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14 Abstract

15 Background

16 COVID-19 has tormented the global health and economy like no other event in the recent past. Researchers 

17 and policymakers have been working strenuously to end the pandemic completely. 

18 Methodology/ Principal Findings

19 Infectious disease dynamics could be well-explained at an individual level with established contact 

20 networks and disease models that represent the behaviour of the infection. Hence, an Agent-Based Model, 

21 SHIVIR (Susceptible, Infected, Admitted, ICU, Ventilator, Recovered, Immune) that can assess the 

22 transmission dynamics of COVID-19 and the effects of Non-Pharmaceutical Interventions (NPI) was 

23 developed. Two models were developed using to test the synthetic populations of Rangareddy, a district in 

24 Telangana state, and the state itself respectively. NPI such as lockdowns, masks, and social distancing along 

25 with the effect of post-recovery immunity were tested across scenarios.

26 The actual and forecast curves were plotted till the unlock phase began in India. The Mean Absolute 

27 Percentage Error of scenario MD100I180 was 6.41 percent while those of 3 other scenarios were around 

28 10 percent each. Since the model anticipated lifting of lockdowns that would increase the contact rate 

29 proportionately, the forecasts exceeded the actual estimates. Some possible reasons for the difference are 

30 discussed.

31 Conclusions

32 Models like SHIVIR that employ a bottom-up Agent-Based Modelling are more suitable to investigate 

33 various aspects of infectious diseases owing to their ability to hold details of each individual in the 

34 population. Also, the scalability and reproducibility of the model allow modifications to variables, disease 

35 model, agent attributes, etc. to provide localized estimates across different places.

36

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 27, 2022. ; https://doi.org/10.1101/2022.05.26.22275624doi: medRxiv preprint 

https://doi.org/10.1101/2022.05.26.22275624
http://creativecommons.org/licenses/by/4.0/


37 Keywords

38 Agent-Based Modelling, COVID-19, Disease Modelling, India, Infectious diseases.

39 Author Summary

40 The world has witnessed several infectious disease outbreaks from time to time. COVID-19 is one such 

41 event that tormented the life of mankind. Healthcare practitioners, policymakers, and governments 

42 struggled enormously to handle the influx of infections and devise suitable interventions. Agent-Based 

43 Models that use the population data could cater to these requirements better. Hence, we developed a disease 

44 model that represents various states acquired by COVID-19 infected individuals. The contact network 

45 among the individuals in the population was defined based on which the simulation progresses. The effect 

46 of various Non-Pharmaceutical Interventions such as lockdowns, the use of masks and social distancing 

47 along with post-recovery immunity were enacted considering two case studies viz. population of 

48 Rangareddy district and Telangana state. The capability of these models to adapt to different input data 

49 fields and types make them handy to be tailored based on available inputs and desired outputs. Simulating 

50 them using local population data would fetch useful estimates for policymakers.

51 1. Introduction

52 Infectious diseases affect the economy, healthcare systems, public health, and society [1]. There have been 

53 1438 epidemics reported by the World Health Organization (WHO) between 2010 to 2018 [2]. Though all 

54 these events have created a substantial impact across multiple dimensions, COVID-19 has made a colossal 

55 impact since its outbreak in Wuhan, China in December 2019. The pandemic has presently marked its 

56 presence across 224 territories causing 442,413,066 infections with 6,001,844 deaths and 375,259,135 

57 recoveries as of March 04, 2022 [3]. Researchers, healthcare fraternity, and governments worldwide have 

58 been working in tandem to devise policies to curtail the spread of pandemic [4,5]. These are achievable by 

59 employing mathematical models that could assess multiple aspects like the transmission dynamics, effect 

60 of Non-Pharmaceutical Interventions (NPI), the capacity of health infrastructure, etc. [6–8]. 
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61 The capability of modelling and simulation to replicate the behaviour of real-time systems and generate 

62 good estimates has attracted researchers from a range of sectors, especially healthcare and engineering [9]. 

