CMV seropositivity in older adults changes T cell functionality, but does not prevent antibody or cellular SARS-CoV-2 vaccine responses

Authors:
Jessica A. Breznik1-4, Angela Huynh3, Ali Zhang1,2,5, Lucas Bilaver1,3, Hina Bhakta3, Hannah D. Stacey1,2,5, Jann C. Ang1,2,5, Jonathan L. Bramson1,3,5, Ishac Nazy3,7, Matthew S. Miller1,2,5, Judah Denburg3, Andrew P. Costa3,9-10, Dawn M. E. Bowdish1,4,11*, and other members of the COVID-in-LTC Investigator Group

1McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada, L8S 4K1
2Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada, L8S 4K1
3Department of Medicine, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, Ontario, Canada, L8S 4L8
4McMaster Institute for Research on Aging, McMaster University, Hamilton, Ontario, Canada, L8S 4K1
5Department of Biochemistry & Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada, L8S 3L8
6St. Mary’s General Hospital, Kitchener, Ontario, Canada, N2M 1B2
7McMaster Centre for Transfusion Research, McMaster University, Hamilton, Ontario, Canada, L8S 3L8
8Health Science North Research Institute, Sudbury, Ontario, P3E 2H2
9Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Canada, L8S 3L8
10Centre for Integrated Care, St. Joseph’s Health System, Hamilton, Ontario, Canada, L8N 4A6
11Firestone Institute for Respiratory Health, St Joseph’s Healthcare, Hamilton, Ontario, Canada, L8N 4A6

Running title: Cytomegalovirus and SARS-CoV-2 vaccination

Key words: COVID-19, SARS-CoV-2, CMV, mRNA vaccine, humoral immunity, cellular immunity, viral neutralization, vaccine efficacy, older adults

*Corresponding author:
Dawn Bowdish, PhD
M. G. DeGroote Institute for Infectious Disease Research
McMaster Immunology Research Centre
McMaster University, MDCL 4020
1280 Main Street West
Hamilton, Ontario, Canada L8S 4L8
Phone: +1-905-525-9140, ext 22313
Fax: +1-905-522-6750
Email: bowdish@mcmaster.ca

Abstract Word Count: 150 words

Text Word Count:
Figures: 4; 9 Supplementary
Tables: 4

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Conflict of Interest Disclosures: The authors have no financial relationship with any organization that may have an interest and have no other relationships or activities that could post a conflict of interest.

Additional Information/Contributions: Data in this study were collected by the COVID-in-LTC Study Group. Other members of the COVID-in-LTC Study Group include Eric D. Brown, Kevin Brown, David C. Bulir, George A. Heckman, Michael P. Hillmer, John P. Hirdes, Aaron Jones, Mark Loeb, Janet E. McElhaney (posthumous), Nathan M. Stall, Parminder Raina, Marek Smieja, Ahmad Von Schlegell, Kevin Stinson, Arthur Sweetman, Chris Verschoor, and Gerry Wright. We acknowledge administrative and technical assistance from Tara Kajaks, Ahmad Rahim, Komal Aryal, Megan Hagerman, Braeden Cowbrough, Leslie Tan, Sussan Kianpour, Jodie Turner, and Sheneice Joseph, and funding from the Canadian COVID-19 Immunity Task Force at McMaster University. We would like to thank our participants and their families, as well as staff at the assisted living facilities, for their support of this study.

Funding: This work was funded by a grant from Canadian COVID-19 Immunity Task Force and Public Health Agency of Canada awarded to Costa and Bowdish. APC is the Schlegel Chair in Clinical Epidemiology and Aging. DMEB is the Canada Research Chair in Aging & Immunity. Funding support for this work was provided by grants from the Ontario Research Foundation, COVID-19 Rapid Research Fund, and by the Canadian COVID-19 Immunity Task Force awarded to IN. MSM is supported, in part, by an Ontario Early Researcher Award and a Canada Research Chair in Viral Pandemics.
Abstract

It has been previously reported that chronic infection with human cytomegalovirus (CMV) may contribute to poor vaccine responses against de novo antigens in older adults. We assessed effects of CMV serostatus on antibody quantity and quality, as well as cellular memory responses, after 2 and 3 SARS-CoV-2 mRNA vaccine doses, in older adults in congregate living facilities. CMV serostatus did not affect anti-Spike and anti-RBD IgG antibody levels, nor neutralization capacity against wildtype or beta variants of SARS-CoV-2. CMV seropositivity altered T cell expression of senescence-associated markers and increased TEMRA cell numbers, as has been previously reported; however, this did not impact the Spike-specific CD4+ T cell memory responses. CMV seropositive individuals did not have a higher incidence of COVID-19, though prior infection influenced humoral immunity. Therefore, CMV seropositivity may alter T cell composition but does not impede humoral or cellular memory responses after SARS-CoV-2 mRNA vaccination in older adults.
Introduction

Aging is associated with an increased frequency of viral respiratory infections and post-infection sequelae\(^1\), as well as reduced vaccine efficacy\(^2\). Early in the COVID-19 pandemic, age was identified to be the most significant factor contributing to morbidity and mortality\(^3\), and it was unclear how effective vaccines against the \textit{de novo} SARS-CoV-2 virus would be in older adults. Older adults often respond well to vaccines that target a memory response (e.g. Herpes zoster), but vaccines against \textit{de novo} antigens or antigens that are antigenically distant from previous strains (e.g. some seasonal influenza vaccines) are often less immunogenic\(^4,5\).

Fortunately, SARS-CoV-2 mRNA vaccines have been shown to be protective in older adults\(^6,7,8\), as they are effective at generating cellular and antibody-mediated immunity\(^9,10,11,12\), though responses are generally more heterogeneous and wane faster than in younger adults\(^9,11\).

