Poor vastus medialis muscle quality is associated with disrupted cartilage integrity in mild knee osteoarthritis

Atsushi Hoki, PT1, *Hirotaka Iijima, PT, PhD2,3, Tsubasa Iwasaki, PT, MSc1, Yoshikazu Matsuda, MD4,5

1Department of Physical Therapy, Matsuda Orthopedic Clinic, Saitama, Japan
2Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, USA
3Department of System Design Engineering, Faculty of Science and Technology, Keio University, Yokohama, Japan
4Department of Orthopedic Surgery, Matsuda Orthopedic Clinic, Saitama, Japan
5Department of Pharmacy, Josai University, Saitama, Japan

*Corresponding author:
Hirotaka Iijima, PT, PhD
Suite 308, Bridgeside Point Building II, 450 Technology Drive, Pittsburgh, PA 15219
Phone: 412-799-4977
Email: iijimahirotaka@gmail.com

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
ABSTRACT

Objective: Identification of patients at high risk of knee osteoarthritis (KOA) using a noninvasive method at an earlier stage of the disease is a fundamental step in preventing disease progression. Although accumulated adipose tissue (i.e., poor quality) in the quadriceps muscle is a potent predictor of disease development, the relationship between quadriceps muscle quality and structural integrity has not been fully clarified. Using an ultrasound technique for muscle quality assessment, this study aimed to determine whether poor-quality quadriceps muscle is associated with structural abnormalities in the earlier stages of KOA.

Design: This study included 49 patients (age: 44-78 years, 65.3% women) with 52 knees (Kellgren Lawrence grade 1-2). The sample size required was 46 knees. Ultrasound was used to assess the echo intensity (EI) of the vastus medialis (VM) with consideration of ultrasound wave attenuation caused by subcutaneous fat (i.e., corrected EI). Structural abnormalities were assessed using whole-organ magnetic resonance score (WORMS). A generalized linear mixed model was used to assess the relationship between corrected EI and WORMS total score. Sensitivity analysis focusing on the WORMS cartilage sub-score was conducted.

Results: Increased corrected EI in the VM was significantly associated with higher joint structural abnormalities (i.e., WORMS total score) after adjustment for covariates. Sensitivity analysis revealed a similar relationship between muscle quality and WORMS cartilage sub-score.

Conclusions: Patients with poor muscle quality in the VM displayed higher disease severity at an earlier stage of KOA. This study supports the use of ultrasound as a possible tool to identify patients at high risk of disease progression.

Keywords
Knee osteoarthritis, Quadriceps muscle quality, Echo intensity, Cartilage integrity
Introduction

Knee osteoarthritis (KOA) limits daily activities owing to the emergence of pain and functional disability\(^1\). KOA represented the 15th leading cause of disability worldwide in 2019, and the number of years lived with KOA-induced disability increased by 39% from 1990 to 2019\(^2\)\(^-\)\(^3\), suggesting that the impact of KOA on the society is rapidly expanding. Nevertheless, progress in developing effective interventions for KOA has been slow, with current therapeutic strategies primarily focusing on symptom management, such as pain reduction and compensatory approaches to improve physical function\(^4\). Although total knee replacement is considered an effective treatment at an advanced stage of KOA, an increase in the number of surgical operations is associated with substantial health costs and side effects\(^5\). Therefore, the development of effective disease-modifying treatments to reduce the high economic burden of KOA is a critical challenge.

