The prevalence of SARS-CoV-2 infection and uptake of COVID-19 antiviral treatments during the BA.2/BA.2.12.1 surge, New York City, April-May 2022

Saba A Qasmieh1,2, McKaylee M Robertson1,2, Chloe A Teasdale 1,2, Sarah G Kulkarni1, Margaret McNairy1,3, Luisa N. Borrell2, and Denis Nash1,2

1. Institute for Implementation Science in Population Health (ISPH), City University of New York (CUNY); New York, NY, USA
2. Department of Epidemiology and Biostatistics, Graduate School of Public Health and Health Policy, City University of New York (CUNY); New York, NY, USA
3. Center for Global Health and Division of General Internal Medicine, Weill Cornell Medicine, New York, NY, USA

Correspondence to: Denis Nash, PhD, MPH, Institute of Implementation Science in Population Health, City University of New York, New York, NY. Email: denis.nash@sph.cuny.edu

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Abstract

Importance: Routine case surveillance data for SARS-CoV-2 are incomplete, biased, missing key variables of interest, and may be unreliable for both timely surge detection and understanding the burden of infection.

Objective: To determine the prevalence of SARS-CoV-2 infection during the Omicron BA.2/BA.2.12.1 surge in relation to official case counts, and to assess the epidemiology of infection and uptake of SARS-CoV-2 antivirals.

Design: Cross-sectional survey of a representative sample of New York City (NYC) adult residents, conducted May 7-8, 2022.

Setting: NYC, April 23-May 8, 2022, during which the official SARS-CoV-2 case count was 49,253 and BA.2.12.2 comprised 20% of reported cases.

Participants: A representative sample of 1,030 NYC adult residents >18 years.

Exposure(s): Vulnerability to severe COVID-19, including vaccination/booster status, prior COVID, age, and presence of comorbidities.

Main Outcome(s) and Measure(s): Prevalence of SARS-CoV-2 infection during a 14-day period, weighted to represent the NYC adult population. Respondents self-reported on SARS-CoV-2 testing (including at-home rapid antigen tests), testing outcomes, COVID-like symptoms, and contact with confirmed/probable cases. Individuals with SARS-CoV-2 were asked about awareness/use of antiviral medications.

Results: An estimated 22.1% (95%CI 17.9%-26.2%) of respondents had SARS-CoV-2 infection during the study period, corresponding to ~1.5 million adults (95%CI 1.3-1.8 million). Prevalence was estimated at 34.9% (95%CI 26.9%-42.8%) among individuals with co-morbidities, 14.9% (95% CI 11.0%-18.8%) among those 65+, and 18.9% (95%CI 10.2%-27.5%) among unvaccinated persons. Hybrid protection against severe disease (i.e., from both vaccination and prior infection) was 66.2% (95%CI 55.7%-76.7%) among those with COVID and 46.3% (95%CI 40.2-52.2) among those without. Among individuals with COVID, 55.9% (95%CI 44.9%-67.0%) were not aware of the antiviral nirmatrelvir/ritonavir (Paxlovid™), and 15.1% (95%CI 7.1%-23.1%) reported receiving it.

Conclusions and Relevance: The true magnitude of NYC’s BA.2/BA.2.12.1 surge was vastly underestimated by routine SARS-CoV-2 surveillance. Until there is more certainty that the impact of future pandemic surges on severe population health outcomes will be diminished, representative surveys are needed for timely surge detection, and to estimate the true burden of infection, hybrid protection, and uptake of time-sensitive treatments.
Major surges in SARS-CoV-2 transmission, due to new or evolving variants and waning population immunity, are expected for the foreseeable future. Depending on variant properties and the timing of surges in relation to population immunity, their impact could be severe even in highly vaccinated populations. The Omicron (BA.1) surge in the U.S., beginning mid-December 2021 when 62% of the US population was fully vaccinated, overwhelmed the health care system and resulted in more than 187,000 deaths during a 4-month period.1,2 In the current phase of the pandemic, key components of the U.S. strategy to limit the impact of SARS-CoV-2 surges are vaccinations, timely boosters and, for those most vulnerable, treatment with oral antivirals or monoclonal antibodies, which can greatly reduce the risk of severe disease and death (i.e., secondary prevention).3–5 As the pandemic progresses, levels of hospitalization and death among those most vulnerable to severe COVID-19 are likely to vary by locality, and be influenced by variant properties (transmissibility, severity, immune evasion), population levels of immune protection (via vaccination/boosters and/or prior infection), intervals between surges, and access to treatment (antivirals, monoclonal antibodies).

The complex and evolving nature of the US pandemic demands robust, timely and informative approaches to public health surveillance. Routine passive surveillance relies on data on those who are tested by healthcare providers, testing providers, and laboratories. While surveillance data have been essential for tracking and responding to the COVID-19 pandemic, routinely reported testing data have become increasingly unreliable for gauging the overall population burden.6–8 For example, during the latter half of NYC’s initial Omicron surge (BA.1), official case counts were likely 3-4 times lower than an estimate of infections from a representative sample of the general population.9 Data from passive surveillance underestimate the true burden of infection in the general population due to undiagnosed/untested cases,10 as well as the expanding use of at-home rapid antigen tests, which are not reflected in routine case surveillance in the U.S.7,9,11 The degree of underestimation is likely differential by geographic and sociodemographic factors and variable over time12,13, and may prevent or delay surge detection and acknowledgement, limiting action by individuals and governments to take precautions.

Surveillance data are also limited with regard to information about race/ethnicity, vaccination status, history of SARS-CoV-2 infection, comorbidities and uptake of biomedical interventions such as oral antivirals and monoclonal antibodies. The lack of such information prevents systematic assessment of both the burden of infection and uptake of biomedical interventions among those who are most vulnerable to a severe outcome. Population-based surveys as part of routine public health surveillance, similar to those used in the United Kingdom14 and NYC15, can provide rapid and complementary information that addresses some of the limitations of traditional surveillance of SARS-CoV-2 cases, hospitalizations, and deaths.

