CMV seropositivity in older adults changes T cell functionality, but does not prevent 1

antibody or cellular SARS-CoV-2 vaccine responses 2

- 3
- 4 **Authors:**
- Jessica A. Breznik¹⁻⁴, Angela Huynh³, Ali Zhang^{1,2,5}, Lucas Bilaver¹⁻³, Hina Bhakta³, Hannah D. Stacey^{1,2,5}, Jann C. Ang^{1,2,5}, Jonathan L. Bramson^{1-3,5}, Ishac Nazy^{3,7}, Matthew S. Miller^{1,2,5}, 5
- 6
- Judah Denburg³, Andrew P. Costa^{3,9-10} Dawn M. E. Bowdish^{1-4,11}*, and other members of the 7
- 8 **COVID-in-LTC** Investigator Group
- 9
- 10 ¹McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada, L8S 4K1
- ²Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, 11
- 12 Ontario, Canada, L8S 4K1
- 13 ³Department of Medicine, Michael G. DeGroote School of Medicine, McMaster University, Hamilton,
- 14 Ontario, Canada, L8S 4L8
- 15 ⁴McMaster Institute for Research on Aging, McMaster University, Hamilton, Ontario, Canada, L8S 4K1
- ⁵Department of Biochemistry & Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada, 16 17 L8S 3L8
- 18 ⁶St. Mary's General Hospital, Kitchener, Ontario, Canada, N2M 1B2
- ⁷McMaster Centre for Transfusion Research, McMaster University, Hamilton, Ontario, Canada, L8S 3L8 19
- 20 ⁸Health Science North Research Institute, Sudbury, Ontario, P3E 2H2
- 21 ⁹Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton,
- 22 Canada, L8S 3L8
- 23 ¹⁰Centre for Integrated Care, St. Joseph's Health System, Hamilton, Ontario, Canada, L8N 4A6
- 24 ¹¹Firestone Institute for Respiratory Health, St Joseph's Healthcare, Hamilton, Ontario, Canada, L8N 4A6
- 25
- 26 Running title: Cytomegalovirus and SARS-CoV-2 vaccination
- Key words: COVID-19, SARS-CoV-2, CMV, mRNA vaccine, humoral immunity, cellular 27
- immunity, viral neutralization, vaccine efficacy, older adults 28
- 29

*Corresponding author: 30

- 31 Dawn Bowdish, PhD
- M. G. DeGroote Institute for Infectious Disease Research 32
- McMaster Immunology Research Centre 33
- 34 McMaster University, MDCL 4020
- 35 1280 Main Street West
- Hamilton, Ontario, Canada L8S 4L8 36
- Phone: +1-905-525-9140, ext 22313 37
- Fax: +1-905-522-6750 38
- 39 Email: bowdish@mcmaster.ca
- 40
- Abstract Word Count: 150 words 41
- **Text Word Count:** 42
- Figures: 4; 9 Supplementary 43
- Tables: 4 44

Conflict of Interest Disclosures: The authors have no financial relationship with any 45 organization that may have an interest and have no other relationships or activities that could 46 post a conflict of interest. 47 48 Additional Information/Contributions: Data in this study were collected by the COVID-in-49 50 LTC Study Group. Other members of the COVID-in-LTC Study Group include Eric D. Brown, Kevin Brown, David C. Bulir, George A. Heckman, Michael P. Hillmer, John P. Hirdes, Aaron 51 52 Jones, Mark Loeb, Janet E. McElhaney (posthumous), Nathan M. Stall, Parminder Raina, Marek 53 Smieja, Ahmad Von Schlegell, Kevin Stinson, Arthur Sweetman, Chris Verschoor, and Gerry Wright. We acknowledge administrative and technical assistance from Tara Kajaks, Ahmad 54 Rahim, Komal Aryal, Megan Hagerman, Braeden Cowbrough, Leslie Tan, Sussan Kianpour, 55 Jodie Turner, and Sheneice Joseph, and funding from the Canadian COVID-19 Immunity Task 56 Force at McMaster University. We would like to thank our participants and their families, as 57 58 well as staff at the assisted living facilities, for their support of this study. 59 Funding: This work was funded by a grant from Canadian COVID-19 Immunity Task Force and 60 61 Public Health Agency of Canada awarded to Costa and Bowdish. APC is the Schlegel Chair in Clinical Epidemiology and Aging. DMEB is the Canada Research Chair in Aging & Immunity. 62 63 Funding support for this work was provided by grants from the Ontario Research Foundation, 64 COVID-19 Rapid Research Fund, and by the Canadian COVID-19 Immunity Task Force awarded to IN. MSM is supported, in part, by an Ontario Early Researcher Award and a Canada 65 Research Chair in Viral Pandemics. 66

67 Abstract

68	It has been previously reported that chronic infection with human cytomegalovirus (CMV) may
69	contribute to poor vaccine responses against de novo antigens in older adults. We assessed
70	effects of CMV serostatus on antibody quantity and quality, as well as cellular memory
71	responses, after 2 and 3 SARS-CoV-2 mRNA vaccine doses, in older adults in congregate living
72	facilities. CMV serostatus did not affect anti-Spike and anti-RBD IgG antibody levels, nor
73	neutralization capacity against wildtype or beta variants of SARS-CoV-2. CMV seropositivity
74	altered T cell expression of senescence-associated markers and increased T_{EMRA} cell numbers, as
75	has been previously reported; however, this did not impact the Spike-specific CD4 ⁺ T cell
76	memory responses. CMV seropositive individuals did not have a higher incidence of COVID-19,
77	though prior infection influenced humoral immunity. Therefore, CMV seropositivity may alter T
78	cell composition but does not impede humoral or cellular memory responses after SARS-CoV-2
79	mRNA vaccination in older adults.

80 Introduction

81	Aging is associated with an increased frequency of viral respiratory infections and post-
82	infection sequelae ¹ , as well as reduced vaccine efficacy ² . Early in the COVID-19 pandemic, age
83	was identified to be the most significant factor contributing to morbidity and mortality ³ , and it
84	was unclear how effective vaccines against the de novo SARS-CoV-2 virus would be in older
85	adults. Older adults often respond well to vaccines that target a memory response (e.g. Herpes
86	zoster), but vaccines against de novo antigens or antigens that are antigenically distant from
87	previous strains (e.g. some seasonal influenza vaccines) are often less immunogenic ^{4, 5} .
88	Fortunately, SARS-CoV-2 mRNA vaccines have been shown to be protective in older adults ^{6, 7, 8} ,
89	as they are effective at generating cellular and antibody-mediated immunity ^{9, 10, 11, 12} , though
90	responses are generally more heterogeneous and wane faster than in younger adults ^{9, 11} .
91	
92	In older adults, both immunosenescence and inflammation are thought to influence the
93	immunogenicity and longevity of vaccine responses ^{13, 14} . Many studies have also implicated
94	human cytomegalovirus (CMV) as a significant contributor to age-associated immune
95	dysfunction. CMV is a common and persistent β -herpesvirus, found in ~60-90% of adults
96	worldwide, and seropositivity increases with age ^{15, 16} . CMV infection is typically asymptomatic
97	in immunocompetent individuals, but its accompanying chronic immune activation
98	fundamentally alters immune cell composition and function. There is a consensus that CMV
99	seropositivity has a long-term impact on the maturation and composition of immune cells,
100	including increased numbers and prevalence of CD8 ⁺ T cells, with expansion of virus-specific
101	effector and memory cells at the expense of naïve T cells ^{17, 18} . Age-associated
102	immunosenescence likewise contributes to similar changes within the T cell repertoire, reducing

103	naïve T cells and increasing memory T cell populations, which have impaired proliferation,
104	differentiation, and effector functions ^{19, 20} . A dysfunctional T cell repertoire may also have
105	significant effects on B cell proliferation, differentiation, and maturation ²¹ . Accordingly, CMV
106	seropositivity has been implicated as an exacerbating factor in age-associated immune
107	remodelling and inter-individual immune diversity ^{22, 23, 24, 25} , as well as a modifying factor that
108	may compromise infection outcomes and vaccination responses ²⁶ .

