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Abstract

Background

Mathematical modelling can aid outbreak response decision-making. However, this
would require collaboration among model developers, decision-makers, and local experts
to incorporate appropriate realism. We conducted a systematic review of modelling
studies on human vaccine-preventable disease (VPD) outbreaks to identify patterns in
modelling practices among collaborations. We complemented this with a mini review of
eligible studies from the foot-and-mouth disease (FMD) literature.

Methods

Three databases were searched for studies published during 1970-2019 that applied
models to assess the impact of an outbreak response. Per included study, we extracted
data on author affiliation type (academic institution, governmental, and
non-governmental organizations), whether at least one author was affiliated to the
country studied, interventions, and model characteristics. Furthermore, the studies were
grouped into two collaboration types: purely academic (papers with only academic
affiliations), and mixed (all other combinations) to help investigate differences in
modelling patterns between collaboration types in the human disease literature.
Additionally, we compared modelling practices between the human VPD and FMD
literature.

Results

Human VPDs formed 228 of 253 included studies. Purely academic collaborations
dominated the human disease studies (56%). Notably, mixed collaborations increased in
the last seven years (2013 - 2019). Most studies had an author in the country studied
(75.2%) but this was more likely among the mixed collaborations. Contrasted to the
human VPDs, mixed collaborations dominated the FMD literature (56%). Furthermore,
FMD studies more often had an author affiliated to the country studied (92%) and used
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complex model design, including stochasticity, and model parametrization and
validation.

Conclusion

The increase in mixed collaboration studies over the past seven years could suggest an
increase in the uptake of modelling for outbreak response decision-making. We
encourage more mixed collaborations between academic and non-academic institutions
and the involvement of locally affiliated authors to help ensure that the studies suit
local contexts.

Introduction 1

Successful outbreak response to infectious diseases is often the result of a highly 2

collaborative process [1]. Decision-making during outbreak response usually requires 3

collaborations between academic and field experts, including governmental and 4

Non-Governmental Organizations (NGOs) [1–5]. These collaborations ensure that 5

important perspectives from both research and operations/implementation are 6

accounted for in the decision-making process. 7

Outbreak response decision-making often requires adaptations to the affected 8

location [1, 5, 6]. The interventions and decisions are usually driven by data/evidence, 9

information, and experiences from the past or in real-time, either locally or from similar 10

phenomena elsewhere [3, 7]. Furthermore, involving local experts in the design of 11

interventions has been found to boost the success of outbreak response efforts [1]. 12

Consequently, outbreak response teams should ideally involve at least one local expert 13

to provide more context [1]. 14

Mathematical modelling can support outbreak response decision-making [8]. 15

Modelling is a proven tool for revealing insights about the extent of disease spread, and 16

impact of interventions, while drawing on lessons learnt to provide recommendations for 17

decision-making during outbreaks [2, 5, 8]. Insights from mathematical modelling, 18

though often useful, only form part of the larger context (socio-economic, political, and 19

so forth) to be considered during an outbreak, making it difficult to determine the 20

extent to which it contributes to outbreak response decision-making [2, 3]. One way to 21

help ensure that modelling contributes to decision-making could be through the conduct 22

of interdisciplinary research between model developers and decision-makers. 23

The link between interdisciplinarity in scientific research — that is, research 24

conducted by authors with diverse scientific backgrounds — and research impact, for 25

example, number of citations has been well-researched [9,10]. However, few studies have 26

investigated the impact of interdisciplinary collaborations on the conduct of scientific 27

research. One such study investigated the impact of interdisciplinarity on the scientific 28

validity of the methods used in a selection of papers that applied machine learning on 29

topics in biology or medicine [11]. The study found that the methods used in the 30

reviewed studies differed according to the nature of the scientific backgrounds of the 31

authors who conducted the research. Our preliminary searches of the literature did not 32

reveal any of such review studies investigating differences in research practices among 33

collaborations in the outbreak response modelling literature. We, therefore, conducted a 34

systematic review of outbreak response modelling studies of human vaccine-preventable 35

diseases with the goal to explore the time and geographic (countries) patterns of 36

collaboration types, and to ascertain differences in practices between the collaboration 37

types in terms of the choice of model characteristics, modelling methods, and other 38

topics. 39
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We sought to answer the following questions with respect to the collaboration 40

landscape in the human disease outbreak response modelling literature: (1) How are the 41

studies distributed in time and geographic locations, and how often is at least one of the 42

collaborators geographically connected to the location being studied? (2) What types of 43

interventions are generally modelled and is there a difference between the conclusions 44

drawn about the impact of interventions, especially, vaccination in comparison with 45

other non-vaccination interventions during outbreaks? (3) Do the model characteristics 46

(structure and dynamics) and modelling practices (parametrization, validation, and so 47

forth) differ between the collaboration types? 48

We acknowledge that there is a parallel body of relevant modelling work in the 49

livestock literature. Specifically, the outbreak response effort that resulted from the 50

2001 foot-and-mouth disease (FMD) virus outbreak in the United Kingdom has been a 51

foundational example of the application of mathematical modelling for decision-making. 52

Subsequent work based on this outbreak has been instrumental in the development of 53

FMD outbreak intervention strategies around the world. Hence, even though the 54

primary scope of this review is the application of models to inform outbreak response 55

for human infectious diseases, we include the relevant FMD references for comparison. 56