This study aimed to assess the burden of SARS-CoV-2 infection during the BA.2/BA.12.2.1 surge starting in March 2022, among adult New York City residents by geography (borough), sociodemographic factors, the intersection of vaccine-induced and infection-induced immunity, and vulnerability to severe outcomes in a population representative sample. We also examined knowledge of and access to the antiviral medication nirmatrelvir/ritonavir oral tablets (PaxlovidTM) among those who tested positive for SARS-CoV-2.

Methods

We conducted a cross-sectional survey, in English and Spanish, during May 7-8, 2022, of 1,030 adult New York City (NYC) residents. Participants contacted by cellphone completed web-based surveys; those contacted by landline used interactive voice response. Additional details on the survey design and sampling are in Appendix 1. Respondents were asked about SARS-CoV-2
testing and related outcomes during the 14 days prior to the survey (April 23-May 8). During the same time period, 49,253 cases were officially reported by the NYC DOHMH16 and the prevalence of the BA.2.12.1 subvariant rose to an estimated 20%.17 The study protocol was approved by the Institutional Review Board at the City University of New York (CUNY).

Point Prevalence Estimation
The survey questionnaire (Appendix 2) ascertained SARS-CoV-2 testing, including the location, types and results of viral diagnostic tests taken in the 14 days prior to the survey (PCR, rapid antigen and/or at-home rapid tests). The survey also captured information on COVID-19 symptoms, as well as known close contacts with a confirmed or probable case of SARS-CoV-2 infection. COVID-19 symptoms included any of the following: fever of $\geq 100^\circF$, cough, runny nose and/or nasal congestion, shortness of breath, sore throat, fatigue, muscle/body aches, headaches, loss of smell/taste, nausea, vomiting and/or diarrhea.18 Participants were also asked about vaccination status, comorbidities that increase vulnerability to severe COVID-19, and prior history of SARS-CoV-2 infection/COVID. Participants who reported any type of COVID-19 test with a healthcare or testing provider, regardless of the result, were asked about awareness and uptake of the antiviral nirmatrelvir/ritonavir oral tablets (Paxlovid™).

We estimated the number and proportion of respondents who likely had SARS-CoV-2 infection during the study period based on the following mutually exclusive, hierarchical case classification: 1) Confirmed case: self-report of one or more positive tests with a health care or testing provider; or 2) Probable case: self-report of a positive test result exclusively on at-home rapid tests (i.e. those that were not followed up with confirmatory diagnostic testing with a provider); or 3) Possible case: self-report of COVID-like symptoms AND a known epidemiologic link (close contact) to one or more laboratory confirmed or probable (symptomatic) SARS-CoV-2 case(s)18 in a respondent who reported never testing or only testing negative during the study period.

The intersection of vaccine- and infection-induced protection against severe disease. We combined information on vaccination status with that on prior COVID infections. Those who were fully vaccinated and those who were also boosted (fully vaccinated/boosted) with a history of prior COVID were classified as having ‘hybrid protection’; those who were fully vaccinated or boosted with no history of prior COVID were classified as having ‘vaccine-induced protection only’; those who were not fully vaccinated but had a history or prior COVID were classified as having ‘infection-induced protection only’; and those who were neither vaccinated/boosted nor had a history of COVID were classified as having ‘no protection’.

Statistical Analysis
We estimated the prevalence of SARS-CoV-2 by socio-demographic characteristics, NYC borough (county), vaccination status, comorbidity and prior COVID-19 infection status. Pearson’s chi-squared test was performed to assess associations between each factor and testing status. Survey weights were applied to generate estimates of the proportion who had SARS-CoV-2 infection during the study period along with 95% confidence interval (95%CI). We applied these weighted sample proportions and 95% CIs to the 6,740,580 NYC residents \geq18 years to obtain estimates of the absolute number of adults with SARS-CoV-2 infection.19 Additional details on the survey design are included in Appendix 1.

Results
An estimated 22.1% (95%CI 17.9%-26.2%) of respondents had SARS-CoV-2 infection in the 14 days prior to the interview, corresponding to 1.5 million adults (95% CI 1.3-1.8 million) (Table 1). The estimate of 22.1% includes: 1) 11.4% (95%CI 8.4%-14.3%) who were positive based on
one or more tests with a health care or testing provider (confirmed cases); 2) 6.5% (95%CI 4.2%-8.8%) who were positive exclusively based on one or more at-home rapid tests (probable cases); and 3) 4.2% (95%CI 1.8%-6.7%) who met the definition for possible SARS-CoV-2 infection based on having COVID-like symptoms and a close contact with a confirmed/probable case.

The weighted characteristics of survey participants and period prevalence estimates are also shown in Table 1. SARS-CoV-2 prevalence was high among all groups, but varied substantially by sociodemographic factors, and was especially high among adults aged 18-24 (27.7%, 95%CI 12.7%-42.8%) and 45-54 (27.8%, 95%CI 15.9%-39.7%), Hispanic (33.6%, 95%CI 23.4%-43.9%) and non-Hispanic White residents (26.3%, 95%CI 20.0%-32.5%), and those with some high school education or less (28.8%, 95%CI 15.8%-41.8%). Prevalence estimates were the lowest among non-Hispanic Black (11.3%, 95%CI 4.9%-17.6%) and Asian/Pacific Islander (4.9%, 95%CI 0.0%-10.5%) residents. SARS-CoV-2 prevalence increased in dose response fashion with the number household members, and households with children <18 years had substantially higher prevalence than those without (33.3% 95%CI 23.0%-43.5% vs 18.1%, 95%CI 13.8%-22.3%) (Figure 1).

Individuals who were fully vaccinated with a booster had higher SARS-CoV-2 prevalence (25.2%, 95%CI 19.8%-30.5%) than those who were fully vaccinated but not boosted (11.8%, 95%CI 3.5%-20.1%) and those who were unvaccinated (18.9%, 95%CI 10.2%-27.5%). Those who said they tested positive for SARS-CoV-2 once (40.4%, 95%CI 27.2%, 95% CI 27.2%-53.6%) or more than once (39.2%, 95%CI 28.2%-50.2%) had much higher prevalence than those who said they never tested positive before, or who thought they had COVID before but never tested positive (10.7%, 95%CI 4.7%-16.6%). Among those who were either vaccinated/boosted, those who had SARS-CoV-2 infection in the past (hybrid protection) had a prevalence of 28.9% (95%CI 22.6%-35.1%), compared with 12.9% (95%CI 5.6%-20.1%) among those who did not have SARS-CoV-2 in the past (vaccine-induced protection only). Among those who were not vaccinated/boosted, those who had SARS-CoV-2 infection in the past (infection-induced protection only) had a prevalence of 29.8% (95%CI 16.6%-43.1%), compared with 0.9% (95%CI 0.0%-2.7%) among those who did not have SARS-CoV-2 in the past (no protection). Levels of hybrid protection and infection-induced protection only were higher in those with SARS-CoV-2 infection versus those without (Figure 2).