109

Though there is little data to date, CMV reactivation in older adults has been suggested to 110 contribute to more severe COVID-19^{27, 28, 29, 30, 31}, as CMV seropositivity has been associated 111 with impaired antibody and cellular immune responses to infections^{32, 33, 34}. However, CMV 112 seropositivity has also been reported to enhance cellular and antibody immune responses to 113 114 unrelated bacteria or viruses, through diversification of CD8⁺ T cell receptors and augmentation of basal inflammation^{35, 36, 37, 38}. CMV seropositivity has, in addition, been associated with a 115 reduced humoral response to inactivated split influenza virus vaccines^{39, 40, 41, 42} and viral-vector-116 based Ebola vaccines⁴³. Yet, a recent meta-analysis reported that there was insufficient evidence 117 118 that CMV seropositive individuals have decreased antibody production after influenza vaccination⁴⁴. Recent data also show that CMV seropositivity in young adults does not affect 119 120 antibody or cellular responses after vaccination with the adenovirus-based vector vaccine ChAdOx1 nCoV-19⁴⁵. These conflicting reports may suggest context and age-dependent effects 121 122 of chronic CMV infection on immune function. SARS-CoV-2 mRNA vaccines have been widely deployed in Canada, particularly in older adults. Whether CMV seropositivity impacts SARS-123 CoV-2 mRNA vaccine efficacy is not yet known. Herein we investigated effects of CMV 124 125 serostatus on humoral and cellular measures of vaccine responses after 2 and 3 doses of SARS-

- 126 CoV-2 mRNA vaccines in older adults. We found that CMV serostatus does not impede
- 127 antibody or cellular responses to SARS-CoV-2 vaccination in older adults.
- 128
- 129
- 130 Methods
- 131 Participant Recruitment and Blood Collection

132 Blood was collected from 188 participants, 65 years of age and older, in assisted living facilities

133 (3 retirement homes and 14 nursing homes), in Ontario, Canada, between March and December

134 2021. All protocols were approved by the Hamilton Integrated Research Ethics Board, and

informed consent was obtained. Venous blood was drawn in anti-coagulant-free vacutainers for

- isolation of serum, as per standard protocols⁴⁶. Venous blood was drawn in heparin-coated
- 137 vacutainers for immunophenotyping and T cell activation assays. Blood was collected at least 7
- days after 2nd and/or 3rd mRNA vaccine doses. Blood was drawn after 2nd and 3rd mRNA
- 139 vaccine doses from 47 participants. Participant demographics are summarized in Table 1
- 140

141 Determination of CMV Serostatus

142 CMV seropositivity was determined by enzyme-linked immunosorbent assay (ELISA) with the

143 Human Anti-Cytomegalovirus IgG ELISA Kit (CMV) (Abcam ab108639) as per manufacturer's

144 instructions. Serum samples from a participant's first blood draw were diluted 1:40 and assessed

in duplicate. Samples with a CMV IgG Index above or equal to the positive standard were

146 classified as CMV seropositive, whereas samples with a CMV IgG index less than the positive

147 standard were classified as CMV seronegative.

Whole Blood Immunophenotyping 149

150	Circulating immune cell populations were quantitated in whole blood using fluorophore-
151	conjugated monoclonal antibodies by multicolour flow cytometry with a CytoFLEX LX (4 laser,
152	Beckman Coulter), as per standard protocols ^{46, 47, 48} . Count-Bright TM absolute counting beads
153	(Invitrogen Life Technologies, Carlsbad, CA, USA) were used to determine absolute cell counts.
154	Data was gated with FlowJo V10.8.1 (TreeStar, Inc.) as previously published ⁴⁷ . Five main
155	subsets of human CD8 ⁺ and CD4 ⁺ T cells (Naïve (N), Central Memory (CM), Effector Memory
156	(EM), Effector Memory re-expressing CD45RA (EMRA), and terminally differentiated (TD))
157	were identified by their expression of CD45RA, CCR7, CD28 and/or CD57. CD8 $_{\rm N}$ and CD4 $_{\rm N}$
158	were classified as CD45RA ⁺ CCR7 ⁺ ; CD8 _{CM} and CD4 _{CM} as CD45RA ⁻ CCR7 ⁺ ; CD8 _{EM} and
159	CD4 _{EM} as CD45RA ⁻ CCR7 ⁻ , CD8 _{EMRA} and CD4 _{EMRA} as CD45RA ⁺ CCR7 ⁻ ; and CD8 _{TD} and CD4 _{TD}
160	as CD45RA ⁺ CCR7 ⁻ CD28 ⁻ CD57 ⁺ , as per standard protocols ⁶⁸ .
161	

Assessment of T Cell Activation Induced Markers (AIMs) for SARS-CoV-2 Peptides 162

Antigen-specific T cell recall responses were assessed as per established protocols⁴⁷ using a 163

Spike (S) glycoprotein SARS-CoV-2 peptide pool containing overlapping peptides of the 164

165 complete immunodominant sequence domain (#130-126-701; Miltenyi Biotec, Bergisch

Gladbach, Germany). Negative control (unstimulated wells) and positive control (polyclonal 166

stimulation with CytoStim[™] (0.5 µL/well, #130-092-173; Miltenyi Biotec, Bergisch Gladbach, 167

168 Germany) conditions were included with each sample, as was stimulation with influenza

hemagglutinin (HA) antigens (4 µL; AgriFlu, Alfuria® Tetra Inactivated Influenza Vaccine 169

170 2020-2021 season, Seqirus, UK). 100 µL of heparinized venous blood was incubated with an

equal volume of Iscove's Modified Dulbecco's Medium, GlutaMAXTM Supplement (Invitrogen 171

172	Life Technologies, Carlsbad, CA, USA) and 1 μ g/mL S-antigen for 44 h in 96-well flat bottom
173	plates at 37 °C. Samples were stained with fluorophore-conjugated monoclonal antibodies and
174	assessed with a CytoFLEX LX (4 laser, Beckman Coulter, Brea, CA, USA) as previously
175	described ⁴⁷ . Data was analyzed with FlowJo V10.1 (TreeStar, Inc.) as previously published ⁴⁷ .
176	Antigen-specific T cells (AIM-positive) were identified by co-expression of CD25 and CD134
177	(OX40) on CD4 ⁺ T cells ^{49, 50} , and co-expression of CD69 and CD137 (4-1BB) on CD8 ⁺ T cells ⁵¹ .
178	Samples with a T cell frequency of at least 20 events and \geq 2-fold above an unstimulated sample
179	(negative control; i.e. stimulation index \geq 2), were defined as AIM-positive. Expression of
180	CXCR3, CCR4 and/or CCR6 was used to identify CD4 ⁺ Th1 (CXCR3 ⁺ CCR6 ⁻ CCR4 ⁻), Th2
181	(CXCR3 ⁻ CCR4 ⁺ CCR6 ⁻), and Th17 (CXCR3 ⁻ CCR4 ⁺ CCR6 ⁺) CD4 ⁺ T cell subsets.
182	
183	Measurements of Anti-SARS-CoV-2 Antibodies and Neutralizing Capacity
183 184	<i>Measurements of Anti-SARS-CoV-2 Antibodies and Neutralizing Capacity</i> Serum anti-SARS-CoV-2 spike (S) protein and receptor binding domain (RBD) IgG, IgA and
183 184 185	<i>Measurements of Anti-SARS-CoV-2 Antibodies and Neutralizing Capacity</i> Serum anti-SARS-CoV-2 spike (S) protein and receptor binding domain (RBD) IgG, IgA and IgM antibodies were measured by a validated ELISA as previously described ^{47, 52} , with assay
183 184 185 186	<i>Measurements of Anti-SARS-CoV-2 Antibodies and Neutralizing Capacity</i> Serum anti-SARS-CoV-2 spike (S) protein and receptor binding domain (RBD) IgG, IgA and IgM antibodies were measured by a validated ELISA as previously described ^{47, 52} , with assay cut-off 3 standard deviations above the mean of a pre-COVID-19 population from the same
183 184 185 186 187	<i>Measurements of Anti-SARS-CoV-2 Antibodies and Neutralizing Capacity</i> Serum anti-SARS-CoV-2 spike (S) protein and receptor binding domain (RBD) IgG, IgA and IgM antibodies were measured by a validated ELISA as previously described ^{47, 52} , with assay cut-off 3 standard deviations above the mean of a pre-COVID-19 population from the same geographic region. Data are reported as a ratio of observed optical density (OD) to the
183 184 185 186 187 188	<i>Measurements of Anti-SARS-CoV-2 Antibodies and Neutralizing Capacity</i> Serum anti-SARS-CoV-2 spike (S) protein and receptor binding domain (RBD) IgG, IgA and IgM antibodies were measured by a validated ELISA as previously described ^{47, 52} , with assay cut-off 3 standard deviations above the mean of a pre-COVID-19 population from the same geographic region. Data are reported as a ratio of observed optical density (OD) to the determined assay cut-off OD. Antibody neutralization capacity was assessed by cell culture
183 184 185 186 187 188 189	<i>Measurements of Anti-SARS-CoV-2 Antibodies and Neutralizing Capacity</i> Serum anti-SARS-CoV-2 spike (S) protein and receptor binding domain (RBD) IgG, IgA and IgM antibodies were measured by a validated ELISA as previously described ^{47, 52} , with assay cut-off 3 standard deviations above the mean of a pre-COVID-19 population from the same geographic region. Data are reported as a ratio of observed optical density (OD) to the determined assay cut-off OD. Antibody neutralization capacity was assessed by cell culture assays with Vero E6 (ATCC CRL-1586) cells and live SARS-CoV-2, with data reported as
183 184 185 186 187 188 189 190	<i>Measurements of Anti-SARS-CoV-2 Antibodies and Neutralizing Capacity</i> Serum anti-SARS-CoV-2 spike (S) protein and receptor binding domain (RBD) IgG, IgA and IgM antibodies were measured by a validated ELISA as previously described ^{47, 52} , with assay cut-off 3 standard deviations above the mean of a pre-COVID-19 population from the same geographic region. Data are reported as a ratio of observed optical density (OD) to the determined assay cut-off OD. Antibody neutralization capacity was assessed by cell culture assays with Vero E6 (ATCC CRL-1586) cells and live SARS-CoV-2, with data reported as geometric microneutralization titers at 50% (MNT ₅₀), which ranged from below detection
183 184 185 186 187 188 189 190 191	<i>Measurements of Anti-SARS-CoV-2 Antibodies and Neutralizing Capacity</i> Serum anti-SARS-CoV-2 spike (S) protein and receptor binding domain (RBD) IgG, IgA and IgM antibodies were measured by a validated ELISA as previously described ^{47, 52} , with assay cut-off 3 standard deviations above the mean of a pre-COVID-19 population from the same geographic region. Data are reported as a ratio of observed optical density (OD) to the determined assay cut-off OD. Antibody neutralization capacity was assessed by cell culture assays with Vero E6 (ATCC CRL-1586) cells and live SARS-CoV-2, with data reported as geometric microneutralization titers at 50% (MNT ₅₀), which ranged from below detection (MNT ₅₀ = 5; 1:10 dilution) to MNT ₅₀ = 1280 ⁵² . Antibody neutralization was measured against
183 184 185 186 187 188 189 190 191 192	<i>Measurements of Anti-SARS-CoV-2 Antibodies and Neutralizing Capacity</i> Serum anti-SARS-CoV-2 spike (S) protein and receptor binding domain (RBD) IgG, IgA and IgM antibodies were measured by a validated ELISA as previously described ^{47, 52} , with assay cut-off 3 standard deviations above the mean of a pre-COVID-19 population from the same geographic region. Data are reported as a ratio of observed optical density (OD) to the determined assay cut-off OD. Antibody neutralization capacity was assessed by cell culture assays with Vero E6 (ATCC CRL-1586) cells and live SARS-CoV-2, with data reported as geometric microneutralization titers at 50% (MNT ₅₀), which ranged from below detection (MNT ₅₀ = 5; 1:10 dilution) to MNT ₅₀ = 1280 ⁵² . Antibody neutralization was measured against the ancestral strain of SARS-CoV-2 and the beta variant of concern (B.1.351). The beta variant