In older adults, both immunosenescence and inflammation are thought to influence the immunogenicity and longevity of vaccine responses\(^13,14\). Many studies have also implicated human cytomegalovirus (CMV) as a significant contributor to age-associated immune dysfunction. CMV is a common and persistent \(\beta\)-herpesvirus, found in \(\sim 60\%-90\%\) of adults worldwide, and seropositivity increases with age\(^15,16\). CMV infection is typically asymptomatic in immunocompetent individuals, but its accompanying chronic immune activation fundamentally alters immune cell composition and function. There is a consensus that CMV seropositivity has a long-term impact on the maturation and composition of immune cells, including increased numbers and prevalence of CD8\(^+\) T cells, with expansion of virus-specific effector and memory cells at the expense of naïve T cells\(^17,18\). Age-associated immunosenescence likewise contributes to similar changes within the T cell repertoire, reducing...
naïve T cells and increasing memory T cell populations, which have impaired proliferation, differentiation, and effector functions19, 20. A dysfunctional T cell repertoire may also have significant effects on B cell proliferation, differentiation, and maturation21. Accordingly, CMV seropositivity has been implicated as an exacerbating factor in age-associated immune remodelling and inter-individual immune diversity22, 23, 24, 25, as well as a modifying factor that may compromise infection outcomes and vaccination responses26.

Though there is little data to date, CMV reactivation in older adults has been suggested to contribute to more severe COVID-1927, 28, 29, 30, 31, as CMV seropositivity has been associated with impaired antibody and cellular immune responses to infections32, 33, 34. However, CMV seropositivity has also been reported to enhance cellular and antibody immune responses to unrelated bacteria or viruses, through diversification of CD8+ T cell receptors and augmentation of basal inflammation35, 36, 37, 38. CMV seropositivity has, in addition, been associated with a reduced humoral response to inactivated split influenza virus vaccines39, 40, 41, 42 and viral-vector-based Ebola vaccines43. Yet, a recent meta-analysis reported that there was insufficient evidence that CMV seropositive individuals have decreased antibody production after influenza vaccination44. Recent data also show that CMV seropositivity in young adults does not affect antibody or cellular responses after vaccination with the adenovirus-based vector vaccine ChAdOx1 nCoV-1945. These conflicting reports may suggest context and age-dependent effects of chronic CMV infection on immune function. SARS-CoV-2 mRNA vaccines have been widely deployed in Canada, particularly in older adults. Whether CMV seropositivity impacts SARS-CoV-2 mRNA vaccine efficacy is not yet known. Herein we investigated effects of CMV serostatus on humoral and cellular measures of vaccine responses after 2 and 3 doses of SARS-
CoV-2 mRNA vaccines in older adults. We found that CMV serostatus does not impede antibody or cellular responses to SARS-CoV-2 vaccination in older adults.

Methods

Participant Recruitment and Blood Collection

Blood was collected from 188 participants, 65 years of age and older, in assisted living facilities (3 retirement homes and 14 nursing homes), in Ontario, Canada, between March and December 2021. All protocols were approved by the Hamilton Integrated Research Ethics Board, and informed consent was obtained. Venous blood was drawn in anti-coagulant-free vacutainers for isolation of serum, as per standard protocols. Venous blood was drawn in heparin-coated vacutainers for immunophenotyping and T cell activation assays. Blood was collected at least 7 days after 2nd and/or 3rd mRNA vaccine doses. Blood was drawn after 2nd and 3rd mRNA vaccine doses from 47 participants. Participant demographics are summarized in Table 1.

Determination of CMV Serostatus

CMV seropositivity was determined by enzyme-linked immunosorbent assay (ELISA) with the Human Anti-Cytomegalovirus IgG ELISA Kit (CMV) (Abcam ab108639) as per manufacturer’s instructions. Serum samples from a participant’s first blood draw were diluted 1:40 and assessed in duplicate. Samples with a CMV IgG Index above or equal to the positive standard were classified as CMV seropositive, whereas samples with a CMV IgG index less than the positive standard were classified as CMV seronegative.
Whole Blood Immunophenotyping

Circulating immune cell populations were quantitated in whole blood using fluorophore-conjugated monoclonal antibodies by multicolour flow cytometry with a CytoFLEX LX (4 laser, Beckman Coulter), as per standard protocols. Count-Bright™ absolute counting beads (Invitrogen Life Technologies, Carlsbad, CA, USA) were used to determine absolute cell counts. Data was gated with FlowJo V10.8.1 (TreeStar, Inc.) as previously published. Five main subsets of human CD8+ and CD4+ T cells (Naïve (N), Central Memory (CM), Effector Memory (EM), Effector Memory re-expressing CD45RA (EMRA), and terminally differentiated (TD)) were identified by their expression of CD45RA, CCR7, CD28 and/or CD57. CD8N and CD4N were classified as CD45RA+CCR7+; CD8CM and CD4CM as CD45RA−CCR7+; CD8EM and CD4EM as CD45RA−CCR7−; CD8EMRA and CD4EMRA as CD45RA+CCR7−; and CD8TD and CD4TD as CD45RA+CCR7−CD28−CD57+. As per standard protocols.