In the end, we, therefore, study the differences in terms of collaborations in the human 57

disease modelling literature, and compare our observations to that of the FMD 58

modelling literature to further ascertain any differences in approaches and practices 59

between the human and livestock literature. 60

Materials and methods 61

We followed the 2020 Preferred Reporting Items for Systematic Reviews and 62

Meta-analyses statement (PRISMA 2020) to conduct this systematic review [12]. 63

Eligibility criteria 64

The following definitions were used in the determining study eligibility: 65

• “Outbreak”: a new and sudden rise in the number of cases of a disease in a 66

population, which when left uncontrolled, could lead to large scale geographic 67

spread, AND 68

• “Outbreak response”: an intervention directly triggered by the outbreak of an 69

infectious disease, AND 70

• “Mechanistic models”: mathematical models that use an equation or system of 71

equations to capture the biological mechanisms driving the transmission dynamics 72

of the infectious disease at the level of an individual or population [13,14], AND 73

• “Outbreak intervention assessment”: a mechanistic model-based evaluation of the 74

impact of an outbreak response intervention. 75

We included studies that used a mechanistic model to investigate the impact of 76

interventions triggered by the outbreak of any of the human vaccine-preventable 77

diseases we considered (Table 1 in S1 File), Ebola, or foot-and-mouth disease. Studies 78

were considered unique even if they had a duplicated author list or a slight variation in 79

the author list, probably representing the same modelling group, so far as the content of 80

the paper was different. 81

We excluded studies that satisfied at least one of the following criteria: 82

• Study used a model that is not mechanistic, 83
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• Study is not about an outbreak as defined, 84

• Disease studied is not a human vaccine-preventable disease (Table 1 in S1 File), 85

Ebola or foot-and-mouth disease, 86

• Study’s objective is not to evaluate the impact of an intervention mounted in 87

response to an outbreak, or 88

• Study is not published in English. 89

Information sources 90

On January 15, 2020, we searched Scopus, PubMed, and Web of Science for eligible 91

records. We searched each database from its earliest date of coverage through January 92

15, 2020. 93

Search strategy 94

We constructed and validated search strings specific to each database. To validate the 95

search strings, we first ran them in the specific database’s search engine and obtained a 96

database of records. We then searched the database for well-known papers that fit the 97

criteria for included studies. We did this for each disease on our list. 98

The search strings were constructed by all five reviewers (JMA, XP, EBA, MJF, and 99

JRCP) and in consultation with the Faculty of Science Librarian of Stellenbosch 100

University to reflect three main topics and their synonyms, that is, “outbreak”, 101

“intervention”, and “mechanistic model”. 102

The following are the search strings per database. 103

Scopus (Title, abstract, keywords search): 104

( TITLE-ABS-KEY ( epidemic OR outbreak OR emergency OR reactive OR crisis ) 105

) AND ( TITLE-ABS-KEY ( respon* OR manage* OR control OR interven* OR 106

strateg* ) ) AND ( TITLE-ABS-KEY ( stochastic OR transmission OR computational 107

OR mathematical OR mechanistic OR statistical OR simulation OR ”In silico” OR 108

dynamic* ) ) AND ( TITLE-ABS-KEY ( model* ) ) AND ( ( TITLE-ABS-KEY ( 109

cholera OR dengue OR diphtheria OR ebola OR ”Foot-and-mouth” OR ”foot and 110

mouth” OR fmd OR ”Hepatitis A” OR ”Hepatitis B” OR ”Hepatitis E” OR 111

”Haemophilus influenzae type b” OR hib OR ”Human papillomavirus” OR hpv OR 112

influenza ) ) OR ( TITLE-ABS-KEY ( ”Japanese encephalitis” OR malaria OR measles 113

OR ”Meningococcal meningitis” OR mumps OR pertussis OR ”Whooping cough” OR 114

”Pneumococcal disease” OR poliomyelitis OR polio OR rabies OR rotavirus OR rubella 115

) ) OR ( TITLE-ABS-KEY ( tetanus OR ”Tick-borne encephalitis” OR tuberculosis OR 116

typhoid OR varicella OR chickenpox OR ”Yellow Fever” OR ”vaccine-preventable” ) ) ) 117

PubMed (Title and abstract search): 118

Search ((((((Epidemic OR Outbreak OR Emergency OR Reactive OR Crisis))) AND 119

((Response OR Management OR Control OR Intervention OR Strategies))) AND 120

((Stochastic OR Transmission OR Computational OR Mathematical OR Mechanistic 121

OR Statistical OR Simulation OR ”In silico” OR Dynamic*))) AND model*) AND 122

((Cholera OR Dengue OR Diphtheria OR Ebola OR ”Foot-and-mouth” OR ”foot and 123

mouth” OR FMD OR ”Hepatitis A” OR ”Hepatitis B” OR ”Hepatitis E” OR 124

”Haemophilus influenzae type b” OR Hib OR ”Human papillomavirus” OR HPV OR 125

Influenza OR ”Japanese encephalitis” OR Malaria OR Measles OR ”Meningococcal 126

meningitis” OR Mumps OR Pertussis OR ”Whooping cough” OR ”Pneumococcal 127

disease” OR Poliomyelitis OR Polio OR Rabies OR Rotavirus OR Rubella OR Tetanus 128

OR ”Tick-borne encephalitis” OR Tuberculosis OR Typhoid OR Varicella OR 129

Chickenpox OR ”Yellow Fever” OR ”vaccine-preventable”)) 130
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Web of Science (Topic search): 131

TOPIC: (Epidemic OR Outbreak OR Emergency OR Reactive OR Crisis) AND 132

TOPIC: (Respon* OR Manage* OR Control OR Interven* OR Strateg*)) AND TOPIC: 133

(Stochastic OR Transmission OR Computational OR Mathematical OR Mechanistic OR 134

Statistical OR Simulation OR In silico OR Dynamic*) AND TOPIC: (model*) AND 135

TOPIC: (Cholera OR Dengue OR Diphtheria OR Ebola OR ”Foot-and-mouth” OR 136

”foot and mouth” OR FMD OR ”Hepatitis A” OR ”Hepatitis B” OR ”Hepatitis E” OR 137