194 19/South Africa/KRISP-K005325/2020, NR-54009, contributed by Alex Sigal and Tulio de
195 Oliveira.

196

197 Statistical Analysis

- 198 Statistical analyses were conducted using GraphPad Prism version 9 (San Diego, CA, USA).
- 199 Two-group comparisons of dose and CMV seropositivity or prior COVID-19 and CMV
- seropositivity were assessed by two-way ANOVA. Differences between CMV seropositive and
- seronegative group antibody levels, antibody neutralization capacity, T cell immune cell
- 202 composition, T cell surface expression, and memory T cell responses, were assessed by Student's

t-test with Welch's correction or Mann-Whitney U-test, according to data normality. P values are

reported as two-tailed and p values less than 0.05 were considered significant.

205

206

207 **Results**

208 *Participant demographics*

209 Serum anti-CMV IgG antibodies were measured by ELISA to determine CMV

seropositivity. 69.7% (n = 131/188) of participants were CMV seropositive. There was no

difference in age or sex distribution between seropositive (median 85±6.8 years, 67.6% female)

and seronegative participants (median 86±7.7 years, 69.8% female) (Table 1). Blood samples

- were collected at a median of 179.8 days (CMV seronegative) and 175.4 days (CMV
- seronegative) after 2 doses of Moderna Spikevax 100 µg (mRNA-1273) or Pfizer Cominarty 30
- 215 µg (BNT162b2) administered as per manufacturer-recommended schedules. In Ontario, Canada,
- 216 3rd dose vaccinations were recommended for older adults in congregate living beginning in
- August 2021, if they were more than 6 months post- 2^{nd} vaccinations⁵³. Participants received 3^{rd}

218	doses in August-September 2021, and blood samples were collected at a median of 82.0 days
219	(CMV seronegative) or 83.7 days (CMV seropositive) after 3rd doses. Participants were classified
220	as having had a previous SARS-CoV-2 infection if they had a documented positive PCR test or
221	were seropositive for IgG or IgA nucleocapsid antibodies. 37.8% of CMV seronegative
222	participants and 34.4% of CMV seropositive participants had a positive nasopharyngeal PCR test
223	since March 2020 and/or serum anti-nucleocapsid IgG or IgA antibodies.
224	
225	CMV seropositivity does not impede anti-SARS-CoV-2 antibody production or neutralization
226	in older adults
227	To assess effects of CMV serostatus on antibody responses after SARS-CoV-2
228	vaccination, serum anti-SARS-CoV-2 Spike and RBD IgG, IgA, and IgM antibody levels were
229	measured by ELISA (Figure 1; Table 2). The number of responders (i.e. individuals with
230	antibodies above the threshold limit of detection) significantly increased between post-2 nd and
231	post-3 rd doses for anti-Spike IgG, IgA, and IgM antibodies, as well as anti-RBD IgG antibodies,
232	but not anti-RBD IgA or IgM antibodies (Table 2). For example, 5-7 months after second dose
233	vaccinations, anti-Spike IgG antibody responses were detected in 88.7% of participants, and anti-
234	RBD IgG antibody responses were detected in 63.5% of participants. Approximately 3 months
235	after the third dose, 97.3% and 94.6% of participants had detectable anti-Spike IgG and anti-
236	RBD IgG, respectively. CMV seropositivity did not impact the frequency of responders for anti-
237	Spike and anti-RBD IgG, IgA, and IgM antibodies. Accordingly, two-group analyses showed a
238	main effect of vaccine dose, but not CMV serostatus, on serum anti-Spike IgG (Figure 1A) and
239	anti-RBD (Figure 1D) antibodies, as well as anti-Spike IgA (Figure 1B) and anti-Spike IgM
240	(Figure 1C) antibodies. There were no significant main effects of vaccine dose or CMV

241	serostatus on anti-RBD IgM (Figure 1F) antibodies. Main effects of dose and CMV serostatus
242	were observed for serum anti-RBD IgA levels (Figure 1E), though post-hoc assessments by
243	CMV serostatus were not significant. Therefore, CMV seropositivity does not impede antiviral
244	antibody responses after SARS-CoV-2 vaccination.
245	
246	To examine potential effects of CMV serostatus on antibody function, serum antibody
247	neutralization capacity was assessed by MNT50 assays against live ancestral (wildtype) and beta
248	variant SARS-CoV-2 (Figure 1G-H; Table 3). Vaccines were designed against the wildtype
249	virus, whereas the beta variant contains mutations that confer increased transmissibility and
250	immune evasion ⁵⁴ . Neutralization of ancestral and beta variant SARS-CoV-2 ranged from below
251	the detection limit to MNT50=1280, though mean neutralization was consistently higher against
252	the ancestral virus after 2 and 3 vaccine doses. Neutralization capacity was similar between
253	CMV seropositive and seronegative individuals against both ancestral and beta variant SARS-
254	CoV-2, though there was a main effect of dose on neutralization capacity. In particular,
255	significant increases in neutralization were observed after 3 rd dose vaccination against the beta
256	variant. Anti-Spike and anti-RBD IgG levels moderately correlated with antibody neutralization
257	capacity, irrespective of CMV serostatus (Table 3). As well, modest correlations were observed
258	between neutralization capacity and anti-Spike and anti-RBD IgA antibodies in both CMV
259	seropositive and CMV seronegative participants. Therefore, CMV seropositivity does not
260	compromise vaccine-elicited antibody neutralization of SARS-CoV-2.
261	
262	As serum was collected from some participants after both 2 nd and 3 rd vaccine doses, these

263 paired data were also assessed independently (Supplementary Figure 1). Consistent with our