Identification of modifiable risk factors for joint structural damage has accelerated the development of effective disease-modifying treatments. This is particularly true at an earlier stage of KOA because proper management before the occurrence of major structural damage may allow restoration of joint homeostasis\(^6\). Although limited evidence is available for modifiable risk factors in earlier stages of KOA, physical activity, obesity, and biomechanical factors, including weak muscle strength, are well-known factors associated with established KOA\(^7\). Notably, a large meta-analysis revealed that weakness of the quadriceps muscle is a common denominator associated with the development of established KOA\(^8\), which is also gradually recognized in earlier stages of KOA\(^9\). An enhanced understanding of muscle dysfunction at an earlier stage of KOA as a modifiable risk factor would help identify patients at high risk of disease progression and optimize rehabilitative therapeutics in clinical settings.
Low strength of the quadriceps in patients with KOA is attributed, at least in part, to loss of muscle quality, conceptualized as the capacity to generate force relative to muscle mass. A meta-analysis showed that quadriceps intramuscular fat infiltration, a contributor to poor muscle quality, increased in patients with mild-to-moderate KOA compared to healthy older adults. Another recent study supports this theory demonstrating that patients with mild KOA display poor quadriceps muscle quality, especially the vastus medialis (VM), compared with healthy older adults. Accumulated non-contractile (i.e., adipose) tissue causes a decline in muscle strength and, therefore, may lead to the initiation and/or development of KOA. Indeed, a longitudinal study reported that fat content in the VM muscle detected by magnetic resonance imaging (MRI) was associated with greater cartilage volume loss and bone marrow lesions after 2 years in patients with mild-to-moderate KOA. However, MRI is not a convenient assessment tool for muscle quality in clinical settings. For muscle quality to be a potent therapeutic target in the clinical setting, determining the relationship between muscle quality assessed by noninvasive methods and structural abnormalities in patients with KOA, especially in the early stage of the disease, is a fundamental next step.

Therefore, this cross-sectional study tested the hypothesis that poor quadriceps muscle quality is associated with higher structural abnormalities in patients with early-stage KOA. In the assessment of quadriceps muscle quality, we used non-invasive, reliable, and validated ultrasound-based methods and echo intensity (EI) as an accepted index for muscle quality. We then determined whether EI of the quadriceps muscle is associated with structural abnormalities identified on MRI, a method that is sensitive to monitoring structural changes, compared to commonly used radiographic assessment. We used a semi-quantitative method for the assessment of MRI findings and compared these with whole-organ changes and subcategories. Because ultrasound-based muscle quality assessment is easy to use and is less
influenced by knee pain severity17, the findings of this study would support the use of ultrasound as a powerful tool to identify patients at high risk of disease development and provide a framework for future interventional studies.

\textbf{Methods}

\textbf{Subjects}

Patients with KOA were recruited from the outpatient department of the Matsuda Orthopedic Clinic in Japan, in 2021. All the recruited participants had a history of pain in one or both knees. All patients underwent lower extremity radiography and MRI. Presence of KOA was assessed by an experienced orthopedic surgeon using the Kellgren and Lawrence grading scale (KL grade)18. The eligibility criteria were as follows: (1) mild KOA with KL grade 1-2; (2) no osteonecrosis of the medial femoral condyle; (3) no history of surgery to the extremities; (4) ability to walk without an assistive device; (5) no cognitive dysfunction; (6) no neuromuscular disease; and (7) no trauma, all of which were assessed based on information in medical records. Because radiography and MRI were available only for painful knee(s), this study could not consider bilateral knee OA cases separately from unilateral cases. There was no limit for the time interval between the diagnosis of these disease conditions and study recruitment. This study was approved by the Ethics Committee of the Medical Corporation Nagomi (No. 20210427). All the participants were required to provide signed informed consent.

\textbf{Measurements}
Ultrasound images and MRIs were obtained at the knee joint of the symptomatic side, such as pain or functional limitations in daily activity. Ultrasound-based muscle quality and MRI-based structural alterations were evaluated as the outcome variables. Demographic characteristics, ultrasound-based muscle thickness (MT), and self-reported measures of knee pain and disability were also assessed as participant characteristics and/or covariates.