”Haemophilus influenzae type b” OR Hib OR ”Human papillomavirus” OR HPV OR 138

Influenza OR ”Japanese encephalitis” OR Malaria OR Measles OR ”Meningococcal 139

meningitis” OR Mumps OR Pertussis OR ”Whooping cough” OR ”Pneumococcal 140

disease” OR Poliomyelitis OR Polio OR Rabies OR Rotavirus OR Rubella OR Tetanus 141

OR ”Tick-borne encephalitis” OR Tuberculosis OR Typhoid OR Varicella OR 142

Chickenpox OR ”Yellow Fever” OR ”vaccine-preventable”) 143

Study selection 144

We used Endnote version X7.8 and Rayyan web application (https://www.rayyan.ai/) 145

to combine the results from the three databases and to identify and remove duplicate 146

records. The unique records were exported into Rayyan web application, where they 147

were screened in two stages by three reviewers (JMA, XP, and EBA). 148

Stage one screening involved excluding studies based on their title and abstract, 149

using the questionnaire that follows. The reviewers only used the information provided 150

in the title and abstract of each study to decide whether it was eligible for inclusion 151

(“Include”), not eligible (“Exclude”), or likely to be included (“Maybe”). The “Include” 152

and “Maybe” category of studies further went through stage two screening described 153

ahead, which was more stringent. 154

Questionnaire for title and abstract screening (Stage 1) 155

1. Is this article written in English? 156

• No: Exclude. Reason: Not English 157

2. Does the title of this article fit the scope of this review? 158

• No: Exclude. Reason: Title out of scope 159

3. Does the topic of the abstract fit the scope of this review? 160

• No: Exclude. Reason: Topic out of scope 161

4. Is this study entirely a review (literature review, systematic review, scoping 162

review, not indicated)? 163

• Yes: Exclude. Reason: Review 164

5. Is any part of this study about an outbreak that happened in the past, was 165

ongoing at the time of the study, or a hypothetical one, including one that could 166

happen in the future? We define an outbreak as a new and sudden rise in the 167

number of cases of a disease in a population, which when left uncontrolled, could 168

lead to large scale geographic spread. 169

• No: Exclude. Reason: Not an outbreak 170

6. Is any part of this study about a human infectious disease (Table 1 in S1 File), 171

Ebola or foot-and-mouth disease in livestock? 172
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• No: Exclude. Reason: Disease not in scope 173

7. Does this study assess the impact – epidemiological or operational - of a real or 174

hypothetical intervention that was mounted or could potentially be mounted in 175

response to an outbreak of the disease in question? Note that we define an 176

assessment as an evaluation of either the absolute or relative impact of an 177

intervention on one of several outcomes including number/proportion of 178

population reached with the intervention (coverage), and a change in size - 179

number of people, duration, spatial - of the outbreak. 180

• No: Exclude. Reason: Not an outbreak intervention assessment 181

• Maybe. Reason: Intervention details unclear 182

8. Does this study solely use static methods for evaluating the intervention? Static 183

methods include surveys, regression methods, descriptive, and exploratory 184

statistical methods. 185

• No: Exclude. Reason: Not a model 186

9. Does this study use any kind of equation, system of equations, or computer 187

simulation to capture the disease’s transmission process or natural history over 188

time? 189

• No: Exclude. Reason: Model not mechanistic 190

• Maybe. Reason: Likely a model 191

Stage one was first piloted with all three reviewers screening the same 50 studies 192

using Rayyan in “blind mode”. This was so that the reviewers could not see each 193

other’s screening decisions (inclusion/exclusion/maybe). After the pilot screening, the 194

results were compared and any inclusion/exclusion conflicts were discussed and resolved. 195

The pilot phase ensured that all the reviewers were using a consistent screening 196

approach. The remaining studies were then screened in duplicate and all conflicting 197

decisions were resolved at the end through discussions among the reviewers. 198

Stage 2 involved screening the included studies from stage 1, using their full text, in 199

duplicate and with the following questionnaire. 200

Questionnaire for full text screening (Stage 2) 201

1. Is this article written in English? (This was necessary because some articles could 202

have English abstracts but non-English full text) 203

• If no, exclude. Reason: Not English 204

2. Is this article a report, commentary or any kind of non-quantitative report? 205

• If yes, exclude. Reason: Article type out of scope 206

3. Is the full text readily available? 207

• If no, mark as Maybe. Reason: Full text not available 208

4. Is this study entirely a review (literature review, systematic review, scoping 209

review, not indicated)? 210

• If yes, exclude. Reason: Review 211

5. Is the study or a part of it about an outbreak, real or hypothetical? 212
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• If no, exclude. Reason: Not an outbreak 213

6. Is the disease a human vaccine-preventable disease (Table 1 in S1 File), Ebola, or 214

foot-and-mouth disease? 215

• If no, exclude. Reason: Not a listed disease 216

7. Does this study solely use static methods for evaluating the intervention? Static 217

methods include surveys, regression methods, descriptive, exploratory statistical 218

methods. 219

• If no, exclude. Reason: Static model or method 220

8. Does this study use any kind of equation, system of equations, or computer 221

simulation to capture the disease’s transmission process in a dynamic way? 222

• If no, exclude. Reason: Model not mechanistic 223

• If unclear, maybe. Reason: Likely a model 224

9. Is the model about within-host dynamics? 225

• If yes, exclude. Reason: Within-host model 226

10. Does this study attempt to assess the impact – epidemiological or operational - of 227

a real or hypothetical intervention that was mounted or could potentially be 228

mounted in response to an outbreak of the disease in question? We define an 229

assessment as an evaluation of either the absolute or relative impact of an 230

intervention on one of several outcomes including number/proportion of 231

population reached with the intervention (coverage), and a change in size - 232

number of people, duration, spatial - of the outbreak. 233

• If no, exclude. Reason: Not an outbreak intervention assessment 234

• If unclear, maybe. Label: Intervention details unclear 235

Data extraction 236

To extract the data from the studies, we used the data extraction questionnaire 237