SARS-CoV-2 prevalence was substantial among groups vulnerable to severe SARS-CoV-2 and death, including unvaccinated persons (18.9%, 95%CI 10.2%-27.5%), those aged 65+ (14.9%, 95%CI 11.0%-18.8%), and individuals with co-morbidities (34.9%, 95%CI 26.9%-42.8%). Among those with any of these vulnerabilities to severe COVID-19 (age≥65, comorbidities, unvaccinated), 27.8% (95%CI 22.1%-33.5%) had SARS-CoV-2 infection. Also among this vulnerable group, only 68.8% (95%CI 62.8-74.8) were fully vaccinated with or without a booster. Specifically, 60.0% (95%CI 59.9-66.2) were fully vaccinated and boosted (of whom 68.8% [95%CI 61.5-76.2] had a history of prior COVID) and 8.7% (95%CI 5.6-11.8) were fully vaccinated but not boosted (of whom 71.8% [95%CI 54.4-89.1] had a history of prior COVID). However, 31.2% (95%CI 25.2-37.2) were unvaccinated (of whom 62.1% [95%CI 50.1-74.1] had a history of prior COVID).

Among the 22.1% who had SARS-CoV-2 infection, 74.5% (95%CI 65.4-83.6) had one or more vulnerability, 66.1% (95%CI 55.7-76.7] had hybrid protection, and 29% (95%CI 19.6-38.6) met eligibility criteria for antivirals (by virtue of being aged 65+ or having one or more comorbidities20 (Table 2)). Of those who tested with a healthcare or testing provider, 55.9% (95%CI 44.9%-

67.0%) were not aware of the antiviral nirmatrelvir/ritonavir and 3.0% (95%CI 0.0%-7.1%) reported that they tried to access it, but couldn’t.

Overall, 15.1% (95%CI 7.1%-23.1%) reported receiving nirmatrelvir/ritonavir, with substantial variability by sociodemographic groups (Table 2). The estimated nirmatrelvir/ritonavir access was higher among those with any medical vulnerability vs those without, among non-Hispanic Whites and Asians compared with Hispanics and non-Hispanic Blacks, those with health insurance vs those without, those under 65 vs. those older, those who were employed vs not, those who were college graduates vs those who were not, those with household income >25K vs those with lower income.

Discussion
We found a high prevalence of SARS-CoV-2 infection during the BA.2/BA.2.12.1 surge among adult New Yorkers in late April and early May, 2022. We estimate that 22.1% of adult New Yorkers, approximately 1.5 million adults, had SARS-CoV-2 infection during the two study week period, when the prevalence of the more transmissible BA.2.12.1 subvariant was 20% and increasing rapidly.17 The estimate of 1.5 million infections is about 31-fold higher than the 49,253 cases in the official NYC case counts16 and suggests a vast underestimate of the magnitude of this surge. This gap between official case counts and actual burden of infection appears to be widening with time, as our prior similar survey during the BA.1 surge in NYC estimated that reported cases were 3-4 times lower than the true number of infections.9 The magnitude of the current surge dictates that additional precautions to reduce the risk of infection to New Yorkers are warranted, and that a shift in approach to public health surveillance for SARS-CoV-2 is needed, at least until there is more certainty that the impact of future surges on public health outcomes (hospitalizations and deaths) will be substantially diminished.

We found substantial differences in SARS-CoV-2 prevalence by sociodemographic factors, including race/ethnicity, which could be reflective of a number of things alone or in combination, including greater exposure to SARS-CoV-2 (i.e., in the home, workplace or other setting(s)), and differences in individual behaviors around masking and social distancing. Household characteristics (number of household members and children) and individual behaviors may be increasingly relevant as a determinant of infection risk during surges going forward, as many pandemic restrictions had been recently dropped in NYC, leaving decisions about COVID precautions up to individual residents.

We estimated a higher prevalence among those who were boosted compared with those who were fully vaccinated but not boosted and those who were unvaccinated. Since vaccines and boosters provide poor protection against infection with omicron, these differences are likely due to differences in SARS-CoV-2 exposure and behaviors between the two groups. These findings have important implications for observational (test negative) vaccine effectiveness (VE) studies, which are confounded by differences in exposure/behavior and prior COVID between those vaccinated/boosted and unvaccinated. Given that the prevalence of prior COVID was nearly 62% among unvaccinated persons (Table 2), not taking into account the possible differential depletion of ‘susceptibles’ due to SARS-CoV-2 infections and differences in provider-based testing behaviors will bias (underestimate) VE against severe disease and death in test negative designs.21 Survey data such as ours can be used to correct VE estimates for these biases.

When we took into account both vaccination status and prior SARS-CoV-2 infection, we found that those with hybrid protection against severe disease/death had higher SARS-CoV-2 prevalence (28.9%) than those who had vaccine-induced protection only (10.7%). Those with infection-induced protection only (29.8%) had a similar prevalence to those with hybrid
protection. This suggests that prior infection (more so than vaccination) is a strong marker for exposure during surges (e.g., workplace, household) and possibly also a marker for risk compensation. Increasing first, second and subsequent vaccine doses in this group is therefore a key strategy to help lower the population risk of severe COVID and death.

A substantial proportion (27.4%) of adults who are vulnerable to a severe SARS-CoV-2 outcome were estimated to have SARS-CoV-2. Of those who were vulnerable, only 68.8% (95%CI 62.8-74.8) were fully vaccinated (with or without a booster), and 68-72% had a history of prior infection. Observational studies report that vaccine effectiveness of two doses and a third booster against hospitalization with omicron (BA.1) is about 55% and 80%, respectively, soon after dosing, and worsens substantially by 3 months. While recent prior infection with BA.1 does not protect against re-infection with BA.2 or BA.2.12.1, it may confer enhanced protection against severe disease. The fraction of these individuals who would likely be hospitalized with COVID-19 following recent prior omicron infection is unknown. However, in the pre-vaccine era in NYC, 3.7% of SARS-CoV-2 naïve individuals would have been expected to be hospitalized.