Ultrasound imaging of VM muscle

Ultrasound images of the painful knee(s) were acquired using a B-mode imaging device (SNiBLE, Konica Minolta Ltd., Japan) equipped using an 8-MHz linear-array probe. Owing to the lack of evidence for the specific ultrasound parameters for the assessment of muscle quality in VM, ultrasound settings were optimized to visually discriminate the fascia of the VM from the muscle fiber or other surrounding tissues (frequency: 9 MHz, gain: 25 dB, dynamic range: 60). The ultrasound settings were kept consistent across all participants. The images were taken in the supine position with the arms and legs relaxed (Figure 1A). The VM was determined at the medial side 30% distal between the great trochanter and lateral epicondyle. The head of the probe was maintained perpendicular to the muscles examined. A large amount of water-soluble transmission gel (PROJELLY, Jex Inc., Japan) was applied to the skin to enhance acoustic coupling. All ultrasound imaging was performed by a well-trained investigator (AH) with an excellent intraclass correlation coefficient (ICC1,1: 0.948, 95% confidence interval [CI]: 0.912–0.970). The captured ultrasound images were used for the assessment of EI using ImageJ software (version 1.53, National Institutes of Health, USA). Regions of interest were selected at depths of 1.0-4.0 cm. The EI of the analysis region was represented using grayscale values from 0 (black) to 255 (white), with a higher mean pixel intensity value indicating non-lean tissue and, thus, poor muscle quality. To account for the
effect of subcutaneous fat thickness on echo measurements, a correction factor was applied to echo measurements (Equation 1)21 as recommended in several studies22,23. The formula for the corrected EI was as follows:

\[y_2 = y_1 + (x \cdot cf) \]

\(y_2 \), corrected echo intensity; \(y_1 \), raw echo intensity; \(x \), subcutaneous fat thickness; \(cf \), correction factor of 40.5278.

Subcutaneous fat thickness was measured from the superior border of the superficial aponeurosis to the inferior border of the dermis layer, per the established protocol validated by MRI and computed tomography21,24. A higher EI indicates increased adipose tissue and water content within the muscle. In addition, as a covariate, MT (cm) was measured from the cortex of the femur to the superior border of the superficial aponeurosis of the VM muscle25. The image analysis procedure for EI, subcutaneous fat thickness, and MT is illustrated in Figure 1B.

\textit{MRI for structural abnormalities in the knee joint}

Structural abnormalities in the knee joint were identified using MRI (1.5 Tesla whole-body MR system, Canon Medical Systems, Japan). Images were obtained as sagittal proton-density-weighted images (3600 msec TR (Repetition Time), 30 msec TE (Echo Time), 256\times384 matrix, 3.5 mm slice thickness, 0.3 mm inter-slice gap, 180 mm\times180 mm field of view, TSE fact (Turbo Spin Echo fact): 15, scan time: 3 min, frequency encoding: anterior-posterior). We used a semi-quantitative scoring method of the whole-organ magnetic resonance imaging score (WORMS)26, which includes the following categories: (1) cartilage signal and morphology, (2) subarticular bone marrow abnormality, (3) subarticular cysts, (4)
subarticular bone attrition, (5) marginal osteophytes, (6) medial and lateral meniscal integrity, (7) anterior and posterior cruciate ligament integrity, (8) medial and lateral collateral ligament integrity, (9) synovitis, loose bodies, and (10) periarticular cysts/bursae. The assessment was performed by the same investigator (AH) who had undergone three weeks of formal training by an experienced orthopedic surgeon and radiologist before the study. The intraclass correlation coefficient was good (ICC₁,₁: 0.849, 95% confidence interval [CI]: 0.752, 0.910).