implemented with the KoboToolbox web application (Section 3 in S1 File). The 238

questionnaire was first piloted with 10 papers among the three reviewers, who worked in 239

duplicate. All conflicts in terms of extracted data were resolved. 240

Following the pilot phase, the full list of included studies was shared among three 241

reviewers (JMA, XP, and EBA), who extracted the relevant data independently. The 242

extracted data was cross-checked by one reviewer (JMA). When a discrepancy was 243

found in the extracted data, the reviewer referred to the original paper and resolved the 244

conflict. 245

We extracted data on the type of publication, author affiliation type 246

(academic/government/non-governmental), country/setting studied, whether at least 247

one author affiliation was situated in the country studied, disease studied, the study 248

objectives (retrospective/prospective impact assessment, timing of the modelling 249

practice with respect to the outbreak (retrospective/prospective/real-time), 250

interventions studied, and whether vaccination was the most impactful intervention 251

when compared as a single intervention (yes/no/inconclusive). A full list of the 252

extracted data items are provided (Section 2 in S1 File). 253

From the model in each paper, we extracted data on the representation of individuals 254

(compartmental vs individual-based), whether spatial structure was represented 255

(yes/no), model structure (deterministic vs stochastic), model parameterization, and 256
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validation. We also extracted a predefined list of outcomes (cases averted, final epidemic 257

size, etc) measured with the models. If an outcome was reported that was not on the 258

pre-defined list, we collected it separately as free text for further analysis. We also 259

extracted data on whether the studies included sensitivity analysis or not. This was to 260

understand how uncertainties in the model inputs were dealt with. We collected data on 261

whether the studies used real world data, that is, excluding simulated data, and whether 262

the data was openly available for download. We also extracted information on whether 263

the code used for the analysis and visualization were made openly available. 264

Data analysis and synthesis 265

To understand how the papers were distributed in terms of author affiliations, we first 266

tallied the unique combinations of author affiliation types. We then grouped the author 267

affiliations into the following two collaboration types and performed all further analyses 268

by stratifying the variable(s) of interest by them: 269

1. Purely academic: papers with only academic author affiliations (academics 270

collaborating with other academics), 271

2. Mixed: papers with a mixture of academic, government and NGO affiliations. 272

This collaboration type also included papers with only government or only NGO 273

affiliations. 274

We first explored the trend in aggregated publications during 1970-2019 by counting 275

the number of publications in each year irrespective of collaboration type. 276

To explore how the publications changed in time with respect to the collaboration 277

types, we tallied the number of publications and relative proportion (mixed versus 278

purely academic collaboration) of studies per year. We lumped together the 279

publications from 1970 to 2005 due to the small numbers. 280

To study how the papers were distributed in terms of geographic locations, we split 281

the studies into those that studied actual versus hypothetical locations and used the 282

subset of studies about actual locations to rank the topmost studied locations (country 283

and continent) by frequency. 284

We also investigated how connected the authors were to the locations studied. Here, 285

we only considered studies on geographic scales up to actual countries and not larger. 286

All studies about locations larger than a country were dropped from this part of the 287

analysis. We tallied, in terms of collaboration types, the number of studies about actual 288

locations (countries) with or without at least one author affiliation in the studied 289

location. If a paper studied more than one location, we treated each location as a 290

separate instance. This increased the denominators accordingly. 291

To summarize the conclusions drawn about the impact of vaccination as a single 292

intervention, we grouped the studies into three categories, that is, studies that modelled 293

non-vaccination interventions, those that modelled vaccination in combination with 294

other interventions, and those that modelled vaccination as a single intervention for 295

comparison with other interventions. The question was only applicable to the last 296

category of interventions, so we counted the number of studies that found vaccination to 297

be the most impactful or not. Where vaccination was not found to be the most 298

impactful, we briefly summarised the reasons and modelling assumptions. 299

For the disease studied, model characteristics (structure, dynamics, and spatial 300

heterogeneity), and modelling practices (parametrization, validation, sensitivity analysis, 301

data and code use and availability), we counted the number of studies per collaboration 302

type and reported the results as percentages and fractions of the total. In counting the 303

number of papers per disease studied and outcome measured, if a study had more than 304

one outcome measured or disease, we treated each instance as unique and counted them 305
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separately. Hence, in such cases, the denominator of the reported fraction increased 306

from the total studies we reported in our search results. 307

To summarise the model outcomes, we stratified by the collaboration type and 308

tallied the outcomes used within each group. We reported the top six most used 309

outcomes by both collaboration types and compared the results between the two. 310

All analyses were perform in R 4.0.5 [15]. We have provided a database of all the 311

screened papers and their associated extracted data in a csv file, which can be accessed 312

at https://osf.io/dmvst/?view_only=b50a8d3ec21b4a07b7977d0f56e79fc3. 313

Additionally, all the analysis tables are provided as a supplement (S2 File). 314

Results 315

Study selection 316

We retrieved a total of 12, 986 bibliographic records from Scopus, PubMed, and Web of 317

Science (Fig 1). Using Endnote and Rayyan, we identified and removed 7, 974 318

duplicates, resulting in 5, 012 unique records for title, abstract, and full text screening. 319

We exported the unique records into Rayyan for the screening in two stages. Stage 1 320

involved a title and abstract screening in duplicate by the three reviewers and resulted 321

4, 211 excluded studies. The stage 2 screening, which involved screening the full text, 322

led to 548 excluded studies. 323

After the full text screening, 253 studies remained for the data extraction stage of 324

which 228 on human vaccine-preventable diseases and 25 studies were on FMD. The 325