Our study suggests that awareness and uptake of nirmatrelvir/ritonavir (Paxlovid™) was low among adults with SARS-CoV-2 infection in our study. Nirmatrelvir/ritonavir trials were conducted among unvaccinated individuals at high risk for hospitalization and death, and were shown to reduce the likelihood of these outcomes by ~90%. It is unclear if nirmatrelvir/ritonavir provides added protection over and above that provided by vaccines/boosters. The Panoramic trial in the UK is currently assessing the efficacy of nirmatrelvir/ritonavir in fully vaccinated persons. Nonetheless, NYC recommends antivirals for individuals susceptible to severe COVID-19, regardless of vaccination status.

Our sample size was small in analyses restricted to those with SARS-CoV-2 infection. However, stratified analyses of nirmatrelvir/ritonavir uptake by sociodemographic factors and biologic vulnerability suggested that there may be some important inequities in antiviral access across a number of social determinants of health. While caution is warranted, as the confidence limits were wide, these are potentially important findings that warrant further investigation and monitoring, with programmatic course corrections as needed. Inequitable uptake of antivirals among vulnerable individuals with COVID-19 could further exacerbate inequities in the burden of SARS-CoV-2 which has had disproportionate effects on racial/ethnic minorities and other groups. Attention to equity in the design and implementation of large scale public health initiatives, and anticipating how they may create new inequities or exacerbate existing inequities is essential.

Our cross-sectional study has limitations, including self-report of testing outcomes over a 14-day recall period (subject to recall bias) and limited sample size especially in subgroups of those with evidence of COVID-19. For those with prior COVID, we did not capture information on timing of prior infections, which underestimates the degree of hybrid protection, though a substantial proportion of NYC adults were infected during the recent BA.1 surge. Our case definition would likely capture some, but not all, of the estimated 20-30% of individuals whose SARS-CoV-2 infection may remain asymptomatic throughout their infection, as well as those who were symptomatic but were not aware of a close contact. Finally, our survey could not include those whose primary language was not English or Spanish. Strengths include the representative nature of the study, the study’s timing at the start of the BA.2/BA.2.12.1 surge, and measurement of several important factors that are not currently available through routine surveillance, including outcomes among those who do not test positive with a provider.
prevalence among individuals vulnerable to COVID-19, hybrid protection, and awareness/uptake of nirmatrelvir/ritonavir.

Conclusions
Our study’s findings suggest that the magnitude of NYC’s BA.2/BA.2.12.1 surge was vastly underestimated by official case counts. This is likely also true for other U.S. jurisdictions with similar approaches, and by extension, the national SARS-CoV-2 surveillance system. While hospitalizations and deaths are on the rise in NYC, they have so far remained well-below that during the BA.1 surge. Even though many individuals vulnerable to a severe outcome were infected and did not use rapid antivirals, it appears that most had a high degree of protection against a severe outcome through vaccination and boosters, on top of a history of prior infection. This high degree of hybrid protection, coupled with high vaccine- and recently acquired infection-induced protection, if temporary, could partly explain why NYC has not yet seen a major increase in hospitalizations during this current surge, even as the BA.2.12.1 predominates. However, given the uncertainty of how the remainder of the surge will impact severe outcomes among those who remain susceptible, the magnitude of the current surge dictates a need for additional precautions to reduce the risk of spread in the general population. Our findings also demonstrate the utility of population-representative surveys as an important surveillance tool at this uncertain stage of the U.S. pandemic, and can be critical for adjusting estimates of vaccine effectiveness, and calibrating signals in wastewater surveillance.

Funding:
Funding for this project was provided by the CUNY Institute for Implementation Science in Population Health (cunyisph.org).

Acknowledgements:
The authors wish to acknowledge the survey participants and Consensus Strategies for completing survey sampling and data collection. Dr. Nash has a research grant from Pfizer aimed at understanding the impact of vaccination on long COVID.
Table 1. Characteristics for survey respondents by testing status and point prevalence of SARS-CoV-2, NYC April-May 2022