Assessment of T Cell Activation Induced Markers (AIMs) for SARS-CoV-2 Peptides

Antigen-specific T cell recall responses were assessed as per established protocols using a Spike (S) glycoprotein SARS-CoV-2 peptide pool containing overlapping peptides of the complete immunodominant sequence domain (#130-126-701; Miltenyi Biotec, Bergisch Gladbach, Germany). Negative control (unstimulated wells) and positive control (polyclonal stimulation with CytoStim™ (0.5 µL/well, #130-092-173; Miltenyi Biotec, Bergisch Gladbach, Germany) conditions were included with each sample, as was stimulation with influenza hemagglutinin (HA) antigens (4 µL; AgriFlu, Alfarria® Tetra Inactivated Influenza Vaccine 2020-2021 season, Seqirus, UK). 100 µL of heparinized venous blood was incubated with an equal volume of Iscove’s Modified Dulbecco’s Medium, GlutaMAX™ Supplement (Invitrogen
Life Technologies, Carlsbad, CA, USA) and 1 μg/mL S-antigen for 44 h in 96-well flat bottom plates at 37 °C. Samples were stained with fluorophore-conjugated monoclonal antibodies and assessed with a CytoFLEX LX (4 laser, Beckman Coulter, Brea, CA, USA) as previously described47. Data was analyzed with FlowJo V10.1 (TreeStar, Inc.) as previously published47. Antigen-specific T cells (AIM-positive) were identified by co-expression of CD25 and CD134 (OX40) on CD4+ T cells49,50, and co-expression of CD69 and CD137 (4-1BB) on CD8+ T cells51. Samples with a T cell frequency of at least 20 events and \textgtrq;2-fold above an unstimulated sample (negative control; i.e. stimulation index \textgtrq;2), were defined as AIM-positive. Expression of CXCR3, CCR4 and/or CCR6 was used to identify CD4+ Th1 (CXCR3+CCR6-CCR4-), Th2 (CXCR3-CCR4+CCR6-), and Th17 (CXCR3-CCR4+CCR6+) CD4+ T cell subsets.

Measurements of Anti-SARS-CoV-2 Antibodies and Neutralizing Capacity

Serum anti-SARS-CoV-2 spike (S) protein and receptor binding domain (RBD) IgG, IgA and IgM antibodies were measured by a validated ELISA as previously described47,52, with assay cut-off 3 standard deviations above the mean of a pre-COVID-19 population from the same geographic region. Data are reported as a ratio of observed optical density (OD) to the determined assay cut-off OD. Antibody neutralization capacity was assessed by cell culture assays with Vero E6 (ATCC CRL-1586) cells and live SARS-CoV-2, with data reported as geometric microneutralization titers at 50\% (MNT\textsubscript{50}), which ranged from below detection (MNT\textsubscript{50} = 5; 1:10 dilution) to MNT\textsubscript{50} = 128052. Antibody neutralization was measured against the ancestral strain of SARS-CoV-2 and the beta variant of concern (B.1.351). The beta variant was obtained through BEI Resources, NIAID, NIH: SARS-Related Coronavirus 2, Isolate hCoV-
Statistical Analysis

Statistical analyses were conducted using GraphPad Prism version 9 (San Diego, CA, USA). Two-group comparisons of dose and CMV seropositivity or prior COVID-19 and CMV seropositivity were assessed by two-way ANOVA. Differences between CMV seropositive and seronegative group antibody levels, antibody neutralization capacity, T cell immune cell composition, T cell surface expression, and memory T cell responses, were assessed by Student’s t-test with Welch’s correction or Mann-Whitney U-test, according to data normality. P values are reported as two-tailed and p values less than 0.05 were considered significant.

Results

Participant demographics

Serum anti-CMV IgG antibodies were measured by ELISA to determine CMV seropositivity. 69.7% (n = 131/188) of participants were CMV seropositive. There was no difference in age or sex distribution between seropositive (median 85±6.8 years, 67.6% female) and seronegative participants (median 86±7.7 years, 69.8% female) (Table 1). Blood samples were collected at a median of 179.8 days (CMV seronegative) and 175.4 days (CMV seronegative) after 2 doses of Moderna Spikevax 100 µg (mRNA-1273) or Pfizer Comirnaty 30 µg (BNT162b2) administered as per manufacturer-recommended schedules. In Ontario, Canada, 3rd dose vaccinations were recommended for older adults in congregate living beginning in August 2021, if they were more than 6 months post-2nd vaccinations. Participants received 3rd
doses in August-September 2021, and blood samples were collected at a median of 82.0 days (CMV seronegative) or 83.7 days (CMV seropositive) after 3rd doses. Participants were classified as having had a previous SARS-CoV-2 infection if they had a documented positive PCR test or were seropositive for IgG or IgA nucleocapsid antibodies. 37.8% of CMV seronegative participants and 34.4% of CMV seropositive participants had a positive nasopharyngeal PCR test since March 2020 and/or serum anti-nucleocapsid IgG or IgA antibodies.

CMV seropositivity does not impede anti-SARS-CoV-2 antibody production or neutralization in older adults

To assess effects of CMV serostatus on antibody responses after SARS-CoV-2 vaccination, serum anti-SARS-CoV-2 Spike and RBD IgG, IgA, and IgM antibody levels were measured by ELISA (Figure 1; Table 2). The number of responders (i.e. individuals with antibodies above the threshold limit of detection) significantly increased between post-2nd and post-3rd doses for anti-Spike IgG, IgA, and IgM antibodies, as well as anti-RBD IgG antibodies, but not anti-RBD IgA or IgM antibodies (Table 2). For example, 5-7 months after second dose vaccinations, anti-Spike IgG antibody responses were detected in 88.7% of participants, and anti-RBD IgG antibody responses were detected in 63.5% of participants. Approximately 3 months after the third dose, 97.3% and 94.6% of participants had detectable anti-Spike IgG and anti-RBD IgG, respectively. CMV seropositivity did not impact the frequency of responders for anti-Spike and anti-RBD IgG, IgA, and IgM antibodies. Accordingly, two-group analyses showed a main effect of vaccine dose, but not CMV serostatus, on serum anti-Spike IgG (Figure 1A) and anti-RBD (Figure 1D) antibodies, as well as anti-Spike IgA (Figure 1B) and anti-Spike IgM (Figure 1C) antibodies. There were no significant main effects of vaccine dose or CMV
serostatus on anti-RBD IgM (Figure 1F) antibodies. Main effects of dose and CMV serostatus were observed for serum anti-RBD IgA levels (Figure 1E), though post-hoc assessments by CMV serostatus were not significant. Therefore, CMV seropositivity does not impede antiviral antibody responses after SARS-CoV-2 vaccination.