FMD studies were only used for comparisons. 326

Publications over time 327

Overall, a few outbreak response modelling papers were published between 1970-2005 328

(3.9%; 9/228), followed by a marked increase in publications until 2019 (96.1%; 220/228) 329

(Fig 2). 330

We first categorised the papers according to the unique combinations of author 331

affiliation types (Table 1). 332

Overall, papers with only authors from academic institution affiliations were the 333

most common (56.1%; 128/228). Papers with author affiliations from academic and 334

governmental organization affiliations were the second most common (25.0%; 57/228), 335

and followed by those with academic and NGO affiliations (7.5%; 17/228). The least 336

common were those with governmental and NGO affiliations (0.9%; 2/228). 337

As explained earlier, we ultimately grouped the author affiliation combinations into 338

two collaboration types. There were more purely academic collaborations (56.1%; 339

128/228) than mixed collaborations (43.9%; 100/228). 340

To investigate the changes in collaboration types over time, we calculated the 341

number and proportion of studies per collaboration type per year (Fig 3). In the past 342

seven years (2013-2019), there was an absolute increase in the number of papers by both 343

collaboration types. However, in the same period, there was no increase in the relative 344

proportion of publications per year of mixed collaborations (S1 Fig). 345

Locations studied 346

Overall, most of the papers were about actual locations (78.6%; 195/248). Among these, 347

some studied a geographic location spanning more than one country but not classifiable 348

as a continent (9.7%; 19/195). Among those 19 studies, West Africa was studied the 349
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Fig 1. The PRISMA flow chart. Numbers described here include studies for
both the human vaccine-preventable diseases and foot-and-mouth disease.

most (47.4%; 9/19), followed by the whole globe (36.8%; 7/19), Southeast Asia 350

(10.5%; 2/19), and the Northern Hemisphere (5.3%; 1/19). 351

When aggregated into continents, the Americas were studied the most 352

(36.4%; 68/187), followed by Asia (25.1%; 47/187), Africa (24.6%; 46/187), Europe 353

(13.4%; 25/187), and Oceania (0.5%; 1/187). 354

When disaggregated into countries, the United States was the most studied 355

(21.1%; 37/176), followed by China (10.8%; 19/176), Canada (6.2%; 11/176), and Sierra 356

Leone (5.7%; 10/176). 357

Connection of authors to the location studied 358

We investigated the connection of the authors to the location studied and found that, 359

overall, there were more studies with at least one author connected to the studied 360

location (75.2%; 118/157) than not (24.8%; 39/157). 361

When stratified by collaboration types, mixed collaborations were more likely to 362

have studies with at least one author in the location studied (83.1%; 63/77) compared 363

with the purely academic collaborations (67.5%; 54/80). 364
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Fig 2. Number of publications per year (1970-2019).

Table 1. Number of studies per unique combination of author affiliations
(human diseases). Here, we also show the grouping of author affiliation
combinations into purely academic and mixed collaborations. Purely
academic collaborations refer to those authored by only authors with
academic institution affiliations whereas mixed collaborations include those
authored by a mixture of authors with academic institution affiliations,
government institutions, and NGOs or only one of the last two.

Collaboration type Author affiliation combination Number of publications

Purely academic academic only 128

Mixed academic + governmental 57

Mixed academic + NGO 17

Mixed academic + governmental + NGO 14

Mixed governmental only 5

Mixed NGO only 5

Mixed governmental + NGO 2

Total 228

Diseases studied 365

Overall, the number of studies per disease was disproportionately distributed (Table 2). 366

Influenza was the most studied (57.2%; 135/236), followed by Ebola (14.4%; 34/236), 367

Dengue (5.1%; 12/236), and a tie between Cholera (4.7%; 11/236), and Measles 368

(4.7%; 11/236). 369

When the diseases were broken down in terms of collaboration type, there were clear 370

differences in their distribution. Influenza, Dengue, and Measles were more studied by 371

mixed collaborations whereas Ebola and Cholera were more studied by purely academic 372
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Fig 3. Total studies by collaboration type. The period from 1970-2005 has
been lumped up due to the lack of publications. Academic collaborations
refer to those authored by only authors with academic institution affiliations
whereas mixed collaborations include those authored by a mixture of
authors with academic institution affiliations, government institutions, and
NGOs. Mixed collaborations are represented by the turquoise bars and
purely academic collaborations by the brown bars.

collaborations. 373

Intervention types and impact of vaccination 374

There were more papers about non-vaccination interventions (48.2%; 110/228), followed 375

by those that modelled vaccination as part of a mix of interventions or do-nothing 376

counterfactuals (41.7%; 95/228), and those that modelled vaccination as a single 377

intervention for side-by-side comparison with other non-vaccination interventions 378

(10.1%; 23/228). 379

The third group of papers that modelled vaccination as a single intervention allowed 380

us to collate conclusions on the sole impact of vaccination. There were approximately 381

the same number of studies in this set of studies belonging to the two collaborations 382

types. 383

Concerning the conclusions about the sole impact of vaccination as a single 384

intervention, most of the studies found vaccination to be the most impactful single 385

intervention in side-by-side comparison with other non-vaccination interventions 386

(82.6%; 19/23). Few studies found the vaccination to be less impactful compared to 387

other interventions and for various reasons (17.4%; 4/23). Influenza was the disease 388

studied in these latter four cases. Isolation, and antivirals were found to be more 389

impactful than vaccination due to reasons including the delay until a strain-specific 390
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Table 2. Number of studies per disease and collaboration type. Percentages
are calculated from the row totals. The number of studies making up the
percentages are shown in brackets. In counting the number of papers per
disease studied, if a study was about more than one disease, we treated each
instance as unique and counted them separately, leading to a total greater
than the reported number of studies.