<table>
<thead>
<tr>
<th></th>
<th>Total No. (%)</th>
<th>Testers No. (%)</th>
<th>Non-Testers No. (%)</th>
<th>Estimated prevalence of SARS-CoV-2 infection(‡) % (95% CI)</th>
<th>Estimated Number of adults with SARS-CoV-2 infection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>1030</td>
<td>554 (53.8)</td>
<td>476 (46.2)</td>
<td>22.1 (17.9 - 26.2)</td>
<td>1,489,668</td>
</tr>
<tr>
<td>Testing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Confirmed</td>
<td>117 (11.4)</td>
<td></td>
<td></td>
<td>11.4 (8.4 - 14.3)</td>
<td>768,426</td>
</tr>
<tr>
<td>Probable</td>
<td>67 (6.5)</td>
<td></td>
<td></td>
<td>6.5 (4.2 - 8.8)</td>
<td>438,138</td>
</tr>
<tr>
<td>Possible cases (non-testers/negatives)</td>
<td>44 (4.3)</td>
<td></td>
<td></td>
<td>4.2 (1.8 - 6.7)</td>
<td>283,104</td>
</tr>
<tr>
<td>Age</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18-24</td>
<td>112 (10.8)</td>
<td>74 (13.3)</td>
<td>38 (7.9)</td>
<td>27.7 (12.7-42.8)</td>
<td>201,651</td>
</tr>
<tr>
<td>25-34</td>
<td>232 (22.5)</td>
<td>108 (19.6)</td>
<td>123 (25.9)</td>
<td>21.6 (12.0 - 31.1)</td>
<td>327,592</td>
</tr>
<tr>
<td>35-44</td>
<td>176 (17.1)</td>
<td>80 (14.5)</td>
<td>96 (20.1)</td>
<td>20.5 (8.1 - 32.8)</td>
<td>236,291</td>
</tr>
<tr>
<td>45-54</td>
<td>159 (15.5)</td>
<td>101 (18.3)</td>
<td>58 (12.1)</td>
<td>27.8 (15.9 - 39.7)</td>
<td>290,452</td>
</tr>
<tr>
<td>55-64</td>
<td>158 (15.3)</td>
<td>93 (16.8)</td>
<td>65 (13.6)</td>
<td>23.6 (15.4 - 31.9)</td>
<td>243,389</td>
</tr>
<tr>
<td>65+</td>
<td>194 (18.8)</td>
<td>97 (17.5)</td>
<td>97 (20.4)</td>
<td>14.9 (11.0 - 18.8)</td>
<td>188,817</td>
</tr>
<tr>
<td>Gender</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>471 (45.7)</td>
<td>255 (46.0)</td>
<td>216 (45.4)</td>
<td>23.4 (16.5 - 30.2)</td>
<td>720,824</td>
</tr>
<tr>
<td>Female</td>
<td>527 (51.2)</td>
<td>281 (50.8)</td>
<td>246 (51.7)</td>
<td>20.1 (14.9 - 25.3)</td>
<td>693,687</td>
</tr>
<tr>
<td>Non-binary</td>
<td>32 (3.1)</td>
<td>18 (3.2)</td>
<td>14 (2.9)</td>
<td>36.1 (13.2 - 59.1)</td>
<td>75,434</td>
</tr>
<tr>
<td>Race/Ethnicity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Black NH</td>
<td>214 (20.8)</td>
<td>89 (16.0)</td>
<td>125 (26.3)</td>
<td>11.3 (4.9 - 17.6)</td>
<td>158,431</td>
</tr>
<tr>
<td>White NH</td>
<td>393 (38.2)</td>
<td>229 (41.4)</td>
<td>164 (34.4)</td>
<td>26.3 (20.0 - 32.5)</td>
<td>677,199</td>
</tr>
<tr>
<td>Hispanic</td>
<td>258 (25.0)</td>
<td>158 (28.6)</td>
<td>99 (20.8)</td>
<td>33.6 (23.4 - 43.9)</td>
<td>566,209</td>
</tr>
<tr>
<td>Asian/Pacific Islander</td>
<td>121 (11.7)</td>
<td>52 (9.4)</td>
<td>69 (14.4)</td>
<td>4.9 (0.0 - 10.5)</td>
<td>46,530</td>
</tr>
<tr>
<td>Other</td>
<td>45 (4.3)</td>
<td>25 (4.6)</td>
<td>19 (4.0)</td>
<td>17.1 (0.0 - 35.9)</td>
<td>49,563</td>
</tr>
<tr>
<td>Years of education</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Some HS and below</td>
<td>164 (16.0)</td>
<td>93 (16.9)</td>
<td>71 (14.9)</td>
<td>28.8 (15.8 - 41.8)</td>
<td>31,061</td>
</tr>
<tr>
<td>HS Grad</td>
<td>239 (23.2)</td>
<td>157 (28.3)</td>
<td>82 (17.3)</td>
<td>21.5 (12.3 - 30.8)</td>
<td>336,220</td>
</tr>
<tr>
<td>Some college</td>
<td>205 (19.9)</td>
<td>102 (18.4)</td>
<td>103 (21.5)</td>
<td>16.7 (9.6 - 23.7)</td>
<td>224,010</td>
</tr>
<tr>
<td>College grad and above</td>
<td>422 (40.9)</td>
<td>201 (36.4)</td>
<td>220 (46.3)</td>
<td>22.4 (16.3 - 28.5)</td>
<td>617,545</td>
</tr>
<tr>
<td>------------------------</td>
<td>------------</td>
<td>------------</td>
<td>------------</td>
<td>-------------------</td>
<td>--------</td>
</tr>
<tr>
<td>Household members</td>
<td></td>
<td></td>
<td></td>
<td>0.001</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>349 (33.8)</td>
<td>161 (29.1)</td>
<td>188 (39.4)</td>
<td>16.7 (10.4 - 23.0)</td>
<td>380,479</td>
</tr>
<tr>
<td>2-3</td>
<td>403 (39.1)</td>
<td>224 (40.4)</td>
<td>179 (37.6)</td>
<td>20.7 (14.8 - 26.7)</td>
<td>545,562</td>
</tr>
<tr>
<td>4+</td>
<td>278 (27.1)</td>
<td>169 (30.5)</td>
<td>109 (23.0)</td>
<td>30.8 (20.9 - 40.6)</td>
<td>562,623</td>
</tr>
<tr>
<td>Any children <18 years</td>
<td></td>
<td></td>
<td></td>
<td><.0001</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>271 (26.3)</td>
<td>179 (32.3)</td>
<td>92 (19.4)</td>
<td>33.3 (23.0 - 43.5)</td>
<td>590,333</td>
</tr>
<tr>
<td>N</td>
<td>759 (73.7)</td>
<td>375 (67.7)</td>
<td>384 (80.6)</td>
<td>18.1 (13.8 - 22.3)</td>
<td>899,173</td>
</tr>
<tr>
<td>Household income</td>
<td></td>
<td></td>
<td></td>
<td>0.1219</td>
<td></td>
</tr>
<tr>
<td>Below 25K</td>
<td>221 (21.5)</td>
<td>135 (24.4)</td>
<td>86 (18.1)</td>
<td>18.6 (10.0 - 27.2)</td>
<td>269,556</td>
</tr>
<tr>
<td>25,000 - 65,000</td>
<td>287 (27.9)</td>
<td>149 (26.9)</td>
<td>139 (29.1)</td>
<td>24.9 (16.7 - 33.0)</td>
<td>468,275</td>
</tr>
<tr>
<td>65,000 - 150,000</td>
<td>229 (22.2)</td>
<td>124 (22.4)</td>
<td>104 (21.9)</td>
<td>31.4 (20.8 - 42.1)</td>
<td>469,872</td>
</tr>
<tr>
<td>Above 150,000</td>
<td>77 (7.5)</td>
<td>37 (6.7)</td>
<td>41 (8.5)</td>
<td>17.9 (7.2 - 28.6)</td>
<td>90,492</td>
</tr>
<tr>
<td>Prefer not to answer</td>
<td>215 (20.9)</td>
<td>109 (19.7)</td>
<td>106 (22.3)</td>
<td>13.5 (6.7 - 20.2)</td>
<td>190,185</td>
</tr>
<tr>
<td>Borough</td>
<td></td>
<td></td>
<td></td>
<td>0.897</td>
<td></td>
</tr>
<tr>
<td>Bronx</td>
<td>175 (17.0)</td>
<td>92 (16.7)</td>
<td>83 (17.4)</td>
<td>21.1 (10.4 - 31.8)</td>
<td>241,785</td>
</tr>
<tr>
<td>Brooklyn</td>
<td>317 (30.7)</td>
<td>169 (30.5)</td>
<td>148 (31.0)</td>
<td>27.2 (19.8 - 34.7)</td>
<td>562,865</td>
</tr>
<tr>
<td>Manhattan</td>
<td>201 (19.5)</td>
<td>114 (20.7)</td>
<td>87 (18.2)</td>
<td>22.6 (13.2 - 32.1)</td>
<td>297,057</td>
</tr>
<tr>
<td>Queens</td>
<td>278 (27.0)</td>
<td>148 (26.7)</td>
<td>131 (27.4)</td>
<td>18.2 (10.4 - 26.1)</td>
<td>331,232</td>
</tr>
<tr>
<td>Staten Island</td>
<td>59 (5.7)</td>
<td>30 (5.5)</td>
<td>28 (6.0)</td>
<td>13.6 (0.0 - 28.0)</td>
<td>52,253</td>
</tr>
<tr>
<td>Vaccination status</td>
<td></td>
<td></td>
<td></td>
<td>0.0003</td>
<td></td>
</tr>
<tr>
<td>Boosted</td>
<td>691 (67.1)</td>
<td>393 (70.9)</td>
<td>298 (62.6)</td>
<td>25.2 (19.8 - 30.5)</td>
<td>1,139,778</td>
</tr>
<tr>
<td>Fully vaccinated not boosted</td>
<td>149 (14.5)</td>
<td>58 (10.5)</td>
<td>91 (19.1)</td>
<td>11.8 (3.5 - 20.1)</td>
<td>115,331</td>
</tr>
<tr>
<td>Not vaccinated</td>
<td>190 (18.5)</td>
<td>103 (18.6)</td>
<td>87 (18.3)</td>
<td>18.9 (10.2 - 27.5)</td>
<td>235,684</td>
</tr>
<tr>
<td>Prior COVID since March 2020</td>
<td></td>
<td></td>
<td></td>
<td><.0001</td>
<td></td>
</tr>
<tr>
<td>Never</td>
<td>390 (37.9)</td>
<td>151 (27.3)</td>
<td>239 (50.3)</td>
<td>10.7 (4.7 - 16.6)</td>
<td>273,351</td>
</tr>
<tr>
<td>Once</td>
<td>235 (22.8)</td>
<td>139 (25.2)</td>
<td>95 (20.0)</td>
<td>39.2 (28.2 - 50.2)</td>
<td>602,446</td>
</tr>
<tr>
<td>More than once</td>
<td>140 (13.6)</td>
<td>114 (20.5)</td>
<td>26 (5.5)</td>
<td>40.4 (27.2 - 53.6)</td>
<td>370,354</td>
</tr>
<tr>
<td>Never tested positive but think they had COVID</td>
<td>265 (25.8)</td>
<td>150 (27.1)</td>
<td>115 (24.2)</td>
<td>14.1 (8.5 - 19.7)</td>
<td>245,209</td>
</tr>
<tr>
<td>Protection against severe disease</td>
<td></td>
<td></td>
<td></td>
<td><.0001</td>
<td></td>
</tr>
<tr>
<td>Hybrid protection</td>
<td>Vaccine-induced protection only</td>
<td>Infection-induced protection only</td>
<td>No protection</td>
<td>Any vulnerability<sup>a</sup></td>
<td>Health insurance</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------------------------------</td>
<td>-----------------------------------</td>
<td>--------------</td>
<td>---------------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>522 (50.6)</td>
<td>314 (56.7)</td>
<td>208 (43.6)</td>
<td>28.9 (22.6 - 35.1)</td>
<td>985,702</td>
<td>836 (81.2)</td>
</tr>
<tr>
<td>318 (30.9)</td>
<td>137 (24.7)</td>
<td>181 (38.1)</td>
<td>12.9 (5.6 - 20.1)</td>
<td>268,686</td>
<td>421 (40.9)</td>
</tr>
<tr>
<td>118 (11.5)</td>
<td>89 (16.1)</td>
<td>29 (6.1)</td>
<td>29.8 (16.6 - 43.1)</td>
<td>231,000</td>
<td>609 (59.1)</td>
</tr>
<tr>
<td>72 (7.0)</td>
<td>14 (2.5)</td>
<td>58 (12.2)</td>
<td>0.9 (0.0 - 2.7)</td>
<td>4,247</td>
<td>194 (18.9)</td>
</tr>
</tbody>
</table>