63 Of the two broad categories of simulation viz. Compartmental and Agent-Based Modeling (ABM), latter 

64 can address infectious diseases more precisely owing to its ability to accommodate agent-level details. The 

65 bottom-up approach of these models wherein the behaviour of individual agents cumulates to give the 

66 overall behaviour of the system makes it more suitable compared to the compartmental models. ABM 

67 approach in the past has been employed to plan evacuation strategies for airborne infections [10], devise 

68 methods to administer vaccines for influenza [11], prevent the spread of measles [12], tuberculosis [13], 

69 and smallpox [14], and others. Proper use of simulations could help the developing countries with limited 

70 healthcare resource settings, like India for planning capacity based on estimates. Some researchers have 

71 adopted compartmental models such as Susceptible (S), Hospitalized or Quarantined (H), Symptomatic (I), 

72 Purely Asymptomatic (P), Exposed (E), Recovered (R) and Deceased (D) (SIPHERD) [15], Susceptible 

73 (S), Exposed (E), Infective (I), and Recovered (R) (SEIR) [16], or mathematical models [17] in the context 

74 of COVID-19. The advantageous approach i.e., ABMs, has been used in several aspects of COVID-19 such 

75 as to safeguard the vulnerable population [18,19], devise NPI such as lockdowns, use of mask, and social 

76 distancing [6,19], schedule location and time-dependent contacts [19,20], assess transmission [20], etc. 

77 The model proposed in the study adopts an ABM approach that simulates the given synthetic population to 

78 assess the transmission dynamics. The NPI such as lockdowns, use of masks, and social distancing along 

79 with the effect of post-recovery immunity have been included to compare the effects of imposing 

80 interventions concurrently. It also has the flexibility to account for changes in the values of parameters, 

81 contact network, disease model, and NPIs imposed. These would be helpful to assess the transmission of 

82 infectious diseases using regional synthetic populations and devise interventions appropriately [21].

83 2. Modelling of infectious diseases

84 Modelling of infectious diseases requires interactions among the agents/ entities that govern the 

85 transmission of these close contact infections [22]. These cannot be incorporated into the compartmental 
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86 models that work based on the general population model by distributing the population across various 

87 compartments [23]. Each compartment corresponds to a health state such as Susceptible, Exposed, Infected, 

88 Recovered, etc. Partitioning/ Compartmentalization is based on the required number of states. In these 

89 models, the transitions are governed by rates of flow and variables influencing the flow [24]. Heterogeneity, 

90 which is needful for infectious diseases is achieved using time-dependent contact mixing patterns, networks 

91 across the community, and seasonality [25,26]. Yet, these models might be less accurate as they neither 

92 incorporate agent-level details nor involve interactions among agents. Establishing a contact network within 

93 the population being studied or agents is essential to achieve the same. This has been proven by researchers 

94 in the past where Compartmental and ABM have been compared. The capability of the latter to track each 

95 agent during the simulation enables it to deliver additional agent-specific results [27]. This is because the 

96 latter models adopt a simulation-based approach in addition to the set of equations that govern the process 

97 [27]. The bottom-up approach makes the incorporation of heterogeneity easier by defining attributes at 

98 agent level. Unlike the compartmental models where the transition is governed by variables, the behaviour 

99 of agents and contact networks govern the transition between the states in ABMs [6,27].  Despite the 

100 advantages of ABMs to inculcate more heterogeneity and population dynamics, the implementation is 

101 subject to the computational capabilities and technical expertise of the modellers [27,28].

102 3. SHIVIR - Agent-Based Model

103 The SHIVIR (Susceptible, Infected, Admitted, ICU, Ventilator, Recovered, Immune) model has been 

104 developed based on the understanding of the dynamics of COVID-19 among the infected people from risk 

105 of infection to hospitalisation and death. Inputs from epidemiologists, public health practitioners, and 

106 biostatisticians were useful for the development of the model as presented successively. 

107 3.1. Agent Creation

108 The creation of agents forms the base for ABM studies. In the studies in which the agents represent the 

109 actual population of any territory, a synthetic population approach can be employed. People in the 
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110 population are modelled as agents for these simulations. The population data from Census could be used to 

111 generate the synthetic population based on the required fields/ characteristics to be assigned to each 

112 agent[29]. Data cleansing is to be done to eliminate the records with invalid or missing information for any 

113 of the required fields. Unique attributes could be assigned to each of the agents in the population to closely 

114 represent the actual population studied. The agents could be distinguished into various cohorts to assist a 

115 sub-group analysis of measured outcomes. 

116 3.2. Disease Model

117 The progression of infection across various phases in an infected human need to be defined by a disease 

118 model. The SHIVIR model was developed with the following states:

119 1. Susceptible/ Healthy: Every agent in the population is assigned this state. Agents (people) in this 

120 state are susceptible to infection upon contact with an infected individual.