Disease Purely academic Mixed Total

Influenza 52.6% (71) 47.4% (64) 135

Ebola 70.6% (24) 29.4% (10) 35

Dengue 50.0% (6) 50.0% (6) 12

Cholera 81.8% (9) 18.2% (2) 11

Measles 36.4% (4) 63.6% (7) 11

Tuberculosis 85.7% (6) 14.3% (1) 7

Poliomyelitis 28.6% (2) 71.4% (5) 7

Varicella 50.0% (2) 50.0% (2) 4

Meningococcal meningitis 33.3% (1) 66.7% (2) 3

Pertussis 50.0% (1) 50.0% (1) 2

Pneumococcal disease 50.0% (1) 50.0% (1) 2

Yellow fever 50.0% (1) 50.0% (1) 2

Hepatitis A 100.0% (1) 0.0% (0) 1

Rubella 100.0% (1) 0.0% (0) 1

Typhoid 100.0% (1) 0.0% (0) 1

Hepatitis B 0.0% (0) 100.0% (1) 1

Malaria 0.0% (0) 100.0% (1) 1

Mumps 0.0% (0) 100.0% (1) 1

Overall 55.5% (131) 44.5% (105) 100% (236)

vaccine is developed to control the disease. 391

Model structure, spatial heterogeneity, and model dynamics 392

There were more compartmental models (78.5%; 179/228) than agent-based models 393

(20.2%; 46/228) with no clear difference in preference between the two collaboration 394

types. 395

Approximately a third of the papers included spatial heterogeneity (28.9%; 66/228) 396

with no clear difference between the two collaboration types. 397

Deterministic models were the most common (62.3%; 142/228) compared to 398

stochastic (31.6%; 72/228) and hybrid models (6.1%; 14/228), that is models with both 399

deterministic and stochastic components. Here, mixed collaborations were more likely 400

to use stochastic models (40.0%; 40/100) than purely academic collaborations 401

(25.0%; 32/128). 402

Model parametrization and validation 403

The top three most commonly used parametrization methods included: combining 404

literature sources and expert opinion/assumptions, literature sources and fitting to data, 405

and literature sources only (Table 3). 406

The most common parametrization method among mixed collaborations was the 407

combination of literature sources and fitting (27.3%; 35/128), whereas the combination 408
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of literature and expert opinion was the most common among purely academic 409

collaborations (28.0%; 28/100). 410

Table 3. Model parametrization methods. We define parametrization as the
method of determining the parameter values for the model. In the table,
“Literature” means the model’s parameters were obtained from literature
sources. “Expert opinion” means the values were assumed in consultation
with experts of the field. “Fitted” means the model’s parameters were
obtained through some form of mathematical or statistical fitting to a time
series of data.

Collaboration
type

Literature
and expert
opinion

Literature
and fitted

Literature Expert
opinion

Literature,
expert
opinion,
and fitted

Fitted Expert
opinion
and
fitted

Total

Academic 27.3% (35) 22.7% (29) 18.0% (23) 13.3% (17) 9.4% (12) 7.0% (9) 2.3% (3) 128

Mixed 25.0% (25) 28.0% (28) 15.0% (15) 7.0% (7) 19.0% (19) 5.0% (5) 1.0% (1) 100

Overall 26.3% (60) 25.0% (57) 16.7% (38) 10.5% (24) 13.6% (31) 6.1% (14) 1.8% (4) 228

Most studies did not perform any form of validation (63.2%; 144/228). 411

Approximately a third used data to validate their models (34.6%; 79/228) (Table 4). 412

Mixed collaborations were more likely to validate their model with data or the output of 413

an independent model. 414

Table 4. Model validation methods. We define model validation as the
method by which the model’s performance was measured. “None” means no
validation was performed, or the model’s output was compared to another
output from the same model. “Data” means the model was compared to
independently observed data. “Another model’s output” means the model’s
output was compared to an independent model’s output.

Collaboration
type

None Data Another
model’s
output

Data and
another
model

Total

Academic 70.3% (90) 28.9% (37) 0.8% (1) 0.0% (0) 128

Mixed 54.0% (54) 42.0% (42) 3.0% (3) 1.0% (1) 100

Overall 63.2%
(144)

34.6% (79) 1.8% (4) 0.4% (1) 228

Data and model simulation code 415

More than half of the papers used datasets collected independent of the study for either 416

the model parametrization or validation process (56.1%; 128/228). These papers were 417

split approximately equally between the two collaboration types. 418

The use of accessible data was, however, different between the two groups. Purely 419

academic collaborations were more likely to use data that could be accessed in the 420

public domain (81.0%; 51/63) compared to mixed collaborations (56.9%; 37/65). 421

Few papers provided access to the model simulation code (1.7%; 4/228). Here, if a 422

paper indicated that the authors could be contacted for the code, it was deemed as 423

inaccessible due to the many hurdles with getting the code in time. Some papers 424

reported the computer application/software/program/package used (R, Python, C++, 425

Matlab, and so forth) but we did not collect that information. 426
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Patterns in the foot and mouth disease (FMD) literature 427

There were 25 studies about foot and mouth disease outbreaks. Due to the small 428

number of studies, the absolute differences between the two collaboration types were 429

generally not large enough to be considered (S2 File), hence, we report on the 430

aggregated patterns. 431

In terms of collaboration types, slightly more than half of the 25 studies were 432

authored by mixed collaborations (56.0%; 14/25) than purely academic collaborations 433

(44.0%; 11/25). Almost all the papers had at least one author in the location studied 434

(92.0%; 23/25). 435

Overall, vaccination was modelled as a single intervention for comparison in more 436

than half of the studies (56.0%; 14/25), followed by vaccination in combination with 437

other interventions (28.0%; 7/25), and no vaccination (16.0%; 4/25). Few of the first set 438

of studies found vaccination to be the most impactful as a single intervention 439