To examine potential effects of CMV serostatus on antibody function, serum antibody neutralization capacity was assessed by MNT50 assays against live ancestral (wildtype) and beta variant SARS-CoV-2 (Figure 1G-H; Table 3). Vaccines were designed against the wildtype virus, whereas the beta variant contains mutations that confer increased transmissibility and immune evasion. Neutralization of ancestral and beta variant SARS-CoV-2 ranged from below the detection limit to MNT50=1280, though mean neutralization was consistently higher against the ancestral virus after 2 and 3 vaccine doses. Neutralization capacity was similar between CMV seropositive and seronegative individuals against both ancestral and beta variant SARS-CoV-2, though there was a main effect of dose on neutralization capacity. In particular, significant increases in neutralization were observed after 3rd dose vaccination against the beta variant. Anti-Spike and anti-RBD IgG levels moderately correlated with antibody neutralization capacity, irrespective of CMV serostatus (Table 3). As well, modest correlations were observed between neutralization capacity and anti-Spike and anti-RBD IgA antibodies in both CMV seropositive and CMV seronegative participants. Therefore, CMV seropositivity does not compromise vaccine-elicited antibody neutralization of SARS-CoV-2.

As serum was collected from some participants after both 2nd and 3rd vaccine doses, these paired data were also assessed independently (Supplementary Figure 1). Consistent with our
pooled participant data, there were main effects of dose but not CMV serostatus on anti-Spike and anti-RBD IgG and IgA serum antibody levels. We did observe an interaction between CMV serostatus and dose on anti-RBD IgM measurements by intra-individual analysis, but most participants had antibody levels below the threshold. Intra-individual analyses also showed that the number of vaccine doses, but not CMV serostatus, had a significant effect on antibody neutralization capacity against wildtype and beta variant virus. Therefore, CMV seropositivity does not significantly impact intra-individual changes in antibody levels or neutralization capacity between 2 and 3 doses of SARS-CoV-2 mRNA vaccines.

We next considered post-dose 2 and post-dose 3 antibody measurements in context of prior SARS-CoV-2 infection (Supplementary Figure 2). As summarized in Table 1, incidence of COVID-19 was similar between CMV seronegative and seropositive participants. We observed a main effect of prior SARS-CoV-2 infection on anti-Spike and anti-RBD IgG, IgA, and IgM antibodies after 2 doses of mRNA vaccines, as well as anti-Spike and anti-RBD IgG and IgA, but not IgM, serum antibodies after 3 vaccine doses. We observed an interaction between prior COVID-19 and CMV serostatus for anti-Spike and anti-RBD IgA antibodies post-dose 2 and post-dose 3, and IgM antibodies post-dose 2. There was a main effect of CMV serostatus on anti-Spike IgM antibodies, but as observed above, most individuals had levels below the detection threshold. We in addition observed main effects of prior SARS-CoV-2 infection, but not CMV serostatus, on antibody neutralization of ancestral SARs-CoV-2 after 2 and 3 vaccine doses and the beta variant after 2, but not 3, vaccine doses (Supplementary Figure 3). Collectively, these data indicate that CMV serostatus does not appear to have a major impact on anti-Spike or anti-RBD IgG antibody production, or total serum antibody neutralization capacity. Moreover, CMV
seropositivity in the older adult cohort did not impair IgG antibody production or neutralization in response to SARS-CoV-2 vaccination.

CMV serostatus influences peripheral CD4+ and CD8+ T cell immunophenotype

To examine the impact of CMV seropositivity on the T cell repertoire, whole blood CD4+ and CD8+ T cell composition was quantitated, and their surface expression of CD28 and CD57 was measured, by flow cytometry (Figure 2; Supplementary Figure 4). Chronic T cell activation is a characteristic of CMV seropositivity\(^{18, 36, 55}\). Accordingly, CMV seropositive individuals had significant changes to their peripheral T cell repertoire (Figure 2; Supplementary Figure 4). We found no changes in numbers of circulating total leukocytes, total CD4+ T cells, or CD4N, CD4EM, CD8N, or CD8EM T cell populations by CMV serostatus. However, CMV seropositivity increased numbers of total CD8+ T cells, as well as CD4EMRA, CD4TD, CD8EMRA, and CD8TD T cells, and decreased numbers of CD4CM and CD8CM T cells (Figure 2).

CD28 is a co-stimulatory molecule that contributes to TCR-antigen-mediated activation of T cells, while CD57 is a marker of terminally differentiated T cells as well as an indicator of immune senescence\(^{56}\). Repeated T cell activation is associated with upregulation of CD57 and a reduction in CD28 expression\(^{57, 58, 59}\). Consistent with these prior data, comparisons of CD28 and CD57 expression on T cell populations by CMV serostatus in our cohort of older adults (Figure 2O) revealed increased CD57 expression and reduced CD28 expression on total CD4+ and CD8+ T cell populations, as well as more specifically CD4CM, CD4EM, CD4EMRA, CD8N, and CD8EMRA T cells. Expression of CD28 was also decreased on CD8CM and CD8EM cells of CMV
seropositive individuals, though expression of CD57 was not influenced by CMV serostatus. CMV serostatus did not affect CD57 or CD28 expression on CD4\textsubscript{N} T cells.

As even mild COVID-19 can have lasting effects on immune cell composition47, we also considered combined effects of prior SARS-CoV-2 infection and CMV serostatus on T cell composition (Supplementary Figures 5-6). Prior SARS-CoV-2 infection was associated with lower leukocyte counts, but otherwise had no significant main effects on absolute cell numbers nor prevalence of the assessed CD4+ or CD8+ T cell populations.