264	pooled participant data, there were main effects of dose but not CMV serostatus on anti-Spike
265	and anti-RBD IgG and IgA serum antibody levels. We did observe an interaction between CMV
266	serostatus and dose on anti-RBD IgM measurements by intra-individual analysis, but most
267	participants had antibody levels below the threshold. Intra-individual analyses also showed that
268	the number of vaccine doses, but not CMV serostatus, had a significant effect on antibody
269	neutralization capacity against wildtype and beta variant virus. Therefore, CMV seropositivity
270	does not significantly impact intra-individual changes in antibody levels or neutralization
271	capacity between 2 and 3 doses of SARS-CoV-2 mRNA vaccines.
272	
273	We next considered post-dose 2 and post-dose 3 antibody measurements in context of
274	prior SARS-CoV-2 infection (Supplementary Figure 2). As summarized in Table 1, incidence of
275	COVID-19 was similar between CMV seronegative and seropositive participants. We observed a
276	main effect of prior SARS-CoV-2 infection on anti-Spike and anti-RBD IgG, IgA, and IgM
277	antibodies after 2 doses of mRNA vaccines, as well as anti-Spike and anti-RBD IgG and IgA, but
278	not IgM, serum antibodies after 3 vaccine doses. We observed an interaction between prior
279	COVID-19 and CMV serostatus for anti-Spike and anti-RBD IgA antibodies post-dose 2 and
280	post-dose 3, and IgM antibodies post-dose 2. There was a main effect of CMV serostatus on anti-
281	Spike IgM antibodies, but as observed above, most individuals had levels below the detection
282	threshold. We in addition observed main effects of prior SARS-CoV-2 infection, but not CMV
283	serostatus, on antibody neutralization of ancestral SARs-CoV-2 after 2 and 3 vaccine doses and
284	the beta variant after 2, but not 3, vaccine doses (Supplementary Figure 3). Collectively, these
285	data indicate that CMV serostatus does not appear to have a major impact on anti-Spike or anti-
286	RBD IgG antibody production, or total serum antibody neutralization capacity. Moreover, CMV

To examine the impact of CMV seropositivity on the T cell repertoire, whole blood CD4⁺

seropositivity in the older adult cohort did not impair IgG antibody production or neutralization
in response to SARS-CoV-2 vaccination.

289

291

290 *CMV* serostatus influences peripheral *CD4*⁺ and *CD8*⁺ *T* cell immunophenotype

292 and CD8⁺ T cell composition was quantitated, and their surface expression of CD28 and CD57 was measured, by flow cytometry (Figure 2; Supplementary Figure 4). Chronic T cell activation 293 is a characteristic of CMV seropositivity^{18, 36, 55}. Accordingly, CMV seropositive individuals had 294 295 significant changes to their peripheral T cell repertoire (Figure 2; Supplementary Figure 4). We found no changes in numbers of circulating total leukocytes, total $CD4^+$ T cells, or $CD4_N$, 296 CD4_{EM}, CD8_N, or CD8_{EM} T cell populations by CMV serostatus. However, CMV seropositivity 297 increased numbers of total CD8⁺ T cells, as well as CD4_{EMRA}, CD4_{TD}, CD8_{EMRA}, and CD8_{TD} T 298 299 cells, and decreased numbers of $CD4_{CM}$ and $CD8_{CM}$ T cells (Figure 2). 300 CD28 is a co-stimulatory molecule that contributes to TCR-antigen-mediated activation 301 of T cells, while CD57 is a marker of terminally differentiated T cells as well as an indicator of 302 immune senescence⁵⁶. Repeated T cell activation is associated with upregulation of CD57 and a 303 reduction in CD28 expression^{57, 58, 59}. Consistent with these prior data, comparisons of CD28 and 304 305 CD57 expression on T cell populations by CMV serostatus in our cohort of older adults (Figure 306 2O) revealed increased CD57 expression and reduced CD28 expression on total CD4⁺ and CD8⁺ 307 T cell populations, as well as more specifically $CD4_{CM}$, $CD4_{EMRA}$, $CD4_{EMRA}$, $CD8_{N}$, and $CD8_{EMRA}$ 308 T cells. Expression of CD28 was also decreased on CD8_{CM} and CD8_{EM} cells of CMV

309	seropositive individuals, though expression of CD57 was not influenced by CMV serostatus.
310	CMV serostatus did not affect CD57 or CD28 expression on $CD4_N$ T cells.
311	
312	As even mild COVD-19 can have lasting effects on immune cell composition ⁴⁷ , we also
313	considered combined effects of prior SARS-CoV-2 infection and CMV serostatus on T cell
314	composition (Supplementary Figures 5-6). Prior SARS-CoV-2 infection was associated with
315	lower leukocyte counts, but otherwise had no significant main effects on absolute cell numbers
316	nor prevalence of the assessed CD4 ⁺ or CD8 ⁺ T cell populations.
317	
318	In summary, there are significant changes to the relative composition and functional
319	phenotype of peripheral blood CD8 ⁺ T cell and CD4 ⁺ T cell subsets between CMV seronegative
320	and seropositive individuals, irrespective of prior COVID-19. The observed expansion of EMRA
321	and terminally differentiated T cells, as well as reduced surface expression of the costimulatory
322	molecule CD28 on CD8 _N T cells in particular, may influence T cell vaccine responses.
323	
324	CMV serostatus influences CD4 ⁺ and CD8 ⁺ SARS-CoV-2 antigen-induced recall responses
325	An activation-induced marker (AIM) assay was used to examine T cell memory
326	responses after second and third dose SARS-CoV-2 mRNA vaccinations (Figure 3; Table 4).
327	SARS-CoV-2 vaccines are unusual in that healthy adults generate strong CD4 ⁺ T cell memory
328	recall responses, but weaker CD8 ⁺ T cell memory responses ⁶⁰ . We also made similar
329	observations in older adults. Most study participants had CD4 ⁺ T cell responses to SARS-CoV-2
330	Spike (post-dose 2: 93.1%; post-dose 3: 95.9%), but only 19.5% of participants had Spike-
331	elicited CD8 ⁺ memory T cell responses after 2 vaccine doses, though this increased to 29.7% of

332	participants after 3 vaccine doses. CMV serostatus did not influence the number of individuals
333	with SARS-CoV-2 Spike-activated CD4 ⁺ T cells or CD8 ⁺ T cells after 2 nd or 3 rd dose
334	vaccinations. Grouped analyses revealed a significant main effect of CMV serostatus on the
335	frequency of S-CD8 ⁺ T cells. However, despite greater variance of data in seropositive
336	individuals, post-hoc analyses by CMV serostatus were not significant post-dose 2 or post-dose
337	3. Intra-individual paired analyses also showed no main effects of vaccine dose nor CMV
338	serostatus on S-CD8 ⁺ T cell population activation (Supplementary Figure 7). Prior COVID-19
339	did not influence the prevalence of S-CD8 ⁺ T cells after 2 or 3 vaccine doses, though CMV
340	seropositivity contributed to increased S-CD8 ⁺ T cell activation post-dose 2 (Supplementary
341	Figure 8). The prevalence of S-activated CD4 ⁺ T cells was likewise not different by CMV
342	serostatus (Figure 3B), nor prior COVID-19 (Supplementary Figure 8), though grouped analyses
343	on a population and intra-individual basis showed a main effect of vaccine dose (Supplementary
344	Figure 7). Therefore, CMV serostatus contributes to increased CD8 ⁺ T cell, but not CD4 ⁺ T cell,
345	memory responses to SARS-CoV-2 Spike antigen.
346	

CD4⁺ memory T cells are comprised of a number of different functional subsets, 347 including T helper 1 (Th1), T helper 2 (Th2), and T helper 17 (Th17) cells⁶¹, which were further 348 characterized. There was a significant effect of CMV serostatus on the frequency of Th1 S-CD4⁺ 349 T cells, with post-hoc analyses showing an increase in CMV seropositive individuals after 2 but 350 351 not 3 vaccine doses (Figure 3C). Th2 and Th17 S-CD4⁺ T cell frequencies were not influenced by CMV serostatus (Figure 3D-E), though paired analyses by dose and CMV serostatus 352 suggested a significant increase in Th17 responses in CMV seropositive individuals after 3rd 353 354 vaccine doses (Supplementary Figure 7). Interestingly, when we considered these data in context

of prior SARS-CoV-2 infection, CMV serostatus had a main effect on the prevalence of S-CD4⁺
Th1 and Th17 T cells, which increased and decreased, respectively, with CMV seropositivity,
though only post-dose 2 (Supplementary Figure 8).

358

To determine if the observed contributions of CMV serostatus to increased CD8⁺ T cell 359 360 and CD4⁺ Th1 T cell memory responses are consistent across different stimuli, we also examined T cell AIM responses after TCR-independent polyclonal stimulation with CytoStim, and 361 362 stimulation with influenza hemagglutinin antigens (Figure 4). As we observed for Spike-363 activated T cells, both CytoStim and HA stimulation resulted in increased proportions of AIM⁺CD8⁺ T cells in CMV seropositive individuals (Figure 4A, 4F), though AIM⁺CD4⁺ T cell 364 frequency was not affected by CMV serostatus (Figure 4B, 4G). These data show that effects of 365 366 CMV seropositivity on total AIM⁺CD8⁺ and AIM⁺CD4⁺ T cell frequencies are consistent across different stimuli. CytoStim-stimulated CD4⁺ T cells, like Spike-stimulated CD4⁺ T cells, also 367 368 showed distinct Th1 skewed responses, though this was not observed after HA stimulation. These data collectively suggest that CMV serostatus alters the functional composition of memory 369 T cells, with antigen-specific effects, though CMV serostatus but does not alter the ability of 370 371 older adults to generate CD4⁺ or CD8⁺ T cell memory, nor the incidence of activation after 372 SARS-CoV-2 vaccination.