Participant characteristics and covariates

Data on age, sex, and height were self-reported by participants. Body mass was measured on a digital scale with the participants dressed but not wearing shoes. Body mass index (BMI) was calculated by dividing body mass (in kg) by height (in m²). An image in the anteroposterior view in the weight-bearing position was obtained for all subjects. We assessed the femur-tibia angle (FTA) as a measure of the anatomical axis using anteroposterior radiography in the weight-bearing position (higher values indicate more varus alignment). The center of the FTA was defined from three points: a point at the base of the tibial spines, at bisecting the femur and tibia, originating 10 cm from the knee joint surface²⁷. In consideration of sex differences in knee alignment, corrected FTA was used for analysis by the addition of 3.5° for men and 6.4° for men, respectively²⁷. All subjects completed the Knee Injury and Osteoarthritis Outcome Score (KOOS)²⁸. The KOOS has the following subcategories: pain, symptoms, activities of daily living (ADL), sport and recreation function, and knee-related quality of life, with higher scores (0-100) representing better function. This study used the KOOS pain and ADL subscales for descriptive analysis.
Statistical analysis

The sample size was calculated on the basis of the pilot data of patients with KOA (n = 20) to detect a significant relationship between WORMS and EI and corrected EI of the VM muscle in a linear regression analysis using Power and Sample Size Program, version 3.1.6 (Vanderbilt University Medical Center, USA)\(^{29}\). Earlier data indicated that the standard deviations of the WORMS and EI were 9.415 and 17.575, respectively, with a slope estimate of 0.209 obtained when WORMS was regressed against EI. If the true slope of the line obtained by regressing WORMS against EI is 0.209, then we will need to study 46 subjects to be able to reject the null hypothesis that this slope equals zero with a probability (power) of 0.8. The Type I error probability associated with this test of null hypothesis was 0.05. In the case of calculation for corrected EI, the same approach identified that 38 subjects were needed to detect the significant relationship between corrected EI and the WORMS. After considering the potential 10% dropout rate due to the exclusion criteria and missing data, the required sample size of this study was at least 51 participants.

To account for the similarity between the right and left knees, a generalized linear mixed model, with WORMS total score as fixed effects and patient ID as random-effect intercept and slope, was used to assess the relationship between WORMS (continuous variable), EI of VM (continuous variable), or corrected EI of VM (continuous variable). Age (continuous variable) and MT (continuous variable) were included as covariates. These covariates were chosen \textit{a priori} based on clinical judgment and their potential correlation with joint structural abnormalities and muscle quality\(^{30, 31}\). Because the WORMS total score includes structural abnormalities of all joint tissues, we performed sensitivity analysis focusing on the WORMS cartilage score. In this sensitivity analysis, we repeated the generalized linear mixed model described above.
All statistical analyses were performed using EZR, version 1.54 (Saitama Medical Center, Jichi Medical University, Japan), which is a graphical user interface for R, version 4.0.3 (The R Foundation for Statistical Computing, Austria), a modified version of R commander designed to add statistical functions frequently used in biostatistics. Statistical significance was set at $P < 0.05$.

Results

A total of 51 people (54 knees) were recruited; two individuals whose knee was diagnosed as KL3 were excluded. Thus, 49 individuals (age: 44-78 years, 65.3% women) with 52 knees were finally included in the analysis. Table 1 summarizes the participants’ characteristics. Of the 49 participants with mild KOA, 30 (61%) had a normal BMI (BMI < 25 kg/m²)\(^2\). Of the 52 knees, 39 (75%) had varus alignment (corrected FTA > 181°), 12 (23%) had neutral alignment (178° < corrected FTA < 181°), and 1 (1%) had valgus alignment (corrected FTA < 178°)\(^3\).

Patients with poor quadriceps muscle quality display disrupted cartilage integrity

Table 2 shows the median WORMS and quartiles for each subcategory. Among the 52 knees, 52 (100%) had cartilage defects, 51 (98%) had meniscal tears, and 21 (40%) had bone marrow lesions in the WORMS subcategories. Among these subcategories, the cartilage score in the medial compartment of the tibiofemoral joint was the worst. Ultrasound and MRI assessments revealed inter-subject variability in quadriceps muscle quality and structural abnormalities of the cartilage (Figure 2). We sought to determine whether patients with poor quadriceps muscle quality display more severe structural abnormalities. As expected, the...
generalized linear mixed model revealed that the poor muscle quality of the VM, assessed by EI, was associated with higher joint structural abnormalities after adjustment for age and MT (Table 3). Consideration of the effect of subcutaneous fat thickness on EI (i.e., corrected EI) further strengthened the relationship with higher joint structural abnormalities after adjustment for age and MT (Table 3). A graphical illustration of the positive relationship between EI/corrected EI and WORMS is shown in Figure 3.