^aAged 65 or older OR ≥1 comorbidity OR unvaccinated
Table 2. Characteristics and antiviral awareness and uptake among NYC adults with SARS-CoV-2 infection, April-May 2022

<table>
<thead>
<tr>
<th>Protection against severe disease</th>
<th>Total</th>
<th>No. (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hybrid protection</td>
<td>150</td>
<td>(66.1)</td>
</tr>
<tr>
<td>Vaccine-induced protection only</td>
<td>41</td>
<td>(18.0)</td>
</tr>
<tr>
<td>Infection-induced protection only</td>
<td>35</td>
<td>(15.5)</td>
</tr>
<tr>
<td>No protection</td>
<td>1</td>
<td>(< 1%)</td>
</tr>
</tbody>
</table>

Vulnerability to severe COVID-19

<table>
<thead>
<tr>
<th>Vulnerability to severe COVID-19</th>
<th>Total</th>
<th>No. (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any vulnerability<sup>a</sup></td>
<td>169</td>
<td>(74.5)</td>
</tr>
<tr>
<td>Unvaccinated</td>
<td>36</td>
<td>(15.8)</td>
</tr>
<tr>
<td>Prior history of COVID</td>
<td>35</td>
<td>(98.2)</td>
</tr>
<tr>
<td>No prior history of COVID</td>
<td>1</td>
<td>(1.8)</td>
</tr>
<tr>
<td>Comorbidity<sup>b</sup></td>
<td>131</td>
<td>(57.8)</td>
</tr>
<tr>
<td>Age 65+</td>
<td>29</td>
<td>(12.7)</td>
</tr>
</tbody>
</table>