373

374

375 **Discussion**

Our data suggest that despite being a significant modifier of peripheral blood T cell composition and phenotype, CMV seropositivity does not have a negative impact on vaccine immunogenicity in older adults. Yet, we found that there were subtle changes in antibody and

379	cellular responses in CMV seropositive individuals between vaccine doses and in individuals
380	with prior COVID-19. Our study cohort included participants from multiple assisted living
381	facilities, and it did not exclude individuals with particular health conditions (e.g. cancer,
382	diabetes, cardiovascular disease, autoimmune disorders) or prescribed medications (e.g. immune
383	modulating drugs). Thus, any observed effects of CMV needed to be sufficiently robust to
384	overcome potential effects of those other factors.

385

386 Our observations of changes in the peripheral T cell repertoire in CMV seropositive 387 individuals, and CD4⁺ and CD8⁺ T cell expression of CD28 and CD57, are consistent with prior publications that reported expansion of exhausted CD4_{EMRA} and CD8_{EMRA} memory T cells in 388 CMV seropositive healthy community-dwelling adults^{39, 41}. There are conflicting reports as to 389 whether the CMV seropositivity is associated with a reduction in naïve CD4⁺ and CD8⁺ T cells. 390 391 In this investigation, we observed similar numbers of $CD4_N$ and $CD8_N$ T cells in seropositive and 392 seronegative individuals, and in particular similar expression of CD57 and CD28 on $CD4_N T$ cells. Our data therefore suggest that CMV seropositivity does not influence the availability nor 393 capacity of circulating naïve T cells to respond and generate memory responses to *de novo* 394 395 antigens in older adults.

396

CMV seropositivity in older adults has been associated with lower frequencies of
 memory T cells in response to seasonal influenza, though acute infection T cell responses were
 unchanged⁶², and there is conflicting data as to whether CMV seropositivity enhances or impairs
 influenza virus-specific T cell responses^{31, 39, 63, 64}. We found that T cell memory recall responses
 were similar in CMV seropositive and seronegative individuals. Our findings are concordant

with observations from a previous study that found CMV serostatus did not alter the ability of 402 older adults to generate memory responses to the newly emergent (at the time) West Nile virus⁴⁶. 403 404 We observed in our cohort of older adults that T cell memory responses were not different by CMV serostatus. Furthermore, it has been reported that T cell memory responses to the SARS-405 CoV-2 Spike protein are boosted in convalescent younger adults after vaccination^{65, 66}. We 406 407 identified an increase in Spike-specific CD4⁺ T cell memory responses between 2 and 3 mRNA vaccine doses in our older adult cohort, but we did not observe increased CD8⁺ or CD4⁺ T cell 408 409 memory responses in convalescent older adults after vaccination. This may in part be because 410 our analysis of effects of prior COVID-19 were not restricted to a particular time frame post-SARS-CoV-2 infection. Irrespective, these findings suggest that while combined effects of 411 infection and subsequent vaccination may differ by age, older adults can elicit functional 412 memory T cell responses to infection and vaccination against *de novo* viruses. 413

414

415 We observed a distinct Th1 bias after polyclonal T cell activation, and in response to the immunodominant regions of the Spike antigen after 2 doses, but not 3 doses, of SARS-CoV-2 416 mRNA vaccines. Th1 skewing of the immune response after influenza virus vaccination has been 417 previously noted in CMV seropositive infants and young adults and mice^{64, 67}, as well as in older 418 adults⁶⁸. Strong Th1 CD4⁺ T cell responses have been associated with lower disease severity in 419 unvaccinated COVID-19 patients⁶⁹, and SARS-CoV-2 Spike-elicited CD4⁺ T cell memory 420 421 responses in unvaccinated convalescent individuals have also been identified to be primarily Th1-differentiated^{65, 66}. However, we did not identify a main effect of prior COVID-19, nor an 422 423 interaction of CMV serostatus and prior COVID-19, on the prevalence of CD4⁺ T cell Th1 424 responses in vaccinated older adults. These data indicate that in older adults CMV seropositivity

425	is associated with Th1-biased CD4 ⁺ T cell responses, which are not further modified by any prior
426	SARS-CoV-2 infection. Our observations also suggest that Spike-specific memory T cell
427	functional responses change between 2 and 3 vaccine doses in older adults, congruent with
428	observations of changes in memory T cell phenotype between vaccine doses in younger adults ⁶⁵ .
429	
430	Our data also show that CMV seropositivity does not prevent production of anti-Spike or
431	anti-RBD IgG, IgA, or IgM antibodies after SARS-CoV-2 mRNA, though we did observe an
432	interaction between CMV seropositivity and prior COVID-19 both post-dose 2 and post-dose 3.
433	These effects may be reflective of our limited sample size, or differences in time since infection
434	between CMV seropositive and CMV seronegative individuals. CMV seropositive individuals
435	have been reported to have increased B cell proliferation and mutations within the
436	immunoglobulin heavy chain sequences of IgM and IgG, but not IgA, isotypes ⁷⁰ . CMV
437	serostatus could also have a larger effect on maturation of the antibody response via isotype
438	switching, and thus isotype composition after vaccination, which may contribute to our
439	observations, but to our knowledge this has not been extensively explored.
440	
441	Early in the pandemic, CMV seropositivity was associated with increased risk of
442	hospitalization in COVID-19 patients ⁷¹ , and CMV reactivation was later reported to have a
443	higher incidence in patients in intensive care ⁷² . More recently it was reported that unvaccinated
444	individuals with latent CMV, irrespective of anti-CMV antibody levels, age, and sex, are at
445	higher risk of SARS-CoV-2 infection and hospitalization ⁷³ . In particular, the exhausted T cells
446	present in CMV seropositive individuals have also been predicted to contribute to more severe
447	COVID-19 pathophysiology ⁷⁴ . Our data does not preclude the possibility that CMV-associated

448	remodelling of innate and adaptive immunity in older adults may contribute to the pathogenesis
449	and severity of SARS-CoV-2 infection. CMV serostatus may in addition impact humoral or
450	cellular responses to breakthrough infections with current or emerging variants of concern.
451	
452	In conclusion, our data shows that CMV serostatus alters the T cell repertoire but does
453	not blunt cellular nor humoral responses after 2 and 3 doses SARS-CoV-2 mRNA vaccines in
454	older adults in congregate care facilities. Further research is necessary to disentangle the more
455	subtle effects of CMV serostatus on immunogenicity and durability of immune responses after
456	vaccination, as well as to assess its role in risk of breakthrough infections.

References

459		
460	1.	Kline, K.A. & Bowdish, D.M. Infection in an aging population. Current opinion in
461		microbiology 29 , 63-67 (2016).
462		
463	2.	Goodwin, K., Viboud, C. & Simonsen, L. Antibody response to influenza vaccination in
464		the elderly: a quantitative review. Vaccine 24, 1159-1169 (2006).
465		
466	3.	Banerjee, A. et al. Estimating excess 1-year mortality associated with the COVID-19
467		pandemic according to underlying conditions and age: a population-based cohort study.
468		Lancet 395 , 1715-1725 (2020).
469		
470	4.	Cunningham, A.L. et al. Efficacy of the herpes zoster subunit vaccine in adults 70 years
471		of age or older. New England Journal of Medicine 375 , 1019-1032 (2016).
472		
473	5.	Lal. H. et al. Efficacy of an adjuvanted herpes zoster subunit vaccine in older adults. The
474		New England journal of medicine 372 , 2087-2096 (2015).
475		
476	6.	Brown, K., Stall, NM., Vannivasingam T., et al. Early impact of Ontario's COVID-19
477		vaccine rollout on long-term care home residents and health care workers. Science Briefs
478		of the Ontario COVID-19 Science Advisory Table: 2021.
479		
480	7.	Salcher-Konrad, M., Smith, S. & Comas-Herrera, A. Emerging Evidence on
481		Effectiveness of COVID-19 Vaccines Among Residents of Long-Term Care Facilities.
482		Journal of the American Medical Directors Association 22, 1602-1603 (2021).
483		
484	8.	Chung, H. et al. Effectiveness of BNT162b2 and mRNA-1273 covid-19 vaccines against
485	0.	symptomatic SARS-CoV-2 infection and severe covid-19 outcomes in Ontario. Canada:
486		test negative design study. <i>BMJ</i> 374 . n1943 (2021).
487		
488	9.	Breznik, J.A. <i>et al.</i> Antibody Responses 3-5 Months Post-Vaccination with mRNA-1273
489		or BNT163b2 in Nursing Home Residents <i>medRxiv</i> 2021 2008 2017 21262152 (2021)
490		
491	10.	Zhang, A. <i>et al.</i> Antibody Responses to 3rd Dose mRNA Vaccines in Nursing Home and
492	101	Assisted Living Residents $medRxiv$ 2021 2012 2017 21267996 (2021).
493		
494	11.	Brockman, M.A. <i>et al.</i> Reduced magnitude and durability of humoral immune responses
495		to COVID-19 mRNA vaccines among older adults. <i>J Infect Dis</i> (2021).
496		
497	12.	Weng, Nn. & Pawelec, G. Validation of the effectiveness of SARS-CoV-2 vaccines in
498		older adults in "real-world" settings. <i>Immunity & Ageing</i> 18, 36 (2021)
499		
500	13.	Fulop, T. <i>et al.</i> Immunosenescence and Inflamm-Aging As Two Sides of the Same Coin
501		Friends or Foes? Front Immunol 8, 1960-1960 (2018).
502		