Because joint structural abnormalities were predominantly confirmed in the articular cartilage (Table 2), we performed sensitivity analysis focusing on the WORMS cartilage score in the total joint and medial tibiofemoral joint as an outcome variable. The results revealed that a higher corrected EI was associated with more cartilage abnormalities (Table 4). This relationship was more significant for the medial tibiofemoral joint (Table 4). Collectively, these findings indicate that patients with poor VM muscle quality demonstrate disrupted cartilage integrity in the medial compartment of the knee.

Discussion

While studies have shown that patients with KOA display poorer muscle quality compared with healthy adults, the relationship between poor muscle quality and structural integrity in patients with earlier stages of KOA has not been adequately addressed. Using an ultrasound technique integrated with MRI-based structural assessment, this study tested the hypothesis that poor quadriceps muscle quality is associated with higher structural abnormalities in 49 patients with early stages of KOA. As expected, we found that patients with poor VM muscle quality demonstrated significantly higher structural abnormalities in the knee joint, even after adjustment for age and MT. Subsequent sensitivity analysis identified the same relationship when we focused on structural abnormalities in the articular cartilage at the medial
tibiofemoral joint, a lesion commonly observed in medial KOA. **Figure 4** shows a graphical abstract. Notably, in these analyses, consideration of subcutaneous fat enhanced the predictive ability for structural integrity. Taken together, poor muscle quality in the VM assessed using ultrasound may be a denominator of disrupted cartilage integrity in earlier KOA.

Practical implications and future research directions

Consistent with previous reports, in this study, structural abnormalities were identified in a wide range of joint tissues such as cartilage and meniscus. MRI-detected structural changes (i.e., osteophytes, meniscal damage, bone mallow lesions, and/or synovitis) may represent early disease and a significant predictor of the onset or development of KOA. Among the MRI-detected structural changes, articular cartilage is the main tissue involved in the OA process. Cartilage changes occur as early events that are coupled to bone alterations through mechanical or soluble factors. The Framingham cohort showed that WORMS, as a semi-quantitative measurement, was sensitive to focal erosive cartilage lesions that might not be detected using quantitative measurement of cartilage volume and cartilage thickness over broad areas. These reports, including our study, indicate that the semi-quantitative method with MRI has an advantage for the assessment of KOA at an early stage compared with whole-organ changes and subcategories.

A recent meta-analysis and cross-sectional study showed that people with KOA have poorer muscle quality than healthy control subjects. Our results support these studies and expand to earlier stages of KOA. In addition, a longitudinal study using MRI showed that VM fat content is a strong predictor of cartilage volume loss and the occurrence and progression of bone mallow lesion. In the current study, we adopted echo intensity with ultrasound to evaluate muscle quality using a noninvasive method; it could lessen the physical burden and...
lower the bar to muscle quality assessment for the participants. Ultrasound is more useful and
easily accessible than MRI for many clinical sites. It is possible that evaluating changes in
muscle quality with ultrasound will allow early detection of signs of incident KOA. This study
targeted mild KOA, and muscle quality assessed by ultrasound imaging might be a modifiable
risk factor for KOA at an early stage. Thus, VM muscle quality could be helpful in identifying
patients at risk of KOA progression. To implement effective early interventions for patients
with KOA, comparing the time-dependent changes in muscle quality and cartilage integrity is
an interesting direction for future studies.