121 2. Infected: Agents who have acquired the infection and are in incubation period.

122 a. Asymptomatic: The infected agents who do not show any symptoms. They are unnoticed 

123 and continue to transmit the infection to others till recovery. 

124 b. Symptomatic: The infected agents who exhibit symptoms. They are diagnosed and 

125 admitted in isolation. They do not spread the infection to others post-admission. These 

126 agents recover when they are in any of these three states: Admitted, ICU, and Ventilator.

127 3. Admitted: Initial stage of treatment for symptomatic agents. Indicates mild or moderate infection 

128 level. 

129 4. ICU: Agents with a higher infection level. These agents require additional care and extended 

130 treatment. 

131 5. Ventilator: Agents with severe infection levels. They need the support of a ventilator for breathing. 

132 6. Recovered and Immune: Agents who have recovered from the infection. They are assumed to 

133 possess immunity for a certain duration post-recovery. They are not susceptible to infection during 

134 this period. 
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135 7. Deceased: Agents who have failed to recover from the infection and died. They are no more a part 

136 of the simulation. 

137 All the created agents are assigned “Healthy” status at the start of the simulation. Every agent can exist in 

138 any of the above-mentioned states at an instant. Based on the contacts made by agents during the simulation, 

139 they are subject to acquire infection upon transmission from an infected agent. The agents then undergo a 

140 series of transitions across the different states. Duration of existence in each state and probability of 

141 transition to successive states are governed by the parameters defined in Table I. From the descriptions of 

142 the states, it is interpretable that the contact network plays a significant role in transmitting the infection 

143 across the population. The Timestep considered is day as it is suitable to define the transition between the 

144 states and contact rate. Based on the transitions of agents, the counts of agents in each state described in the 

145 disease model would be recorded at the end of each day, for the three age groups considered viz. kids (age 

146 < 5), adults (5 ≤ age ≤ 59), and elders (age > 59). The model allows alteration (addition/ removal or 

147 modification) of any states and the cohorts considered. 
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148

149 Figure 1: SHIVIR - Disease Model

150 3.3. Contact Network

151 Contact network was established henceforth based on the characteristics of agents in the population. It is a 

152 factor that majorly affects the spread of infection across the population. The present model considered the 

153 contacts made at home, schools, and work depending on place and age as defined by Prem et al., (2017). 

154 This helped segregate the contacts like those in the closer circle (home) and external. For each agent in the 

155 population, a list of close circle contacts was defined based on the closeness of their locations i.e., the 

156 probability of two agents being in each other’s closer circle is inversely proportional to the distance between 

157 them, as in equation (1). The following two assumptions were made to work this out:

158 i. Two people who are farthest in the population have zero probability of meeting
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159 ii. The probability of people with the same Geographic Information System (GIS) coordinates to meet 

160 is ‘1’, which is certain in any scenario.

161 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝐴 𝑎𝑛𝑑 𝐵 𝑚𝑒𝑒𝑡𝑖𝑛𝑔 = 1 ― ( 𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝐴 𝑎𝑛𝑑 𝐵
𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑡ℎ𝑒 𝑓𝑎𝑟𝑡ℎ𝑒𝑠𝑡 𝑝𝑜𝑖𝑛𝑡𝑠) (1)

162 where ‘A’ and ‘B’ are any two people within the population.

163 The proportion of contacts made with external people was proportionately reduced for stricter lockdowns 

164 while the ones in the closer circle were retained. Also, the number of contacts made by each person is to be 

165 determined based on the location and age. For this, the results of a study by Supriya Kumar et al., (2018) 

166 that determined the contact rates for close-contact infections were utilized. Supriya Kumar et al., (2018) 

167 defined the number of contacts made by each person in Ballabgarh district in India, which were used to 

168 proportionately calculate the contacts made by people in districts of Telangana. This was accomplished by 

169 assuming a density-dependent contact rate i.e., contact rate and population density are directly proportional 

170 to each other. The distributions followed by these contact rates were generated using the Input Analyzer 

171 tool of Arena (a Rockwell Automation software) that generates distributions followed by the input 

172 dataset[32]. 

173 4. Results of application of the SHIVIR model in Telangana state, India

174 The disease model was replicated to test the performance of the chosen population of Rangareddy district 

175 and Telangana state, India. Initially, the Rangareddy model was created using AnyLogic while that of 

176 Telangana was coded using Python. The former is a relatively simpler model that was developed during the 

177 initial stages while the latter involves complex dynamics and interventions. To make the mode reproducible, 

178 we coded the same using Python. 