In summary, there are significant changes to the relative composition and functional phenotype of peripheral blood CD8+ T cell and CD4+ T cell subsets between CMV seronegative and seropositive individuals, irrespective of prior COVID-19. The observed expansion of EMRA and terminally differentiated T cells, as well as reduced surface expression of the costimulatory molecule CD28 on CD8\textsubscript{N} T cells in particular, may influence T cell vaccine responses.

CMV serostatus influences CD4+ and CD8+ SARS-CoV-2 antigen-induced recall responses

An activation-induced marker (AIM) assay was used to examine T cell memory responses after second and third dose SARS-CoV-2 mRNA vaccinations (Figure 3; Table 4). SARS-CoV-2 vaccines are unusual in that healthy adults generate strong CD4+ T cell memory recall responses, but weaker CD8+ T cell memory responses60. We also made similar observations in older adults. Most study participants had CD4+ T cell responses to SARS-CoV-2 Spike (post-dose 2: 93.1%; post-dose 3: 95.9%), but only 19.5\% of participants had Spike-elicited CD8+ memory T cell responses after 2 vaccine doses, though this increased to 29.7\% of
participants after 3 vaccine doses. CMV serostatus did not influence the number of individuals with SARS-CoV-2 Spike-activated CD4+ T cells or CD8+ T cells after 2nd or 3rd dose vaccinations. Grouped analyses revealed a significant main effect of CMV serostatus on the frequency of S-CD8+ T cells. However, despite greater variance of data in seropositive individuals, post-hoc analyses by CMV serostatus were not significant post-dose 2 or post-dose 3. Intra-individual paired analyses also showed no main effects of vaccine dose nor CMV serostatus on S-CD8+ T cell population activation (Supplementary Figure 7). Prior COVID-19 did not influence the prevalence of S-CD8+ T cells after 2 or 3 vaccine doses, though CMV seropositivity contributed to increased S-CD8+ T cell activation post-dose 2 (Supplementary Figure 8). The prevalence of S-activated CD4+ T cells was likewise not different by CMV serostatus (Figure 3B), nor prior COVID-19 (Supplementary Figure 8), though grouped analyses on a population and intra-individual basis showed a main effect of vaccine dose (Supplementary Figure 7). Therefore, CMV serostatus contributes to increased CD8+ T cell, but not CD4+ T cell, memory responses to SARS-CoV-2 Spike antigen.

CD4+ memory T cells are comprised of a number of different functional subsets, including T helper 1 (Th1), T helper 2 (Th2), and T helper 17 (Th17) cells61, which were further characterized. There was a significant effect of CMV serostatus on the frequency of Th1 S-CD4+ T cells, with post-hoc analyses showing an increase in CMV seropositive individuals after 2 but not 3 vaccine doses (Figure 3C). Th2 and Th17 S-CD4+ T cell frequencies were not influenced by CMV serostatus (Figure 3D-E), though paired analyses by dose and CMV serostatus suggested a significant increase in Th17 responses in CMV seropositive individuals after 3rd vaccine doses (Supplementary Figure 7). Interestingly, when we considered these data in context
of prior SARS-CoV-2 infection, CMV serostatus had a main effect on the prevalence of S-CD4+ Th1 and Th17 T cells, which increased and decreased, respectively, with CMV seropositivity, though only post-dose 2 (Supplementary Figure 8).

To determine if the observed contributions of CMV serostatus to increased CD8+ T cell and CD4+ Th1 T cell memory responses are consistent across different stimuli, we also examined T cell AIM responses after TCR-independent polyclonal stimulation with CytoStim, and stimulation with influenza hemagglutinin antigens (Figure 4). As we observed for Spike-activated T cells, both CytoStim and HA stimulation resulted in increased proportions of AIM+CD8+ T cells in CMV seropositive individuals (Figure 4A, 4F), though AIM+CD4+ T cell frequency was not affected by CMV serostatus (Figure 4B, 4G). These data show that effects of CMV seropositivity on total AIM+CD8+ and AIM+CD4+ T cell frequencies are consistent across different stimuli. CytoStim-stimulated CD4+ T cells, like Spike-stimulated CD4+ T cells, also showed distinct Th1 skewed responses, though this was not observed after HA stimulation. These data collectively suggest that CMV serostatus alters the functional composition of memory T cells, with antigen-specific effects, though CMV serostatus but does not alter the ability of older adults to generate CD4+ or CD8+ T cell memory, nor the incidence of activation after SARS-CoV-2 vaccination.

Discussion

Our data suggest that despite being a significant modifier of peripheral blood T cell composition and phenotype, CMV seropositivity does not have a negative impact on vaccine immunogenicity in older adults. Yet, we found that there were subtle changes in antibody and
cellular responses in CMV seropositive individuals between vaccine doses and in individuals with prior COVID-19. Our study cohort included participants from multiple assisted living facilities, and it did not exclude individuals with particular health conditions (e.g. cancer, diabetes, cardiovascular disease, autoimmune disorders) or prescribed medications (e.g. immune modulating drugs). Thus, any observed effects of CMV needed to be sufficiently robust to overcome potential effects of those other factors.

Our observations of changes in the peripheral T cell repertoire in CMV seropositive individuals, and CD4+ and CD8+ T cell expression of CD28 and CD57, are consistent with prior publications that reported expansion of exhausted CD4EMRA and CD8EMRA memory T cells in CMV seropositive healthy community-dwelling adults39,41. There are conflicting reports as to whether the CMV seropositivity is associated with a reduction in naïve CD4+ and CD8+ T cells. In this investigation, we observed similar numbers of CD4N and CD8N T cells in seropositive and seronegative individuals, and in particular similar expression of CD57 and CD28 on CD4N T cells. Our data therefore suggest that CMV seropositivity does not influence the availability nor capacity of circulating naïve T cells to respond and generate memory responses to de novo antigens in older adults.