503 504 505	14.	Fulop, T., Pawelec, G., Castle, S. & Loeb, M. Immunosenescence and vaccination in nursing home residents. <i>Clinical infectious diseases : an official publication of the Infectious Diseases Society of America</i> 48 , 443-448 (2009).
506 507 508 509	15.	Zuhair, M. <i>et al.</i> Estimation of the worldwide seroprevalence of cytomegalovirus: A systematic review and meta-analysis. <i>Reviews in medical virology</i> 29 , e2034 (2019).
510 511	16.	Pawelec, G., McElhaney, J.E., Aiello, A.E. & Derhovanessian, E. The impact of CMV infection on survival in older humans. <i>Curr Opin Immunol</i> 24 , 507-511 (2012).
512 513 514 515 516	17.	Sylwester, A.W. <i>et al.</i> Broadly targeted human cytomegalovirus-specific CD4+ and CD8+ T cells dominate the memory compartments of exposed subjects. <i>Journal of Experimental Medicine</i> 202 , 673-685 (2005).
517 518 519	18.	Chidrawar, S. <i>et al.</i> Cytomegalovirus-seropositivity has a profound influence on the magnitude of major lymphoid subsets within healthy individuals. <i>Clinical and experimental immunology</i> 155 , 423-432 (2009).
520 521 522 523	19.	Sansoni, P. <i>et al.</i> The immune system in extreme longevity. <i>Experimental gerontology</i> 43 , 61-65 (2008).
523 524 525 526	20.	Goronzy, J.J. & Weyand, C.M. Successful and Maladaptive T Cell Aging. <i>Immunity</i> 46 , 364-378 (2017).
520 527 528	21.	Dörner, T. & Radbruch, A. Antibodies and B Cell Memory in Viral Immunity. <i>Immunity</i> 27 , 384-392 (2007).
530 531	22.	Yan, Z. <i>et al.</i> Aging and CMV discordance are associated with increased immune diversity between monozygotic twins. <i>Immunity & ageing : I & A</i> 18 , 5 (2021).
533 534	23.	Brodin, P. <i>et al.</i> Variation in the human immune system is largely driven by non-heritable influences. <i>Cell</i> 160 , 37-47 (2015).
535 536 537 538	24.	Mekker, A. <i>et al.</i> Immune senescence: relative contributions of age and cytomegalovirus infection. <i>PLoS pathogens</i> 8 , e1002850 (2012).
539 540 541 542	25.	Olsson, J. <i>et al.</i> Age-related change in peripheral blood T-lymphocyte subpopulations and cytomegalovirus infection in the very old: the Swedish longitudinal OCTO immune study. <i>Mechanisms of ageing and development</i> 121 , 187-201 (2000).
543 544 545	26.	Crooke, S.N., Ovsyannikova, I.G., Poland, G.A. & Kennedy, R.B. Immunosenescence and human vaccine immune responses. <i>Immunity & Ageing</i> 16 , 25 (2019).
546 547 548	27.	Kadambari, S., Klenerman, P. & Pollard, A.J. Why the elderly appear to be more severely affected by COVID-19: The potential role of immunosenescence and CMV. <i>Reviews in medical virology</i> 30 , e2144 (2020).

549		
550 551	28.	Moss, P. "The ancient and the new": is there an interaction between cytomegalovirus and SARS-CoV-2 infection? <i>Immunity & ageing</i> : $I \& A$ 17 14-14 (2020)
552		
553 554	29.	Söderberg-Nauclér, C. Does reactivation of cytomegalovirus contribute to severe COVID-19 disease? <i>Immunity & ageing : I & A</i> 18 , 12-12 (2021).
555 556 557	30.	Chen, Y. et al. Aging in COVID-19: Vulnerability, immunity and intervention. Ageing research reviews 65 , 101205 (2021).
558 559 560 561 562	31.	Merani, S., Pawelec, G., Kuchel, G.A. & McElhaney, J.E. Impact of Aging and Cytomegalovirus on Immunological Response to Influenza Vaccination and Infection. <i>Front Immunol</i> 8 , 784 (2017).
563 564 565	32.	Cicin-Sain, L. <i>et al.</i> Cytomegalovirus infection impairs immune responses and accentuates T-cell pool changes observed in mice with aging. <i>PLoS pathogens</i> 8 , e1002849 (2012).
567 568 569 570	33.	Smithey, M.J., Li, G., Venturi, V., Davenport, M.P. & Nikolich-Žugich, J. Lifelong persistent viral infection alters the naive T cell pool, impairing CD8 T cell immunity in late life. <i>J Immunol</i> 189 , 5356-5366 (2012).
570 571 572	34.	Khan, N. <i>et al.</i> Herpesvirus-specific CD8 T cell immunity in old age: cytomegalovirus impairs the response to a coresident EBV infection. <i>J Immunol</i> 173 , 7481-7489 (2004).
573 574 575	35.	Barton, E.S. <i>et al.</i> Herpesvirus latency confers symbiotic protection from bacterial infection. <i>Nature</i> 447 , 326-329 (2007).
577 578 579	36.	Terrazzini, N. <i>et al.</i> Cytomegalovirus infection modulates the phenotype and functional profile of the T-cell immune response to mycobacterial antigens in older life. <i>Experimental gerontology</i> 54 , 94-100 (2014).
580 581 582 583	37.	Pera, A. <i>et al.</i> CMV latent infection improves CD8+ T response to SEB due to expansion of polyfunctional CD57+ cells in young individuals. <i>PloS one</i> 9 , e88538 (2014).
584 585 586 587	38.	Smithey, M.J. <i>et al.</i> Lifelong CMV infection improves immune defense in old mice by broadening the mobilized TCR repertoire against third-party infection. <i>Proceedings of the National Academy of Sciences of the United States of America</i> 115 , E6817-e6825 (2018).
588 589 590	39.	Derhovanessian, E. <i>et al.</i> Cytomegalovirus-associated accumulation of late-differentiated CD4 T-cells correlates with poor humoral response to influenza vaccination. <i>Vaccine</i> 31 , 685-690 (2013).
592 593	40.	Saurwein-Teissl, M. <i>et al.</i> Lack of antibody production following immunization in old age: association with CD8+ CD28- T cell clonal expansions and an imbalance in the

594 595		production of Th1 and Th2 cytokines. <i>The Journal of Immunology</i> 168 , 5893-5899 (2002).
596	4.1	
597	41.	Frasca, D., Diaz, A., Romero, M., Landin, A.M. & Blomberg, B.B. Cytomegalovirus
598 599		(CMV) seropositivity decreases B cell responses to the influenza vaccine. <i>vaccine</i> 35 , 1433-1439 (2015).
600		
601 602 603	42.	proinflammatory response and low level of anti-hemagglutinins during the anti-influenza vaccinationan impact of immunosenescence. <i>Vaccine</i> 21 , 3826-3836 (2003).
604		
605 606 607	43.	Bowyer, G. <i>et al.</i> Reduced Ebola vaccine responses in CMV+ young adults is associated with expansion of CD57+KLRG1+ T cells. <i>J Exp Med</i> 217 , e20200004 (2020).
608	<i>11</i>	van den Berg SPH Warmink K Borghans IAM Knol MI & van Baarle D
600		Effect of latent cytomegalovirus infection on the antibody response to influenza
610		vaccination: a systematic review and meta analysis. Medical microbiology and
611		immunology 208 305-321 (2019)
612		ummunology 208 , 505-521 (2017).
613	45	Sharpe, H.R. at al. CMV-associated T cell and NK cell terminal differentiation does not
614 615	-5.	affect immunogenicity of ChAdOx1 vaccination. <i>JCI Insight</i> 7 (2022).
616	46	Verschoor C.P. Kohli V & Balion C. A comprehensive assessment of
617 618	10.	immunophenotyping performed in cryopreserved peripheral whole blood. <i>Cytometry B</i> <i>Clin Cytom</i> 94 , 662-670 (2018)
619		
620 621	47.	Kennedy, A.E. <i>et al.</i> Lasting Changes to Circulating Leukocytes in People with Mild SARS-CoV-2 Infections. <i>Viruses</i> 13 , 2239 (2021).
622		
623 624	48.	Loukov, D., Karampatos, S., Maly, M.R. & Bowdish, D.M.E. Monocyte activation is elevated in women with knee-osteoarthritis and associated with inflammation, BMI and
625		pain. Osteoarthritis Cartilage 26, 255-263 (2018).
626		
627	49.	Zaunders, J.J. et al. High levels of human antigen-specific CD4+ T cells in peripheral
628		blood revealed by stimulated coexpression of CD25 and CD134 (OX40). J Immunol 183,
629		2827-2836 (2009).
630		
631	50.	Seddiki, N. et al. Human antigen-specific CD4(+) CD25(+) CD134(+) CD39(+) T cells
632 633		are enriched for regulatory T cells and comprise a substantial proportion of recall responses. <i>Eur J Immunol</i> 44 , 1644-1661 (2014).
634		
635 636 637	51.	Wolfl, M. <i>et al.</i> Activation-induced expression of CD137 permits detection, isolation, and expansion of the full repertoire of CD8+ T cells responding to antigen without requiring knowledge of epitope specificities. <i>Blood</i> 110 , 201-210 (2007).
638		

