Unknown</td>
<td>28 (7.3)</td>
<td>27 (6.8)</td>
</tr>
</tbody>
</table>

Numbers are frequencies (and column percentage) unless stated otherwise
Table 2: The mean birth weight and the mean difference in birth weight of balanced-plate intervention compared to usual programs.

<table>
<thead>
<tr>
<th></th>
<th>Number of participants</th>
<th>Birth weight (g)</th>
<th>Mean difference</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Intervention</td>
<td>Control</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mean (SD)</td>
<td>Mean (SD)</td>
</tr>
<tr>
<td>Overall</td>
<td>382</td>
<td>2861.0</td>
<td>(444.2)</td>
</tr>
<tr>
<td>Mother’s age¹ (years)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><20</td>
<td>80</td>
<td>2916.3</td>
<td>(471.1)</td>
</tr>
<tr>
<td>>=20</td>
<td>288</td>
<td>2847.6</td>
<td>(443.4)</td>
</tr>
<tr>
<td>Mother’s education²</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>None</td>
<td>82</td>
<td>2869.5</td>
<td>(460.6)</td>
</tr>
<tr>
<td>Primary</td>
<td>250</td>
<td>2839.2</td>
<td>(443.9)</td>
</tr>
<tr>
<td>Secondary or higher</td>
<td>40</td>
<td>2982.5</td>
<td>(435.5)</td>
</tr>
<tr>
<td>Family income³</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low</td>
<td>87</td>
<td>2819.5</td>
<td>(397.9)</td>
</tr>
<tr>
<td>Medium</td>
<td>190</td>
<td>2806.8</td>
<td>(421.7)</td>
</tr>
<tr>
<td>High</td>
<td>87</td>
<td>2995.4</td>
<td>(514.5)</td>
</tr>
</tbody>
</table>

Birth weight was analyzed using linear regression. We adjusted all models for clusters using generalized estimating equation (GEE) models, assuming an exchangeable correlation structure and applied a sandwich estimator to standard errors. ¹ n=745 due to 34 missing maternal age values. ² n=758 due to 21 missing maternal education values. ³ n=736 due to 43 missing family income values.
Table 3: Percentage of low birth weight and relative risk of balanced-plate intervention compared to usual programs.

<table>
<thead>
<tr>
<th>Number of participants</th>
<th>Low birth weight (<2,500g)</th>
<th>Relative risk</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Intervention</td>
<td>Control</td>
</tr>
<tr>
<td>Overall</td>
<td>382</td>
<td>397</td>
</tr>
<tr>
<td>Mother’s age¹ (years)</td>
<td></td>
<td></td>
</tr>
<tr>
<td><20</td>
<td>80</td>
<td>64</td>
</tr>
<tr>
<td>>=20</td>
<td>288</td>
<td>313</td>
</tr>
<tr>
<td>Mother’s education²</td>
<td></td>
<td></td>
</tr>
<tr>
<td>None</td>
<td>82</td>
<td>89</td>
</tr>
<tr>
<td>Primary</td>
<td>250</td>
<td>242</td>
</tr>
<tr>
<td>Secondary or higher</td>
<td>40</td>
<td>55</td>
</tr>
<tr>
<td>Family income³</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low</td>
<td>87</td>
<td>79</td>
</tr>
<tr>
<td>Medium</td>
<td>190</td>
<td>209</td>
</tr>
<tr>
<td>High</td>
<td>87</td>
<td>84</td>
</tr>
</tbody>
</table>

Low birth weight was analyzed using binomial regression with a log link. We adjusted all models for clusters using generalized estimating equation (GEE) models, assuming an exchangeable correlation structure and applied sandwich estimator to standard errors. ¹ n=745 due to 34 missing maternal age values. ² n=758 due to 21 missing maternal education values. ³ n=736 due to 43 missing family income values.
Figure 1: Trial flow chart

- Assessed 126 clusters for eligibility
 - Identified 36 eligible clusters
 - Randomized clusters

Allocation:
- Allocated to intervention (No of clusters=18)
 - Assessed eligibility of 1070 pregnant women
 - Excluded (n=625)
 - Ineligible (n=469)
 - Declined (n=156)
 - Recruited 445 pregnant women
 - Allocated to intervention (No of clusters=18)
 - Assessed eligibility of 1084 pregnant women
 - Excluded (n=636)
 - Ineligible (n=468)
 - Declined (n=168)
 - Recruited 448 pregnant women

Follow-up:
- Lost to follow-up (n=25)
- Pregnancy outcome (n=420)
 - Miscarriage (n=19)
 - Live birth (n=394)
 - Stillbirth (n=7)

Analysis:
- Birth weight analysed (n=382, No of clusters=18)
 - Missing birth weight for live births (n=10)
 - Neonatal death within 24 hours (n=2)
- Birth weight analysed (n=397, No of clusters=18)
 - Missing birth weight for live births (n=12)
 - Neonatal death within 24 hours (n=4)
Figure 2: The mean number and 95% confidence intervals* of food groups (A) and animal-source protein foods (B) consumed by women per day by treatment group.

* The estimated mean number of food groups consumed and 95% confidence intervals were calculated using linear regression with the study arm as a covariate using Generalised Estimating Equations (GEE) assuming an exchangeable correlation structure and applying the sandwich estimator to standard errors.