Limitations and strengths

Although this study provides a new perspective on the potential modifiable risk factors for
KOA, it has limitations. This study did not consider the physical activity level as a potential
confounder\(^{41,42}\). In addition, the cross-sectional nature of the study design limited our analyses;
therefore, the causal relationship between poor muscle quality and structural integrity is
unclear. Nevertheless, this study has several strengths. First, we applied subcutaneous fat
correction to ultrasound-based muscle quality assessment as recommended\(^{22,23}\). This
correction could overcome the low resolution of deep muscle\(^{43}\), which allows the evaluation of
the relationship between poor muscle quality and structural integrity. It should be highlighted
that consideration of subcutaneous fat enhanced the predictive ability of ultrasound-based
signal intensity for structural integrity. Second, this study used MRI to assess multiple-tissue
OA pathology, which allowed the assessment of the relationship between quadriceps muscle
quality and structural integrity stratified by tissue type, such as cartilage and subchondral bone.
Finally, this study analyzed patients with symptomatic mild KOA. Focusing on patients with
symptomatic mild KOA provides an enhanced understanding of patients at high risk of the
development of clinically presenting KOA. Our study could be a fundamental step for future longitudinal studies to clarify the role of muscle quality in early KOA pathogenesis.

Contributors

(1) AH and HI were the main contributors to the conception and design of the study; AH, TI, and YM were the main contributors to the acquisition of data; AH and HI contributed to the analysis and interpretation of data.

(2) AH and HI drafted the manuscript, and all authors have been revising it critically for important intellectual content.

(3) All authors have provided final approval for the version to be submitted.

Competing interests

The authors have no conflicts of interest to declare.

Acknowledgments

We thank the members of the Physical Therapy and Radiology Department of Matsuda Orthopedic Clinic for extending support in data collection and Editage (www.editage.jp) for English language editing.

References

Table 1. Characteristics of the study subjects

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, years</td>
<td>64.1±8.9</td>
</tr>
<tr>
<td>Sex (female/male), no.</td>
<td>32/17</td>
</tr>
<tr>
<td>Height, cm</td>
<td>159.8±9.3</td>
</tr>
<tr>
<td>Weight, kg</td>
<td>63.2±11.5</td>
</tr>
<tr>
<td>BMI, kg/m²</td>
<td>24.7±3.7</td>
</tr>
<tr>
<td>Analgesic medication, no. (%)</td>
<td>21 (43%)</td>
</tr>
<tr>
<td>FTA, degree</td>
<td>178.2±1.9</td>
</tr>
<tr>
<td>Alignment (varus/neutral/valgus), no. (%)</td>
<td>39 (75%)/12 (23%)/1 (1%)</td>
</tr>
<tr>
<td>KL grade (grade 1/grade 2), no.</td>
<td>13/39</td>
</tr>
<tr>
<td>KOOS pain, points</td>
<td>39.2±21.8</td>
</tr>
<tr>
<td>KOOS ADL, points</td>
<td>32.2±27.9</td>
</tr>
</tbody>
</table>

Except where indicated otherwise, values are presented as mean (SD).

Abbreviations: BMI, body mass index; FTA, femur-tibia angle; KL grade, Kellgren, and Lawrence grading scale; KOOS, Knee Injury and Osteoarthritis Outcome Score; ADL, activities of daily living; SD, standard deviation.
Table 2. Whole-organ magnetic resonance score