CMV seropositivity in older adults has been associated with lower frequencies of memory T cells in response to seasonal influenza, though acute infection T cell responses were unchanged62, and there is conflicting data as to whether CMV seropositivity enhances or impairs influenza virus-specific T cell responses31,39,63,64. We found that T cell memory recall responses were similar in CMV seropositive and seronegative individuals. Our findings are concordant
with observations from a previous study that found CMV serostatus did not alter the ability of older adults to generate memory responses to the newly emergent (at the time) West Nile virus46. We observed in our cohort of older adults that T cell memory responses were not different by CMV serostatus. Furthermore, it has been reported that T cell memory responses to the SARS-CoV-2 Spike protein are boosted in convalescent younger adults after vaccination65,66. We identified an increase in Spike-specific CD4+ T cell memory responses between 2 and 3 mRNA vaccine doses in our older adult cohort, but we did not observe increased CD8+ or CD4+ T cell memory responses in convalescent older adults after vaccination. This may in part be because our analysis of effects of prior COVID-19 were not restricted to a particular time frame post-SARS-CoV-2 infection. Irrespective, these findings suggest that while combined effects of infection and subsequent vaccination may differ by age, older adults can elicit functional memory T cell responses to infection and vaccination against \textit{de novo} viruses.

We observed a distinct Th1 bias after polyclonal T cell activation, and in response to the immunodominant regions of the Spike antigen after 2 doses, but not 3 doses, of SARS-CoV-2 mRNA vaccines. Th1 skewing of the immune response after influenza virus vaccination has been previously noted in CMV seropositive infants and young adults and mice64,67, as well as in older adults68. Strong Th1 CD4+ T cell responses have been associated with lower disease severity in unvaccinated COVID-19 patients69, and SARS-CoV-2 Spike-elicited CD4+ T cell memory responses in unvaccinated convalescent individuals have also been identified to be primarily Th1-differentiated65,66. However, we did not identify a main effect of prior COVID-19, nor an interaction of CMV serostatus and prior COVID-19, on the prevalence of CD4+ T cell Th1 responses in vaccinated older adults. These data indicate that in older adults CMV seropositivity
is associated with Th1-biased CD4+ T cell responses, which are not further modified by any prior SARS-CoV-2 infection. Our observations also suggest that Spike-specific memory T cell functional responses change between 2 and 3 vaccine doses in older adults, congruent with observations of changes in memory T cell phenotype between vaccine doses in younger adults.65

Our data also show that CMV seropositivity does not prevent production of anti-Spike or anti-RBD IgG, IgA, or IgM antibodies after SARS-CoV-2 mRNA, though we did observe an interaction between CMV seropositivity and prior COVID-19 both post-dose 2 and post-dose 3. These effects may be reflective of our limited sample size, or differences in time since infection between CMV seropositive and CMV seronegative individuals. CMV seropositive individuals have been reported to have increased B cell proliferation and mutations within the immunoglobulin heavy chain sequences of IgM and IgG, but not IgA, isotypes.70 CMV serostatus could also have a larger effect on maturation of the antibody response via isotype switching, and thus isotype composition after vaccination, which may contribute to our observations, but to our knowledge this has not been extensively explored.

Early in the pandemic, CMV seropositivity was associated with increased risk of hospitalization in COVID-19 patients,71 and CMV reactivation was later reported to have a higher incidence in patients in intensive care.72 More recently it was reported that unvaccinated individuals with latent CMV, irrespective of anti-CMV antibody levels, age, and sex, are at higher risk of SARS-CoV-2 infection and hospitalization.73 In particular, the exhausted T cells present in CMV seropositive individuals have also been predicted to contribute to more severe COVID-19 pathophysiology.74 Our data does not preclude the possibility that CMV-associated
remodelling of innate and adaptive immunity in older adults may contribute to the pathogenesis and severity of SARS-CoV-2 infection. CMV serostatus may in addition impact humoral or cellular responses to breakthrough infections with current or emerging variants of concern.

In conclusion, our data shows that CMV serostatus alters the T cell repertoire but does not blunt cellular nor humoral responses after 2 and 3 doses SARS-CoV-2 mRNA vaccines in older adults in congregate care facilities. Further research is necessary to disentangle the more subtle effects of CMV serostatus on immunogenicity and durability of immune responses after vaccination, as well as to assess its role in risk of breakthrough infections.
References

40. Saurwein-Teissl, M. *et al.* Lack of antibody production following immunization in old age: association with CD8+ CD28− T cell clonal expansions and an imbalance in the