639 640	52.	Huynh, A. <i>et al.</i> Characteristics of Anti-SARS-CoV-2 Antibodies in Recovered COVID-19 Subjects. <i>Viruses</i> 13 , 697 (2021).
642 643	53.	Immunization, N.A.C.o. Guidance on booster COVID-19 vaccine doses in Canada - Update December 3, 2021: Public Health Agency of Canada; 2021.
645 646 647	54.	Hirabara, S.M. <i>et al.</i> SARS-COV-2 Variants: Differences and Potential of Immune Evasion. <i>Frontiers in cellular and infection microbiology</i> 11 , 781429 (2021).
648 649 650	55.	Klenerman, P. & Oxenius, A. T cell responses to cytomegalovirus. <i>Nature reviews</i> . <i>Immunology</i> 16 , 367-377 (2016).
651 652 653	56.	Strioga, M., Pasukoniene, V. & Characiejus, D. CD8+ CD28- and CD8+ CD57+ T cells and their role in health and disease. <i>Immunology</i> 134 , 17-32 (2011).
654 655 656 657	57.	Fletcher, J.M. <i>et al.</i> Cytomegalovirus-specific CD4+ T cells in healthy carriers are continuously driven to replicative exhaustion. <i>The Journal of Immunology</i> 175 , 8218-8225 (2005).
658 659	58.	Henson, S.M., Riddell, N.E. & Akbar, A.N. Properties of end-stage human T cells defined by CD45RA re-expression. <i>Curr Opin Immunol</i> 24 , 476-481 (2012).
660 661 662 663	59.	Brenchley, J.M. <i>et al.</i> Expression of CD57 defines replicative senescence and antigen- induced apoptotic death of CD8+ T cells. <i>Blood, The Journal of the American Society of</i> <i>Hematology</i> 101 , 2711-2720 (2003).
665 666 667 668	60.	Neidleman, J. <i>et al.</i> mRNA vaccine-induced T cells respond identically to SARS-CoV-2 variants of concern but differ in longevity and homing properties depending on prior infection status. <i>eLife</i> 10 , e72619 (2021).
669 670	61.	Crotty, S. A brief history of T cell help to B cells. <i>Nature reviews. Immunology</i> 15 , 185-189 (2015).
671 672 673 674 675	62.	van den Berg, S.P.H. <i>et al.</i> Latent CMV Infection Is Associated With Lower Influenza Virus-Specific Memory T-Cell Frequencies, but Not With an Impaired T-Cell Response to Acute Influenza Virus Infection. <i>Front Immunol</i> 12 (2021).
676 677 678 679	63.	Theeten, H. <i>et al.</i> Cellular Interferon Gamma and Granzyme B Responses to Cytomegalovirus-pp65 and Influenza N1 Are Positively Associated in Elderly. <i>Viral immunology</i> 29 , 169-175 (2016).
680 681 682	64.	Furman, D. <i>et al.</i> Cytomegalovirus infection enhances the immune response to influenza. <i>Science translational medicine</i> 7 , 281ra243 (2015).

683 684 685 686	65.	Neidleman, J. <i>et al.</i> SARS-CoV-2-Specific T Cells Exhibit Phenotypic Features of Helper Function, Lack of Terminal Differentiation, and High Proliferation Potential. <i>Cell Rep Med</i> 1 , 100081-100081 (2020).
687 688 689	66.	Grifoni, A. <i>et al.</i> Targets of T Cell Responses to SARS-CoV-2 Coronavirus in Humans with COVID-19 Disease and Unexposed Individuals. <i>Cell</i> 181 , 1489-1501.e1415 (2020).
690 691 692	67.	Miles, D.J. <i>et al.</i> Cytomegalovirus infection in Gambian infants leads to profound CD8 T-cell differentiation. <i>J Virol</i> 81 , 5766-5776 (2007).
693 694 695 696 697	68.	Felismino, E.S. <i>et al.</i> Better Response to Influenza Virus Vaccination in Physically Trained Older Adults Is Associated With Reductions of Cytomegalovirus-Specific Immunoglobulins as Well as Improvements in the Inflammatory and CD8+ T-Cell Profiles. <i>Front Immunol</i> 12 (2021).
698 699 700 701	69.	Rydyznski Moderbacher, C. <i>et al.</i> Antigen-Specific Adaptive Immunity to SARS-CoV-2 in Acute COVID-19 and Associations with Age and Disease Severity. <i>Cell</i> 183 , 996-1012.e1019 (2020).
702 703 704	70.	Wang, C. <i>et al.</i> Effects of aging, cytomegalovirus infection, and EBV infection on human B cell repertoires. <i>Journal of immunology (Baltimore, Md. : 1950)</i> 192 , 603-611 (2014).
705 706 707	71.	Shrock, E. <i>et al.</i> Viral epitope profiling of COVID-19 patients reveals cross-reactivity and correlates of severity. <i>Science</i> 370 (2020).
708 709 710 711	72.	Simonnet, A. <i>et al.</i> High incidence of Epstein-Barr virus, cytomegalovirus, and human- herpes virus-6 reactivations in critically ill patients with COVID-19. <i>Infect Dis Now</i> 51 , 296-299 (2021).
712 713	73.	Alanio, C. <i>et al.</i> Cytomegalovirus latent infection is associated with an increased risk of COVID-19-related hospitalization. <i>J Infect Dis</i> (2022).
715 716 717	74.	Del Valle, D.M. <i>et al.</i> An inflammatory cytokine signature predicts COVID-19 severity and survival. <i>Nature Medicine</i> 26 , 1636-1643 (2020).

	CMV Seronegative (n=74; 17 repeated)	CMV Seropositive (n=159; 30 repeated)	Statistical Assessment	
Age (median +/- SD; range)	85 ± 6.8 years (65-93)	86 ± 7.7 years (65-101)	p=0.1265*	
Sex (frequency)	67.6% female (n=50)	69.8% female (n=111)	p=0.7618**	
Sample Size Post-Dose 2	n=51	n=108		
2 nd Dose Vaccine Combination (frequency)	47.1% Moderna-Moderna (n=24) 52.9% Pfizer-Pfizer (n=27)	35.8% Moderna-Moderna (n=39) 60.6% Pfizer-Pfizer (n=66) 2.75% Pfizer-Moderna (n=3)	p=0.2968**	
Days Between Dose 1 and Dose 2 (mean +/- SD)	32.2 ± 20.8 days	30.4 ± 17.9 days	p=0.6697*	
Days Since 2 nd Dose to Blood Collection (mean +/- SD)	179.8 ± 50.1 days	175.4 ± 64.1days	p=0.9041*	
Sample Size Post-Dose 3	n=23	n=51		
3 rd Dose Vaccine Combination (frequency)	65.2% Moderna-Moderna- Moderna (n=15) 34.8% Pfizer-Pfizer-Pfizer (n=8)	56.9% Moderna-Moderna-Moderna (n=29) 43.1% Pfizer-Pfizer (n=22)	p=0.6115**	
Days Between Dose 2 and Dose 3 (mean +/- SD)	203.9 ± 21.0 days	211.7 ±12.1 days	p=0.2689*	
Days Since 3 rd Dose to Blood Collection (mean +/- SD)	82.0 ±17.3 days	83.7 ± 11.5 days	p=0.7597*	
Prior COVID-19***	37.8% (n=28)	34.4% (n=55)	p=0.6609*	
Only positive for nasopharyngeal PCR test	28.6% (n=8)	36.4% (n=20)	p>0.6244**	
Only positive for anti-NC antibodies	39.3% (n=11)	40.0% (n=22)	p>0.9999**	
Positive for PCR test and anti-NC antibodies	32.1% (n=9)	23.6% (n=13)	p=0.7977**	

718 **Table 1. Participant Demographics**

*Mann-Whitney U-test or Student's t test by normality; **Fisher's exact test. Comparisons for

vaccines post-dose 2 were calculated for Moderna-Moderna vs Pfizer-Pfizer. *** participants were

considered 'positive' for prior COVID-19 infection in subsequent analyses if they had a recorded

722 positive nasopharyngeal PCR test and/or seropositivity for anti-nucleocapsid IgG or IgA

723 antibodies.