<table>
<thead>
<tr>
<th>Variable</th>
<th>MFT</th>
<th>LFT</th>
<th>PF</th>
<th>S</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cartilage</td>
<td>6.0</td>
<td>2.0</td>
<td>0</td>
<td>NA</td>
<td>10.0</td>
</tr>
<tr>
<td>(0-84 points)</td>
<td>[4.8,6.3]</td>
<td>[0,3]</td>
<td>[0,1.25]</td>
<td>NA</td>
<td>[6.75,12.63]</td>
</tr>
<tr>
<td>Marron abnormality</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(0-45 points)</td>
<td>[0,2]</td>
<td>[0,2]</td>
<td>[0,0]</td>
<td>[0,0]</td>
<td>[0,2]</td>
</tr>
<tr>
<td>Bone cysts</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(0-45 points)</td>
<td>[0,0]</td>
<td>[0,0]</td>
<td>[0,1]</td>
<td>[0,0]</td>
<td>[0,1]</td>
</tr>
<tr>
<td>Bone attrition</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>NA</td>
<td>0</td>
</tr>
<tr>
<td>(0-42 points)</td>
<td>[0,1]</td>
<td>[0,0]</td>
<td>[0,0]</td>
<td>NA</td>
<td>[0,2]</td>
</tr>
<tr>
<td>Osteophytes</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>NA</td>
<td>0.5</td>
</tr>
<tr>
<td>(0-98 points)</td>
<td>[0,2]</td>
<td>[0,1]</td>
<td>[0,0]</td>
<td>NA</td>
<td>[0,2.25]</td>
</tr>
<tr>
<td>Compartment total</td>
<td>8.25</td>
<td>3.0</td>
<td>1.0</td>
<td>0</td>
<td>13.75</td>
</tr>
<tr>
<td></td>
<td>[5.75,13.13]</td>
<td>[1,5.25]</td>
<td>[0,3]</td>
<td>[0,0]</td>
<td>[9,19]</td>
</tr>
<tr>
<td>Menisci</td>
<td>2.5</td>
<td>0</td>
<td>NA</td>
<td>NA</td>
<td>3.0</td>
</tr>
<tr>
<td>(0-12 points)</td>
<td>[2,3]</td>
<td>[0,0]</td>
<td>NA</td>
<td>NA</td>
<td>[2,3]</td>
</tr>
<tr>
<td>Ligaments</td>
<td>0</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>0</td>
</tr>
<tr>
<td>(0-3 points)</td>
<td>[0,0]</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>[0,0]</td>
</tr>
<tr>
<td>Synovitis</td>
<td>2.0</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>2.0</td>
</tr>
<tr>
<td>(0-3 points)</td>
<td>[1,3]</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>[1,3]</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>19.25</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[13.5,24.25]</td>
</tr>
</tbody>
</table>

The left column shows subcategories and maximum scores attainable with whole-organ magnetic resonance score. Values of each subcategory are expressed as the median [interquartile range]. Values in bold indicate total and compartment total scores.

Abbreviations: MFT, medial tibiofemoral joint; LFT, lateral tibiofemoral joint; PF, patellofemoral joint; S, subspinous region; NA, not applicable.
Table 3. Association between WORMS total score and EI/corrected EI

EI vs WORMS (total score)

| Variables | Estimate | 95% CI | Df | t value | Pr(>|t|) |
|-----------|----------|-------------|----|---------|----------|
| (Intercept) | -10.45 | -13.407, -7.493 | -0.98 | 47.33 | 0.33 |
| EI | 0.2 | 0.18, 0.22 | 29.67 | 2.74 | 0.01* |
| Age | 0.32 | 0.281, 0.359 | 46.8 | 2.24 | 0.03* |
| MT | -4.12 | -4.852, -3.388 | 46.58 | -1.57 | 0.12 |

Corr. EI vs WORMS (total score)

| Variables | Estimate | 95% CI | Df | t value | Pr(>|t|) |
|-----------|----------|-------------|----|---------|----------|
| (Intercept) | -16.64 | -19.513, -13.767 | 46 | -1.61 | 0.11 |
| Corr. EI | 0.15 | 0.139, 0.161 | 47.97 | 3.77 | 0.00044***|
| Age | 0.33 | 0.294, 0.366 | 44.93 | 2.52 | 0.015* |
| MT | -2.91 | -3.592, -2.228 | 46.39 | -1.19 | 0.24 |

Significant codes: *** p<0.001, ** p<0.01, * p<0.05.

Regression coefficients and 95% CIs of EI (continuous variable) or corrected EI (continuous variable) were calculated to indicate their predictive ability for the WORMS total score (continuous variable) while simultaneously including (1-step model) age (continuous variable) and vastus medialis MT (continuous variable).