179 4.1. Timestep

180 The Timestep chosen for the study is days as it would be meaningful to present these time series estimates 

181 daily and also that the contact rates and COVID-19 related variables are defined in days. A healthy 
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182 individual who has been infected through contact on a day would not acquire a secondary infection. 

183 Duration of the existence of each individual in state increments each day to transform to the next state upon 

184 reaching the defined time of existence in that state. The code iterates through the entire population every 

185 day and governs their contacts with other agents in the population. The state of existence of agents on a 

186 particular day governs their behaviour or interaction with other agents. 

187 4.2. Synthetic population approach for Rangareddy district and Telangana state

188 The initial model for Rangareddy was run with 5,48,323 agents representing 10.35 percent of the population 

189 of the district as per the 2011 Census of India [33]. The population was divided into three age groups as 

190 mentioned in Section 3.2. 

191 The second study on Telangana used data consisting of 31,738,270 people as per the 2011 Census of India, 

192 as generated by Sayeed, 2018[29]. Each agent consisted of unique identifiers/ parameters such as: 

193 i. Geocoordinates

194 ii. District Code 

195 iii. Household ID

196 iv. Age

197 Additionally, a unique ID to each agent of the population was mapped for direct reference. Initially, 30 

198 records that did not contain one or more of the required information were discarded and 35,003,674 operable 

199 agents were retained. These represented 90.67 percent population of Telangana [33,34]. The Initial health 

200 status of all the created agents was set as “Healthy”, indicating their susceptibility to infection. 

201 4.3. Establishment of contact network

202 The number of contacts made by every agent daily and proportionate reduction during the lockdowns were 

203 designed as explained in Section 3.3. For the Rangareddy model, different distributions were generated 
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204 based on the stringency of lockdowns by proportionately reducing the contacts made by every agent per 

205 day. 

206 For the Telangana model, the contact distributions were proportionately altered based on the lockdown 

207 stringencies such that the proportion of contacts in closer circles increased whilst reducing the overall 

208 contact rate. A close contact list was defined for each agent in the population based on the Euclidean 

209 distance approach considering the GIS coordinates of the agents. This is to set the list of contacts with 

210 which an agent would more likely interact i.e., close contacts with whom there are more chances of 

211 interactions during lockdowns. This was done considering the actual reduction in external contacts that 

212 happen during lockdowns. 

213 4.4. Intervention scenarios

214 In the Rangareddy model, imposing lockdowns was the only NPI modelled across three different scenarios. 

215 The base scenario was a ‘no lockdown’ with no interventions. Two other scenarios represented 50 and 75 

216 percent stringencies imposed. The number of contacts was defined based on the cumulative contacts made 

217 at home, office, school, and others based on the results of Prem et al., (2017). To enact the lockdown 

218 scenarios, the workplace and other location contacts were reduced proportionately (50 and 75 percent) 

219 whilst completing eliminating the contacts at school to indicate closure of schools.

220 In the Telangana model, the lockdown was imposed as per the Indian scenario [35]. Further, to observe the 

221 effects of post-recovery immunity and adoption of mask and distancing, six scenarios were enacted. The 

222 scenarios are MD100I90, MD75I90, MD50I90, MD100I180, MD75I180, and MD50I180. An example for 

223 the nomenclature of scenarios are as follows:

224 i. MD100: ‘100’ succeeding ‘MD’ indicates that 100 percent of the population follows the use of 

225 masks and social distancing.

226 ii. I90: ‘90’ succeeding ‘I’ indicates the post-recovery immunity days when a recovered person is not 

227 susceptible to infection.
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228 The stringency of lockdowns and the contacts made were during each phase are presented in Table I. Higher 

229 the stringency of lockdown, lower the contact rate. Contact rate indicated in the percentage of contacts 

230 made as compared to a no lockdown/ normal scenario. It is seen that the proportion of close contacts is 

231 higher for more stringent lockdowns indicating higher contacts within the locality or at home. 