Antiviral eligibility

<table>
<thead>
<tr>
<th>Antiviral eligibility</th>
<th>Total</th>
<th>No. (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eligible for antivirals<sup>**</sup></td>
<td>66</td>
<td>(29.0)</td>
</tr>
</tbody>
</table>

^aAged 65 or older OR >1 comorbidity OR unvaccinated; possible comorbidities included: Cancer, diabetes, obesity, COPD or lung disease, liver disease, heart disease, high blood pressure, a recent organ transplant, or an immunodeficiency

^bEligible: above 65 or with comorbidities, with reported symptoms and tested positive on at-home rapid or POC rapid or PCR test
Table 3. Nirmatrelvir/ritonavir uptake* among NYC adults with SARS-CoV-2 infection, April-May 2022

<table>
<thead>
<tr>
<th></th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>% (95% CI)ᵇ</td>
</tr>
<tr>
<td>Overall</td>
<td>15.1 (7.1-23.1)</td>
</tr>
<tr>
<td>Vulnerable to severe COVID-19</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>17.4 (7.5-27.3)</td>
</tr>
<tr>
<td>N</td>
<td>6.9 (0.0-15.3)</td>
</tr>
<tr>
<td>Age</td>
<td></td>
</tr>
<tr>
<td>65+</td>
<td>2.1 (0.0-5.4)</td>
</tr>
<tr>
<td><65</td>
<td>17.2 (7.8-26.5)</td>
</tr>
<tr>
<td>Age</td>
<td></td>
</tr>
<tr>
<td>55+</td>
<td>7.0 (0.13-13.9)</td>
</tr>
<tr>
<td><55</td>
<td>18.7 (7.5-29.8)</td>
</tr>
<tr>
<td>Race/ethnicity</td>
<td></td>
</tr>
<tr>
<td>NH White</td>
<td>19.7 (7.9-31.4)</td>
</tr>
<tr>
<td>NH Black</td>
<td>6.5 (0.0-20.0)</td>
</tr>
<tr>
<td>Hispanic</td>
<td>11.5 (0.0-25.7)</td>
</tr>
<tr>
<td>Asian</td>
<td>52.7 (0.0-100)</td>
</tr>
<tr>
<td>Health insurance</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>17.3 (7.9-26.7)</td>
</tr>
<tr>
<td>N</td>
<td>3.8 (0.0-11.7)</td>
</tr>
<tr>
<td>Employed</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>22.6 (10.1-35.2)</td>
</tr>
<tr>
<td>N</td>
<td>2.9 (0.0-7.2)</td>
</tr>
<tr>
<td>Education</td>
<td></td>
</tr>
<tr>
<td>College graduate</td>
<td>32.7 (16.5-48.8)</td>
</tr>
<tr>
<td>Not college graduate</td>
<td>3.3 (0.0-7.1)</td>
</tr>
<tr>
<td>Household income</td>
<td></td>
</tr>
<tr>
<td>>25K</td>
<td>17.8 (8.2-27.4)</td>
</tr>
<tr>
<td><25K</td>
<td>3.3 (0.0-10.2)</td>
</tr>
</tbody>
</table>

*Uptake only assessed among 192 positive respondents who were in contact with a healthcare or testing provider

ᵇPrecision of estimates is low due to smaller sample size
Figure 1. Estimated SARS-CoV-2 prevalence among NYC adults, April-May, 2022
Figure 2. Protection against severe COVID among adults with and without SARS-CoV-2 infection, NYC April-May 2022
References

14. Dowd JB. The UK’s covid-19 data collection has been “world beating” - let’s not throw it away. *BMJ*. 2022;376:o496.

23. Tartof SY, Slezak JM, Puzniak L, et al. Durability of BNT162b2 vaccine against hospital and emergency department admissions due to the omicron and delta variants in a large health system in the USA: a test-negative case-control study. *Lancet Respir Med*. Published online April 22, 2022. doi:10.1016/S2213-2600(22)00101-1

24. Xie X, Cao Y, Yisimayi A, et al. BA.2.12.1, BA.4 and BA.5 escape antibodies elicited by Omicron BA.1 infection. *Research Square*. Published online May 2, 2022. doi:10.21203/rs.3.rs-1611421/v1

25. New versions of Omicron are masters of immune evasion. *AAAS Articles DO Group*. Published online May 10, 2022. doi:10.1126/science.adc9473

Appendix 1 (Survey design)

Sampling Frame
A sampling frame of 5,580,901 residents of New York City was used of which 2,185,433 have mobile numbers with an additional 1,539,793 landlines. Two stratified proportionate random population-based samples were drawn for this study from the mobile number and landline sampling frames. A total sample of n=1,030 was utilized with a +/- 3 percent margin of error.

Multi-mode data collection design
Short message service (SMS) aka text messages were sent using SMS platform. The respondents were sent a personalized first name text message which included a link to the survey and an opt-out option. The respondents had the option to reply to the SMS text with any queries and the survey was available in both English and Spanish. Data was verified by IP address and scrubbed against the original survey sample.

Interactive voice response (IVR) aka robo-poll messages were sent to landlines using a voice recorded IVR platform. The respondents were able to answer the survey questions using the touch tone keypad on their phones in either English or Spanish.

Data were collected on May 7 and 8, 2022.

Survey weighting
To account for differences in the distribution by groups the following demographic weights were developed based on the American Community Survey ANNUAL ESTIMATES OF THE RESIDENT POPULATION: APRIL 1, 2010 TO JULY 1, 2019 - FOR FULL ESTIMATES DETAIL, VISIT: https://www.census.gov/programs-surveys/popest.html. These included respondent self-identified sex, educational attainment, age, ethnicity/race and region. The inference population is 6,740,580 million adult NYC residents.
Appendix 2 (Survey questionnaire)

Survey on recent COVID exposure, COVID infection, and testing behaviors in New York City

Hello, this is XYZ with a brief public policy survey. At no time will we try to sell you anything. We are just interested in your opinions, and you can drop out at any time.