(14.3%; 2/14). 440

In general, the FMD models had more agent-based (76.0%; 19/25) and spatially 441

explicit structure (72.0%; 18/25), largely used stochastic dynamics (56.0%; 14/25), and 442

performed more sensitivity analyses (56.0%; 14/25). 443

In terms of model parametrization, the most common method was the combined use 444

of literature sources and expert opinion (28.0%; 7/25), followed by fitting to data only 445

(20.0%; 5/25), and the combined use of literature sources, expert opinion, and fitting to 446

data (16.0%; 4/25). Here, mixed collaborations were more likely than purely academic 447

collaborations to combine literature sources and expert opinion (42.9%6/14). 448

Furthermore, most of the FMD models were not validated (72.0%; 18/25). 449

Discussion 450

For the period 1970− 2019, co-authorship by purely academic collaborations formed 451

over 56% of the outbreak response impact modelling studies of human 452

vaccine-preventable diseases. Both collaboration types increased in absolute numbers 453

over the past seven years. Regarding modelling practices between the two collaboration 454

types, mixed collaborations were more likely to: (i) include authors affiliated through 455

their institutions to the location studied, (ii) use more complex modelling practices 456

including stochastic model dynamics, parametrization methods involving a combination 457

of literature sources, expert opinion/assumptions, and fitting to data, and validate their 458

models with data collected independent of the study. Even though this review was about 459

human vaccine-preventable diseases, only 51.8% of the studies modelled vaccination in 460

some form. Moreover, only 10.1% of the total studies modelled vaccination for 461

comparison with other non-vaccination strategies in the same analysis. Influenza was 462

disproportionately the most studied disease, followed by Ebola, and Dengue. 463

There were several differences in models and practices between the human disease 464

literature and foot and mouth disease (FMD). Mixed collaborations dominated the 465

FMD literature, with almost all papers having an author in the location studied. 466

Furthermore, most of the FMD models and modelling practices were more complex 467

involving the use of spatial, stochastic, agent-based models. However, the FMD models 468

were less likely to be validated with real world data. 469

Collaborations, especially between authors from academic institutions, governmental, 470

and non-governmental organizations responsible for outbreak response, could lead to 471

knowledge transfer and improved decision-making [16]. Moreover, such diversity in 472

modelling collaborations could expand the skill sets needed to solve the complex real 473

world outbreak response needs. However, it is well known that there is a weak link 474

between academic research and decision-making in general, and research findings are 475
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often not easily translated into decisions [16–18]. This gap in knowledge translation 476

exists especially between outbreak response researchers and public health 477

decision-makers [16,19]. There are examples of the commissioning of modelling by 478

organisations such as the US Centers for Disease Control and Prevention (CDC) and 479

the World Health Organization (WHO) to inform decision-making during past 480

outbreaks of Influenza, Ebola, Zika, and Dengue [16]. However, many decision-makers 481

remain cautious about the uptake of modelling due, in part, to issues about 482

transparency in assumptions, credibility and ease of use of modelling software, and 483

adaptability of the results to other settings and existing policies [16]. 484

To bridge this knowledge translation gap between modellers and decision-makers, 485

modelling collaborations that deepen the interaction between model developers and 486

decision-making have been proposed [17,19]. This could be achieved through the 487

sharing of expertise so that the academics formulate, parametrize, and validate the 488

models taking into account the expert opinions of the decision-makers so that the 489

findings are more tailored towards implementation. Mixed or interdisciplinary 490

collaborations have been reported to be strongly associated with research impact and 491

translation to decision-making [18]. Hence, outbreak response, which is broadly an 492

operational field, would ideally have modelling groups/collaborations that are comprised 493

of academics and decision-makers to bridge this gap. In this review, we observed an 494

absolute increase in the number of papers published by mixed collaborations (Fig 3). 495

This could suggest an increase in the uptake or recognition of modelling as an outbreak 496

response decision-making tool. Future research to investigate and explain this increase 497

could advance our understanding of the contribution of modelling to outbreak response 498

decision-making. 499

The inclusion of local experts in outbreak response modelling teams helps with more 500

tailored problem-solving and decision-making and better reception of the decisions 501

made [7]. In that regard, mathematical modelling collaborations involving local experts 502

or, in this review, locally affiliated co-authors are an important first step towards 503

achieving this. We found that most of the human disease studies had authors with an 504

institutional affiliation in the location studied. We observed the same pattern for FMD 505

albeit at a much higher percentage. However, when the human disease data were 506

disaggregated, the results showed that mixed collaborations had a much higher 507

percentage of studies with at least one author in the studied location compared to 508

purely academic collaborations. Coupling this with the absolute increase in publications 509

by mixed collaborations in the past seven years could suggest an increase in the uptake 510

of modelling as a public health decision-making tool. However, we did not measure this 511

causality. Research that measures the direct impact of mathematical modelling in public 512

health decision-making remains lacking in the literature [16]. Future studies designed to 513

investigate this uptake of models and whether it has had an impact on outbreak 514

response would contribute meaningfully to the field of outbreak response modelling. 515