232 Table I: Parameters during lockdown phases

Lockdown Duration Days

Lockdown 

Stringency (%)

Contact 

rate (%)

Close 

contacts (%)

Phase 1 25 March 2020 – 14 April 2020 21

Phase 2 15 April 2020 – 3 May 2020 19

Phase 3 4 May 2020 – 17 May 2020 14

Phase 4 18 May 2020 – 31 May 2020 14

75 42.80 90.75

Unlock 1.0 1 June 2020 – 30 June 2020 30

Unlock 2.0 1 July 2020 – 31 July 2020 31
50 56.44 81.50

Unlock 3.0 1 August 2020 – 31 August 2020 13 25 70.08 72.25

Post 

Unlock
After 31 August 2020 NA 0 100 63

233 4.5. Data inputs to the model

234 Following the development of the disease model, establishment of contact network, and agent creation, 

235 simulation has to be performed to assess the spread of infection across the given synthetic population. The 

236 input variables used for the simulation of models are presented in Table II. For both the districts, the 

237 population densities of Rangareddy and other districts were used to derive the contacts made per day 

238 considering a population-dependent contact rate [36]. The synthetic population generated forms the basis 

239 of simulation as the entire simulation aims to estimate the measures for the input population. 
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240 Table II: Input variables to the models

Value
Parameters

Rangareddy Model Telangana Model
References

Close contacts in a day

<5: Lognormal(2.77,0.9,6) 

5-59: Lognormal(2.88,0.86,6)

>60: Lognormal(2.6,0.84,5)

Table S I

[36,37]

Rate of Transmission by 

direct contact (percent)
Random(1,10)

i) Close network: 3 to 10

ii) External: 1 to 5
[38]

Proportion of 

asymptomatic infections 

(percent)

80 [38,39]

Incubation period (days) 5 [40,41] 

Treatment period (days) 14 [40]

Proportion of admitted 

cases that need ICU 

(percent)

11 [42,43]

Treatment period in ICU 

(days)
Triangular(7,8,9) [40,43]

Proportion of critical 

cases that need 
88 [43]
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Ventilator support 

(percent)

Period of Ventilator 

support (days)
Triangular(5,7,12) [40]

Mortality rate As per Indian statistics [44]

Risk difference for use 

of control measures 

(percent)

NA
i) Mask: 10.2

ii) Distancing: 14.3
[45]

241 5. Validation of the results

242 The model was simulated for 365 days by introducing an infected agent to the population. The code was 

243 run on a High-Performance Computing server facility of Amrita Vishwa Vidyapeetham, India. The 

244 estimates provided by the model are governed by the variables that were gathered during the initial stages 

245 of the pandemic. Also, the lockdown phase considered was based on the initial phases that were imposed 

246 in India for 142 days [35]. The model increased the contact rates proportionately for each of the unlock 

247 phases and assumed a 100 percent normalcy post 142nd day, which marks the end of Unlock 3.0 (Table I). 

248 The symptomatic infections in the model that indicate the diagnosed and identified positive cases were 

249 plotted against the actual values for the period from 26 April 2020, the date from which the actual values 

250 were available till the end of lockdown phase 4 (31 May 2020) [44]. Mean Absolute Percentage Errors for 

251 each of the simulated scenarios were found. The scenario MD100I180 had the least MAPE of 6.41 percent 

252 till the end of lockdown phase 4 i.e., 31 May 2020. The scenarios MD75I90, MD50I90, and MD50I180 had 

253 MAPE values around 10 percent during this period. Whilst considering the unlock phases (after 31 May, 

254 2020), the error increased. In the simulated model, the stringency of lockdowns was reduced from 75 to 50 

255 percent post phase 4 which is a possible reason for the gap between the actual and forecast to widen. 
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256 The actual value is lesser than the forecast indicating the cumulative effects of various interventions apart 

257 from lockdowns that offered protection, similar to the Swiss cheese model [46]. Offices that had the 

258 capabilities to offer work-from-home continued to the practice. Schools and colleges were not opened as 

259 education continued to happen online [47]. Also, there were restrictions imposed on mass gatherings and 

260 in public places to prevent transmission on a larger scale [48]. Self-awareness among the public to avoid 

261 getting infected is a major driver that flattened the transmission curve [49]. All these measures resulted in 

262 overall increased protection on a societal level. At an individual level, avoiding over-crowding, going to 

263 closed environments where there are higher chances of infection through suspended particles, wearing face 

264 masks, using sanitizers, maintaining social distancing, etc., proved to be effective [45,48]. 