		Total Responder Frequency			Responder Frequency by CMV Seropositivity				
Antibody	Vaccine Doses		Frequency (%) p*		Seronegative		Seropositive		
Antibody		n		n	Frequency (%)	n	Frequency (%)	p *	
anti-Spike	2	141/159	88.7	0.0415	47/51	92.2	94/108	87.0	0.4287
lgG	3	72/74	97.3	0.0415	21/23	91.3	51/51	100	0.0937
anti-Spike	2	98/159	61.6	<0.0001	33/51	64.7	65/108	60.2	0.6053
lgA	3	71/74	95.9	<0.0001	21/23	91.3	50/51	98.0	0.2264
anti-Spike	2	20/159	12.6	-0.0001	8/51	15.7	12/108	11.1	0.4476
lgM	3	28/74	37.8	<0.0001	8/23	34.8	20/51	39.2	0.7992
anti-RBD	2	101/159	63.5	-0.0001	34/51	66.7	67/108	62.0	0.6011
lgG	3	70/74	94.6	<0.0001	21/23	91.3	49/51	96.1	0.5837
anti-RBD	2	35/159	22.0	0.0760	12/51	23.5	23/108	21.3	0.8380
IgA	3	25/74	33.8	0.0760	8/23	13.0	17/51	33.3	>0.9999
anti-RBD	2	6/159	3.77	> 0 0000	3/51	5.88	3/108	2.78	0.3863
lgM	3	3/74	4.05	>0.9999	1/23	4.35	2/51	3.92	>0.9999

725 Table 2. Responders and non-responders to vaccination by CMV serostatus – antibodies

726 *Fisher's exact test

727

728 Table 3. Associations of antibody and neutralization responses after vaccination by CMV serostatus

	Antibody	MNT50 v	vildtype	MNT50 beta		
	Antibody	CMV-ve	CMV+ve	CMV-ve	CMV+ve	
		****	****	****	****	
	IgG Spike	r = 0.8367	r = 0.8316	r = 0.6963	r = 0.7541	
		****	****	****	****	
Post-Dose	IGG RBD	r = 0.7394	r = 0.8291	r = 0.6848	r = 0.6981	
2		****	****	****	****	
	iga Spike	r = 0.6222	r = 0.6152	r = 0.6402	r = 0.5254	
		**	****	**	***	
	IGA RBD	r = 0.4311	r = 0.4572	r = 0.4813	r = 0.3639	
		***	***	***	***	
	IgG Spike	r = 0.6923	r = 0.5004	r = 0.6545	r = 0.5038	
		****	****	****	****	
Post-Dose	IGG RBD	r = 0.8207	r = 0.5770	r = 0.7475	r = 0.6926	
3		**	*	*		
	iga Spike	r = 0.6324	r = 0.3228	r = 0.4550	ns	
		****	*	***	*	
	IYA KBD	r = 0.7750	r = 0.3081	r = 0.7051	r = 0.3575	

729

730 Table 4. Responders and non-responders to vaccination by CMV serostatus – cellular responses

ſ		Vaccine Doses	Total Responder Frequency			Responder Frequency by CMV Seropositivity				
_	T cell Population			Frequency (%)	p*	Seronegative		Seropositive		
			n			n	Frequency (%)	n	Frequency (%)	p *
	S-CD8+	2	31/159	19.5	0.0042	6/50	12.0	24/108	22.2	0.1898
		3	22/74	29.7	0.0943	3/23	13.0	19/51	37.3	0.0532
	S-CD4+	2	148/159	93.1	0.5570	45/50	90.0	102/108	94.4	0.3262
		3	71/74	95.9	0.5570	22/23	95.7	49/51	96.1	>0.9999

731 *Fisher's exact test

732

Figure 1. Antibodies and neutralization capacity by CMV serostatus after two and three

734 COVID-19 vaccines in older adults.

735 Serum SARS-CoV-2 anti-Spike and anti-RBD antibodies were detected by ELISA, and antibody

- neutralization capacity was assessed by MNT50 with live SARS-CoV-2 virus. Anti-Spike
- antibodies: IgG (A), IgA (B) and IgM (C). Anti-receptor binding domain (RBD) antibodies: IgG
- (D), IgA (E), and IgM (F). Antibody neutralization capacity was assessed against ancestral (G)
- and beta variant (H) SARS-CoV-2. Dotted lines indicate the threshold of detection. Each data
- point indicates an individual participant, and the center line indicates the median. Associations
- between CMV serostatus and vaccine dose were assessed by two-way ANOVA, with Tukey's
- 742 test post-hoc analysis. ***p < 0.001, *p < 0.0001.

744 Figure 2. Effect of CMV serostatus on the circulating T cell repertoire in older adults.

T cell populations in whole blood were assessed by flow cytometry. (A) Relative prevalence of
 CD4⁺ and CD8⁺ T cell subsets by CMV serostatus (also see Supplementary Figure 4). Absolute

- cell counts of: (B) total leukocytes; (C) total CD4⁺ T cells; (D) CD8⁺ T cells. Absolute cell
- counts of CD4⁺ T cells: (E) naïve; (F) central memory; (G) effector memory; (H) EMRA; (I)
- terminally differentiated. Absolute cell counts of CD8⁺ T cells: (J) naive; (K) central memory;
- (L) effector memory; (M) EMRA; (N) terminally differentiated. (O) Surface geometric mean
- expression of CD57 and CD28 on CD4⁺ and CD8⁺ T cells by CMV serostatus. Each data point in
- 752 B-N indicates an individual participant, and data are presented as box and whisker plots,
- 753 minimum to maximum, where the center line indicates the median. The surface marker
- expression in O was visualized by concatenating uncompensated events in FlowJo for each
- participant and indicated T cell population grouped according to CMV serostatus, and then
- 756 geometric mean fluorescence intensity expression data of each CMV group was overlaid onto the
- same histogram plot. Associations between T cell subsets and CMV serostatus were assessed by
- 758 Student's t test with Welch's correction or Mann-Whitney U test, according to normality.
- 759 **p*<0.05, ***p*<0.01, ****p*<0.001, ****p*<0.0001.

760

Figure 3. CD4⁺ and CD8⁺ T cell activation induced memory responses to SARS-CoV-2 Spike peptide pools in older adults.

AIM assays were performed by flow cytometry analysis after whole blood stimulation. (A) Spike

764SARs-CoV-2-specific AIM+CD8+ T cells (expressing CD69 and CD137) were measured as a

proportion of total CD8⁺ T cells. (B) Spike SARs-CoV-2-specific AIM⁺CD4⁺ T cells (expressing

CD25 and OX40L) were measured as a proportion of total CD4⁺ T cells. Spike SARs-CoV-2-

⁷⁶⁷ specific AIM⁺CD4⁺ T cell functional Th1 (C), Th2 (D), and Th17 (E) subsets. Each data point

indicates an individual participant. For A-B data from all individuals is graphed irrespective of

whether they meet cut-off requirements for a 'positive' result. For C-E, only data from

individuals with 'positive' S-CD4⁺ T cell memory responses were graphed. Data are presented as

box and whisker plots, minimum to maximum, where the center line indicates the median.

Associations between CMV serostatus and vaccine dose were assessed by two-way ANOVA,

with Tukey's test post-hoc analysis. **p < 0.01, ***p < 0.001.

774

Figure 4. CD4⁺ and CD8⁺ T cell activation induced memory responses to CytoStim and
 influenza HA peptide pools in older adults.

AIM assays were performed by flow cytometry analysis after whole blood stimulation.

778 CytoStim-induced responses: (A) AIM⁺CD8⁺ T cells (expressing CD69 and CD137) as a

proportion of total CD8⁺ T cells; (B) AIM⁺CD4⁺ T cells (expressing CD25 and OX40L) as a

proportion of total CD4⁺ T cells; AIM⁺CD4⁺ T cell functional Th1 (C), Th2 (D), and Th17 (E)

subsets. Influenza HA-induced responses: (F) AIM⁺CD8⁺ T cells (expressing CD69 and CD137)

as a proportion of total CD8⁺ T cells; (G) AIM⁺CD4⁺ T cells (expressing CD25 and OX40L) as a
 proportion of total CD4⁺ T cells; AIM⁺CD4⁺ T cell functional Th1 (H), Th2 (I), and Th17 (J)

subsets. Each data point indicates an individual participant. Data is pooled from all blood

collections, and for participants with two different collection time points, data are only included

from post-dose 2 collections. Data are presented as box and whisker plots, minimum to

maximum, where the center line indicates the median. Associations between T cell responses

788 CMV serostatus were assessed by Student's t test with Welch's correction or Mann-Whitney U

789 test, according to normality. **p < 0.01, ***p < 0.001, ***p < 0.0001.