Table 1. Participant Demographics

<table>
<thead>
<tr>
<th></th>
<th>CMV Seronegative (n=74; 17 repeated)</th>
<th>CMV Seropositive (n=159; 30 repeated)</th>
<th>Statistical Assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (median +/- SD; range)</td>
<td>85 ± 6.8 years (65-93)</td>
<td>86 ± 7.7 years (65-101)</td>
<td>p=0.1265*</td>
</tr>
<tr>
<td>Sex (frequency)</td>
<td>67.6% female (n=50)</td>
<td>69.8% female (n=111)</td>
<td>p=0.7618**</td>
</tr>
<tr>
<td>Sample Size Post-Dose 2</td>
<td>n=51</td>
<td>n=108</td>
<td>--</td>
</tr>
<tr>
<td>2nd Dose Vaccine Combination</td>
<td>47.1% Moderna-Moderna (n=24)</td>
<td>35.8% Moderna-Moderna (n=39)</td>
<td>p=0.2968**</td>
</tr>
<tr>
<td></td>
<td>52.9% Pfizer-Pfizer (n=27)</td>
<td>60.6% Pfizer-Moderna (n=66)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.75% Pfizer-Moderna (n=3)</td>
<td>2.75% Pfizer-Moderna (n=3)</td>
<td></td>
</tr>
<tr>
<td>Days Between Dose 1 and Dose 2</td>
<td>32.2 ± 20.8 days</td>
<td>30.4 ± 17.9 days</td>
<td>p=0.6697*</td>
</tr>
<tr>
<td>and Dose 2 (mean +/- SD)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Days Since 2nd Dose to Blood</td>
<td>179.8 ± 50.1 days</td>
<td>175.4 ± 64.1 days</td>
<td>p=0.9041*</td>
</tr>
<tr>
<td>Collection (mean +/- SD)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sample Size Post-Dose 3</td>
<td>n=23</td>
<td>n=51</td>
<td>--</td>
</tr>
<tr>
<td>3rd Dose Vaccine Combination</td>
<td>65.2% Moderna-Moderna-Moderna (n=15)</td>
<td>56.9% Moderna-Moderna-Moderna (n=29)</td>
<td>p=0.6115**</td>
</tr>
<tr>
<td>(frequency)</td>
<td>34.8% Pfizer-Pfizer-Pfizer (n=8)</td>
<td>43.1% Pfizer-Pfizer-Pfizer (n=22)</td>
<td></td>
</tr>
<tr>
<td>Days Between Dose 2 and Dose 3</td>
<td>203.9 ± 21.0 days</td>
<td>211.7 ±12.1 days</td>
<td>p=0.2689*</td>
</tr>
<tr>
<td>and Dose 3 (mean +/- SD)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Days Since 3rd Dose to Blood</td>
<td>82.0 ±17.3 days</td>
<td>83.7 ± 11.5 days</td>
<td>p=0.7597*</td>
</tr>
<tr>
<td>Collection (mean +/- SD)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prior COVID-19***</td>
<td>37.8% (n=28)</td>
<td>34.4% (n=55)</td>
<td>p=0.6609*</td>
</tr>
<tr>
<td>Only positive for nasopharyngeal PCR test</td>
<td>28.6% (n=8)</td>
<td>36.4% (n=20)</td>
<td>p>0.6244**</td>
</tr>
<tr>
<td>Only positive for anti-NC antibodies</td>
<td>39.3% (n=11)</td>
<td>40.0% (n=22)</td>
<td>p>0.9999**</td>
</tr>
<tr>
<td>Positive for PCR test and anti-NC antibodies</td>
<td>32.1% (n=9)</td>
<td>23.6% (n=13)</td>
<td>p=0.7977**</td>
</tr>
</tbody>
</table>

*Mann-Whitney U-test or Student’s t test by normality; **Fisher’s exact test. Comparisons for vaccines post-dose 2 were calculated for Moderna-Moderna vs Pfizer-Pfizer. ***participants were considered ‘positive’ for prior COVID-19 infection in subsequent analyses if they had a recorded positive nasopharyngeal PCR test and/or seropositivity for anti-nucleocapsid IgG or IgA antibodies.
Table 2. Responders and non-responders to vaccination by CMV serostatus – antibodies

<table>
<thead>
<tr>
<th>Antibody</th>
<th>Vaccine Doses</th>
<th>Total Responder Frequency</th>
<th>Responder Frequency by CMV Seropositivity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n</td>
<td>Frequency (%)</td>
<td>n</td>
</tr>
<tr>
<td>anti-Spike IgG</td>
<td>2</td>
<td>141/159</td>
<td>88.7</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>72/74</td>
<td>97.3</td>
</tr>
<tr>
<td>anti-Spike IgA</td>
<td>2</td>
<td>98/159</td>
<td>61.6</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>71/74</td>
<td>95.9</td>
</tr>
<tr>
<td>anti-Spike IgM</td>
<td>2</td>
<td>20/159</td>
<td>12.6</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>28/74</td>
<td>37.8</td>
</tr>
<tr>
<td>anti-RBD IgG</td>
<td>2</td>
<td>101/159</td>
<td>63.5</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>70/74</td>
<td>94.6</td>
</tr>
<tr>
<td>anti-RBD IgA</td>
<td>2</td>
<td>35/159</td>
<td>22.0</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>25/74</td>
<td>33.8</td>
</tr>
<tr>
<td>anti-RBD IgM</td>
<td>2</td>
<td>6/159</td>
<td>3.77</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>3/74</td>
<td>4.05</td>
</tr>
</tbody>
</table>

*Fisher’s exact test

Table 3. Associations of antibody and neutralization responses after vaccination by CMV serostatus

<table>
<thead>
<tr>
<th>Antibody</th>
<th>MNT50 wildtype</th>
<th>MNT50 beta</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CMV-ve</td>
<td>CMV+ve</td>
</tr>
<tr>
<td>Post-Dose 2</td>
<td>IgG Spike</td>
<td>****</td>
</tr>
<tr>
<td></td>
<td>r = 0.8367</td>
<td>r = 0.8316</td>
</tr>
<tr>
<td></td>
<td>IgG RBD</td>
<td>****</td>
</tr>
<tr>
<td></td>
<td>r = 0.7394</td>
<td>r = 0.8291</td>
</tr>
<tr>
<td></td>
<td>IgA Spike</td>
<td>****</td>
</tr>
<tr>
<td></td>
<td>r = 0.6222</td>
<td>r = 0.6152</td>
</tr>
<tr>
<td></td>
<td>IgA RBD</td>
<td>**</td>
</tr>
<tr>
<td></td>
<td>r = 0.4311</td>
<td>r = 0.4572</td>
</tr>
<tr>
<td>Post-Dose 3</td>
<td>IgG Spike</td>
<td>***</td>
</tr>
<tr>
<td></td>
<td>r = 0.6923</td>
<td>r = 0.5004</td>
</tr>
<tr>
<td></td>
<td>IgG RBD</td>
<td>****</td>
</tr>
<tr>
<td></td>
<td>r = 0.8207</td>
<td>r = 0.5770</td>
</tr>
<tr>
<td></td>
<td>IgA Spike</td>
<td>**</td>
</tr>
<tr>
<td></td>
<td>r = 0.6324</td>
<td>r = 0.3228</td>
</tr>
<tr>
<td></td>
<td>IgA RBD</td>
<td>****</td>
</tr>
<tr>
<td></td>
<td>r = 0.7750</td>
<td>r = 0.3081</td>
</tr>
</tbody>
</table>