265 Table III: Mean Absolute Percentage Error across the scenarios

Start date Till date MD100I90 MD75I90 MD50I90 MD100I180 MD75I180 MD50I180

26/04/2020 31/05/2020 17.35 10.46 10.93 6.41 35.23 10.50

26/04/2020 30/06/2020 78.68 43.51 20.25 20.06 112.63 18.90

266

267 Figure 2: Number of Infections across scenarios
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268 Of all these interventions and control strategies that could help to curtail the spread of infection, the 

269 Telangana model included only lockdowns, use of masks, and social distancing with the effect of post-

270 recovery immunity. The model also considered reducing the proportion of close contacts and external 

271 contacts at school, workplace, and others based on the stringency of lockdown. The exclusion of other 

272 parameters such as the proportion of the population with work from home capabilities [5], contact tracing 

273 to identify and isolate the close contacts and asymptomatic carriers [7,50], and indirect transmission through 

274 suspended particles, objects, etc. [20], underreporting of the cases [51], and others, could be some of the 

275 reasons for the gap. 

276 Face mask and social distancing reduce the transmission by 10.2 and 14.3 percent respectively [45]. Owing 

277 to their importance, the State and Central governments across India have been imposing penalties for not 

278 wearing masks [52,53]. Yet, right from the early phases of the pandemic, a significant proportion of the 

279 population has not been using face masks. The reported values are 44 percent in India as of September 2020 

280 [54] and May 2021 [55], 52 and 45 percent in Chandigarh [56] and Hyderabad [57] respectively as of 

281 January 2022. Discomfort being the highly reported reason among the public is irrelevant considering the 

282 objective of wearing masks. Awareness programs need to be held to emphasize the importance of acting 

283 socially to protect oneself and others. 

284 Conclusions

285 The study presented the framework to use ABM for studying infectious diseases using a synthetic 

286 population approach. Infectious disease dynamics are well-explained on an individual level with contact 

287 networks than compartmental which is the key idea behind the adoption of this approach [6,58]. The 

288 development of a suitable disease model to represent the behaviour of COVID-19 was the initial process. 

289 The disease model, SHIVIR was developed in this study to assess the effects of various NPIs and 

290 transmission dynamics of COVID-19. The models were developed using AnyLogic (Rangareddy) and 

291 Python (Telangana). The former model is less complex as it involved only lockdown as NPI whilst the latter 
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292 model included the effect of masks, social distancing, and post-recovery immunity additionally. The 

293 Telangana model had a more complex contact network that mapped close circle contacts using GIS 

294 coordinates. Also, in addition to age, the latter model included GIS, household ID, district code. The 

295 simulation was run for 365 days across six different scenarios involving varied combinations of the NPIs. 

296 The lockdowns were imposed per the actual ones that were in place in India. The forecast and actual curves 

297 matched closely during the initial lockdown phases. After the beginning of the unlock phases, the reduction 

298 of lockdown stringency and increase in contact rate in the model spiked the estimates generated by the 

299 model. Contrarily, the slope of the actual curve was much lesser than those of the estimates because of the 

300 cumulative interventions in real-time. 

301 The code is expandable and reproducible in terms of the synthetic population being used, the attributes 

302 mapped to each agent, addition/ deletion/ modification of existing states in the existing (SHIVIR) model, 

303 behaviour of agents in each state, transition rules, and probability between the states, duration of stay in 

304 each state, the interaction between the agents (contact network), contact rate and probability, NPIs imposed 

305 and their associated effects on transmission, level of NPI, etc. These determinants make the model more 

306 suitable for different scenarios with varied requirements. ABM models as in this study could help the 

307 governments and policymakers to understand the lower-level dynamics better to devise localized NPI 

308 strategies that are more suitable for infectious diseases [21]. Also, conservative steps can be taken during 

309 such events to anticipate the worst possible outcomes and enhance the preparedness of healthcare systems 

310 and resources. Future works could focus on developing similar models using the ABM logic to estimate the 

311 transmission dynamics of other infectious diseases. Other aspects such as vaccination pattern, interaction 

312 among the agents, contact tracing, etc., could be analyzed in the context of an event. The estimates provided 

313 by such models would help to be equipped to handle uninvited events in the future. The addition of more 

314 dimensions such as Social Determinants of Health, schedule-based contacts, workplace restrictions, modes 

315 of transportation used, etc., might provide more accurate estimates. However, these are subject to data 

316 availability and time within which the models need to be acted. 
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