To begin, what language would you like to take this survey in?
 a. English
 b. Español

The following questions will ask about COVID exposure in the past 2 weeks

1. In the past 2 weeks, have you experienced any COVID-like symptoms (e.g., 100 degrees fever or higher, chills, cough, sore throat, fatigue, headache, shortness of breath, congestion or runny nose, muscle aches, loss of smell or taste, nausea, or diarrhea)?
 a. Yes
 b. No
 c. Don’t know/not sure

2. In the past 2 weeks, has anyone in your household (not including yourself) experienced COVID-like symptoms or tested positive for COVID-19?
 a. Yes
 b. No
 c. Don’t know/not sure

3. In the past 2 weeks, were you exposed to any other person outside of your household who had COVID-like symptoms or tested positive for COVID-19?
 a. Yes
 b. No
 c. Don’t know/not sure

The following questions will ask about COVID testing and treatment in the past 2 weeks

4. In the past 2 weeks, have you taken an at-home rapid test for COVID-19? (a rapid at-home test allows you to collect your own sample and get results within minutes at home)
 a. Yes, Tested Positive
 b. Yes, Tested Negative
 c. No, I have not tested

5. In the past 2 weeks, have you taken a rapid antigen or PCR test for COVID-19 from a healthcare or testing provider?
 a. Yes, Tested Positive (go to 6)
 b. Yes, Tested Negative (go to 6)
 c. No, I have not tested (go to 9)

6. In the past 2 weeks, which of the following locations did you get tested for COVID-19?
a. Hospital or physician’s office
b. Urgent care clinic
c. Pharmacy
d. Mobile testing site
e. Employer
f. Other

7. In the past 2 weeks, how difficult was it for you to get yourself a viral COVID-19 test at a healthcare or testing provider (PCR or rapid) if you attempted to get one?
 a. Did not attempt to get a test
 b. Not Difficult
 c. Somewhat Difficult
 d. Very Difficult

8. In the past 2 weeks, did you try to get paxlovid, an antiviral medication for COVID-19?
 a. No, I don’t know about paxlovid
 b. No, I did not try to get a paxlovid prescription
 c. Yes, I received a paxlovid prescription
 d. Yes, I tried to get paxlovid, but was unable to get it

9. Have you ever self-administered an at-home rapid test for COVID-19 for yourself or for someone in your household?
 a. Yes
 b. No
 c. Don’t know/not sure

10. If you had easy access to free at-home rapid tests, would you prefer to test for COVID-19 at using at-home rapid tests or at a health care/test center?
 a. Take at-home rapid test
 b. Health Care/Test Center
 c. Don’t know/not sure

Do you agree or disagree with the following statements about COVID-19 at-home testing?

11. At-home rapid tests are easy to use:
 a. Strongly agree
 b. Agree
 c. Neither agree nor disagree
 d. Disagree
 e. Strongly disagree

12. I can easily get an at-home rapid test if I or someone in my household needs one:
 a. Strongly agree
 b. Agree
 c. Neither agree nor disagree
 d. Disagree
 e. Strongly disagree
13. Since March 2020, have you ever had COVID-19 infection and tested positive, either at home or with a provider?
 a. Yes, once
 b. Yes, more than once
 c. No, but I am pretty sure that I had COVID
 d. No, I never tested positive, and I don’t think I have ever had COVID
 e. Don’t know/not sure

14. Were you aware that New York City just moved from the low to the medium COVID-19 risk level, indicating higher levels of community transmission?
 a. Yes
 b. No
 c. Don’t know/not sure

Respondent Characteristics

15. Do you currently have any kind of health care coverage, including health insurance, prepaid plans such as HMOs, or government plans such as Medicaid or Medicare, or Indian Health Service?
 a. Yes
 b. No
 c. Don’t know/not sure

16. Do you have any of the following conditions that could increase the severity of COVID-19: cancer, diabetes, obesity, COPD or lung disease, liver disease, heart disease, high blood pressure, a recent organ transplant, or an immunodeficiency)?
 a. Yes
 b. No
 c. Don’t know/not sure

17. Have you been fully vaccinated against COVID-19? [Either 2 doses of mRNA vaccine series (Moderna or Pfizer) or a single dose of Johnson and Johnson COVID-19 vaccine]
 a. Yes (go to 18)
 b. No (go to 19)
 c. Don’t know/not sure (go to 19)

18. If you have been fully vaccinated, have you also received a coronavirus booster?
 a. Yes, more than 5 months ago
 b. Yes, within the past 5 months
 c. No

19. If not fully vaccinated OR not boosted: Do you plan to get a vaccine dose or booster in the next two weeks?
 a. Yes
 b. No
 c. Don’t know/not sure

20. Which zip code do you reside in?

21. What is your age?
22. How do you currently identify your gender? Do you identify as …
 a. Male
 b. Female
 c. Gender non-binary

23. Are you Latino/a, or of Hispanic or Spanish origin?
 a. Yes
 b. No

24. Which one of the following would you use to describe yourself?
 a. White
 b. Black or Black American
 c. Asian, Native Hawaiian or Other Pacific Islander
 d. More than one race

25. Were you born in the USA [Puerto Rico and other territories are considered outside the USA]?
 a. Yes
 b. No
 c. Don’t know

26. What is the highest grade or year of school you completed?
 a. Less than high school
 b. Grade 12 or GED (High school graduate)
 c. College 1 year to 3 years (Some college or technical school, associate degree)
 d. College 4 years or more (College graduate)

27. How many members of your household, including yourself, are 18 years of age or older?
 a. 1
 b. 2
 c. 3
 d. 4
 e. 5
 f. 6
 g. 7
 h. 8
 i. 9 Or more

28. How many children 17 years old or younger usually live or stay with you?
 a. 0
 b. 1
c. 2

d. 3

e. 4

f. 5

g. 6

h. 7

i. 8

j. 9 Or more

29. Are you currently employed for wages or salary?
 a. Yes
 b. No
 c. Don’t know/not sure

30. What is your household’s annual income?
 a. $25,000 or less
 b. Between $25,001 - $65,000
 c. Between $65,000 - $150,000
 d. Above 150,000
 e. Refuse