Table 4. Responders and non-responders to vaccination by CMV serostatus – cellular responses

<table>
<thead>
<tr>
<th>T cell Population</th>
<th>Vaccine Doses</th>
<th>Total Responder Frequency</th>
<th>Responder Frequency by CMV Seropositivity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n</td>
<td>Frequency (%)</td>
<td>n</td>
</tr>
<tr>
<td>S-CD8+</td>
<td>2</td>
<td>31/159</td>
<td>19.5</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>22/74</td>
<td>29.7</td>
</tr>
<tr>
<td>S-CD4+</td>
<td>2</td>
<td>148/159</td>
<td>93.1</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>71/74</td>
<td>95.9</td>
</tr>
</tbody>
</table>

*Fisher’s exact test
Figure 1. Antibodies and neutralization capacity by CMV serostatus after two and three COVID-19 vaccines in older adults.

Serum SARS-CoV-2 anti-Spike and anti-RBD antibodies were detected by ELISA, and antibody neutralization capacity was assessed by MNT50 with live SARS-CoV-2 virus. Anti-Spike antibodies: IgG (A), IgA (B) and IgM (C). Anti-receptor binding domain (RBD) antibodies: IgG (D), IgA (E), and IgM (F). Antibody neutralization capacity was assessed against ancestral (G) and beta variant (H) SARS-CoV-2. Dotted lines indicate the threshold of detection. Each data point indicates an individual participant, and the center line indicates the median. Associations between CMV serostatus and vaccine dose were assessed by two-way ANOVA, with Tukey’s test post-hoc analysis. ***p<0.001, *p<0.0001.
Figure 2. Effect of CMV serostatus on the circulating T cell repertoire in older adults.

T cell populations in whole blood were assessed by flow cytometry. (A) Relative prevalence of CD4+ and CD8+ T cell subsets by CMV serostatus (also see Supplementary Figure 4). Absolute
cell counts of: (B) total leukocytes; (C) total CD4$^+$ T cells; (D) CD8$^+$ T cells. Absolute cell counts of CD4$^+$ T cells: (E) naïve; (F) central memory; (G) effector memory; (H) EMRA; (I) terminally differentiated. Absolute cell counts of CD8$^+$ T cells: (J) naive; (K) central memory; (L) effector memory; (M) EMRA; (N) terminally differentiated. Surface geometric mean expression of CD57 and CD28 on CD4$^+$ and CD8$^+$ T cells by CMV serostatus. Each data point in B-N indicates an individual participant, and data are presented as box and whisker plots, minimum to maximum, where the center line indicates the median. The surface marker expression in O was visualized by concatenating uncompensated events in FlowJo for each participant and indicated T cell population grouped according to CMV serostatus, and then geometric mean fluorescence intensity expression data of each CMV group was overlaid onto the same histogram plot. Associations between T cell subsets and CMV serostatus were assessed by Student’s t test with Welch’s correction or Mann-Whitney U test, according to normality.

*p<0.05, **p<0.01, ***p<0.001, ****p<0.0001.
Figure 3. CD4+ and CD8+ T cell activation induced memory responses to SARS-CoV-2
Spike peptide pools in older adults.

AIM assays were performed by flow cytometry analysis after whole blood stimulation. (A) Spike SARs-CoV-2-specific AIM+CD8+ T cells (expressing CD69 and CD137) were measured as a proportion of total CD8+ T cells. (B) Spike SARs-CoV-2-specific AIM+CD4+ T cells (expressing CD25 and OX40L) were measured as a proportion of total CD4+ T cells. Spike SARs-CoV-2-specific AIM+CD4+ T cell functional Th1 (C), Th2 (D), and Th17 (E) subsets. Each data point indicates an individual participant. For A-B data from all individuals is graphed irrespective of whether they meet cut-off requirements for a ‘positive’ result. For C-E, only data from individuals with ‘positive’ S-CD4+ T cell memory responses were graphed. Data are presented as box and whisker plots, minimum to maximum, where the center line indicates the median.

Associations between CMV serostatus and vaccine dose were assessed by two-way ANOVA, with Tukey’s test post-hoc analysis. **p<0.01, ***p<0.001.
AIM assays were performed by flow cytometry analysis after whole blood stimulation. CytoStim-induced responses: (A) AIM^CD8^+ T cells (expressing CD69 and CD137) as a proportion of total CD8^+ T cells; (B) AIM^CD4^+ T cells (expressing CD25 and OX40L) as a proportion of total CD4^+ T cells; AIM^CD4^+ T cell functional Th1 (C), Th2 (D), and Th17 (E) subsets. Influenza HA-induced responses: (F) AIM^CD8^+ T cells (expressing CD69 and CD137) as a proportion of total CD8^+ T cells; (G) AIM^CD4^+ T cells (expressing CD25 and OX40L) as a proportion of total CD4^+ T cells; AIM^CD4^+ T cell functional Th1 (H), Th2 (I), and Th17 (J) subsets. Each data point indicates an individual participant. Data is pooled from all blood collections, and for participants with two different collection time points, data are only included from post-dose 2 collections. Data are presented as box and whisker plots, minimum to maximum, where the center line indicates the median. Associations between T cell responses CMV serostatus were assessed by Student’s t test with Welch’s correction or Mann-Whitney U test, according to normality. **p<0.01, ***p<0.001, ****p<0.0001.