Three classes of interventions with respect to vaccination were modelled: 516

non-vaccination (mostly antiviral use and non-pharmaceutical interventions), 517

vaccination mixed with other complementary non-vaccination interventions, and 518

vaccination as a single intervention for side-by-side comparison with other 519

non-vaccination alternatives. The last class of interventions were the only eligible set for 520

our analysis of the conclusions about whether vaccination is always the most impactful 521

intervention when modelling is used as the assessment tool. Even though all the 522

reviewed studies were about human vaccine-preventable diseases, only 10.1% of the 523

studies modelled vaccination as a single intervention for side-by-side comparison with 524

non-vaccination interventions. This lack of studies assessing the sole impact of 525

vaccination reflects the reality that vaccination is often implemented alongside other 526

interventions and never alone, making it difficult to assess its sole impact. Nevertheless, 527
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mathematical modelling is an ethically viable way to assess the sole impact of 528

vaccination, and hence, an essential tool for decision-making. 529

Among the studies that modelled vaccination as a single intervention for comparison 530

with other single non-vaccination interventions, vaccination was found to be the most 531

impactful intervention in 82% of the studies. Four studies out of the 23 that modelled 532

influenza found case isolation [20–22] and antiviral prophylaxis and/or therapeutics [23] 533

to be more impactful than vaccination assuming those interventions could be 534

implemented immediately, given significantly efficient isolation and large antiviral 535

stockpiles before the outbreak/pandemic. Among these four studies, some common 536

assumptions that influenced how vaccination was implemented included: the late arrival 537

of effective vaccines [20], low versus high vaccination rates [21], the use of partially 538

effective pre-existing vaccines against the current strain reactively [24] or 539

pre-emptively [25]. In all four studies, it was, however, recommended that, vaccination 540

be used in combination with the alternative interventions. Even though antivirals were 541

found to be more impactful in some cases, its prolonged use was discouraged to prevent 542

the development of antiviral resistance [24]. On the other hand, there was a high 543

percentage of studies in the FMD literature about the use of vaccination as a single 544

intervention and vaccination was rarely found to be the most impactful intervention. 545

We found some commonalities and differences in the choice of model structure and 546

dynamics between the two collaboration types in the human disease literature. Mixed 547

collaborations were more likely to use “complex” models and practices. We are not 548

making any value judgements with regards to complexity but are only highlighting these 549

differences that might require further investigation. Moreover, it is common to model an 550

outbreak using alternative model choices and assumptions depending on the question 551

being answered [26]. However, the results must always be interpreted with cognisance of 552

the limitations/assumptions of the model. The use of more complex models and 553

practices by mixed collaborations is likely due to the fact that often, real world public 554

health policy-related decision-making is operational, requiring finer details in models 555

and approaches to answer the questions posed in a practical way. Our definition of 556

mixed collaborations meant that it may have involved decision-makers. It is, therefore, 557

likely that their need for practical solutions could have influenced higher levels of model 558

details or complexity. 559

The FMD models were generally more complex than the human disease models. 560

This is not surprising because the nature of FMD spread often requires the inclusion of 561

farm structure, farm connectivity, and demographics to capture the disease’s dynamics 562

accurately [27]. Future studies designed to explain the differences in modelling practices 563

of human outbreak response modelling groups might help to explain what we have 564

observed in this review. 565

A little over half of the human disease papers used observed data for parametrization 566

or validation. Additionally, only 4 studies shared their code in an easy to access form. 567

On the other hand, the FMD models were generally not validated with observed data. 568

Owing to this, it might be difficult to reproduce some of the results in these outbreak 569

response modelling studies. We recognise that data sharing in public health raises a lot 570

of debate regarding privacy and intellectual property, and often, authors are hindered by 571

institutional data sharing policies [28]. We, however, recommend that data and code be 572

shared where possible to promote open science practices that help advance the field. 573

This review had several limitations. First, outbreak response models and analyses 574

are not always published in peer-reviewed journals, but this systematic review only 575

focussed on peer-reviewed articles. It is, therefore, possible that some relevant studies 576

were missed by our search strategy. Second, we used the author list and affiliations to 577

classify studies as either purely academic or mixed. However, this could cause some 578

mixed collaborations to be misclassified as purely academic, especially in cases where 579
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non-academics contributed to papers classified as purely academic but were not 580

included on the author list. It is, however, standard practice to include individuals who 581

contributed substantially to a piece of scientific writing, hence, if that was not done for 582

a paper, it could imply that the level of interaction was not high enough to warrant the 583

credit of authorship. Third, in the absence of an explicit measure of contribution of 584

mathematical modelling to outbreak response decision-making, we used mixed 585

collaborations as a proxy. Thus, we may be under-estimating the number of mixed 586

collaborations in the literature. Forth, we only surveyed the literature on a specific 587

study design – mechanistic models. We excluded statistical models and other 588

computational models, which are not mechanistic. Hence, the results of this systematic 589

review should only be interpreted in the context of the mechanistic modelling landscape. 590

Furthermore, it is also possible that some purely academic collaborations contribute to 591

decision-making whereas some mixed collaborations are purely an academic exercise. 592

Also, we conducted our database searches in January 2020 and therefore do not reflect 593

the literature, or any changes in practice, associated with the COVID-19 pandemic. 594

Lastly, by only including papers published in English, we most certainly missed papers 595

published in other languages. 596

Numerous factors could explain the patterns we have observed in this review, and we 597

would recommend future studies that will use appropriate study designs, for example, 598

interviews of modelling groups and public health decision-makers, to explain why 599

certain model choices and modelling practices were made by the collaboration types. 600

Future studies should investigate when modelling results directly impacted 601

decision-making and what determined that to identify best practices that will 602

strengthen the link between modelling and decision-making in the future. We expect 603

that collaboration between academia, decision-makers, and local experts will enhance 604

decision-making by accounting for aspects of policy and decision-making that might be 605

overlooked in studies conducted mainly as a theoretical exercise. 606

Other information 607

A protocol following the PRISMA guidelines for systematic review protocols and 608

outlining the procedures for this systematic review was registered on PROSPERO with 609

registration number CRD42020160803 and published through a peer-reviewed 610

process [29]. 611

Supporting information 612

S1 File Search strings and results, data items extracted, and questionnaire 613

for data extraction. 614

S1 Fig Collaboration patterns in time (proportions per year). 615

S2 File Analysis of extracted data. 616

S3 Table PRISMA checklist. 617
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