Abbreviations: 95% CI, 95% confidence interval; Df, degrees of freedom; Pr, p value; EI, echo intensity; MT, muscle thickness; Corr. EI, corrected echo intensity; WORMS, whole-organ magnetic resonance imaging score.
Table 4. Sensitivity analysis for the association between the WORMS cartilage score in the total joint/medial tibiofemoral joint and corrected EI

| Variables | Estimate 95% CI | Df | t value | Pr(>|t|) |
|-----------|---------------------|------|---------|---------|
| (Intercept) | -9.82, -11.432, -8.208 | 45.97 | -1.70 | 0.097 |
| Corr. EI | 0.063, 0.057, 0.069 | 47.44 | 2.75 | 0.0084**|
| Age | 0.17, 0.15, 0.19 | 46.77 | 2.30 | 0.026* |
| MT | 0.0044, -0.385, 0.394 | 47.86 | 0.003 | 1.0 |

<table>
<thead>
<tr>
<th>Corr.EI vs WORMS (cartilage score in the medial tibiofemoral joint)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Intercept)</td>
</tr>
<tr>
<td>Corr. EI</td>
</tr>
<tr>
<td>Age</td>
</tr>
<tr>
<td>MT</td>
</tr>
</tbody>
</table>

Significant codes: *** p<0.0001, ** p<0.01, * p<0.05.

Regression coefficients and 95% CIs of corrected EI (continuous variable) were calculated to indicate their predictive ability for the total WORMS cartilage score (continuous variable) or WORMS cartilage score in the medial tibiofemoral joint (continuous variable) while simultaneously including (1-step model) age (continuous variable) and vastus medialis MT (continuous variable).

Abbreviations: 95% CI, 95% confidence interval; Df, degrees of freedom; Pr, p value; EI, echo intensity; MT, muscle thickness; Corr.EI, corrected echo intensity; WORMS, whole-organ magnetic resonance imaging score.
Figure 1. Example of the data collection procedure in vastus medialis with ultrasound (A).

Example of image analysis for the determination of EI, MT, and subcutaneous fat thickness (B). ROIs for EI (solid line circle) were selected at a depth of 1.0-4.0 cm to avoid the surrounding tissue. MT (solid line arrow) and subcutaneous fat thickness (dashed line arrow) were measured using an electric caliper.

Abbreviations: EI, echo intensity; MT, muscle thickness; ROI, region of interest.
Figure 2. Representative ultrasound images showing low corrected EI/low WORMS (A) in their 60s with KL2. Representative ultrasound images showing high corrected EI/high WORMS (B) in their 70s with KL2.

Abbreviations: Corr.EI, corrected echo intensity; WORMS, whole-organ magnetic resonance imaging score; MTFJ, medial tibiofemoral joint; KL, Kellgren, and Lawrence grading scale.
Figure 3. Scatter plot and regression line between WORMS total score and EI (A), and corrected EI (B). Regression line was calculated from total data (KL1 and KL2).

Abbreviations: WORMS, whole-organ magnetic resonance imaging score; EI, echo intensity; Corr.EI, corrected echo intensity; KL, Kellgren and Lawrence grading scale; p, p value.
Figure 4. Graphical abstract. Patients with mild knee osteoarthritis who had poor vastus medialis muscle quality, assessed by corrected echo intensity, showed significantly higher structural abnormalities in the knee joint even after adjustment for age and muscle thickness (p<0.001). Sensitivity analysis revealed the same relationship when we focused on articular cartilage in the total joint (p<0.01) and medial tibiofemoral joint (p<0.0001).
Subcutaneous fat

Vastus Medialis

Femoral bone

ROI of echo intensity
Subcutaneous fat thickness
Muscle thickness
Mild knee osteoarthritis

Whole-knee joint structural abnormalities

Disrupted cartilage integrity in medial tibiofemoral joint

Poor vastus medialis muscle quality (echo intensity)