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Abstract

With age, somatic mutations accumulated in human brain cells can lead to various
neurological disorders and brain tumors. Since the incidence rate of Alzheimer’s disease
(AD) increases exponentially with age, investigating the association between AD and
the accumulation of somatic mutation can help understand the etiology of AD. Here we
built a somatic mutation detection pipeline by contrasting genotypes derived from WGS
data with genotypes derived from scRNA-seq data and applied this pipeline to 76
participants from the ROSMAP project. We focused only on excitatory neurons, the
dominant cell type in the human brain. As a result, we identified 196 sites that
harbored at least one individual with an excitatory neuron-specific somatic mutation
(ENSM) across all individuals, and these 196 sites were mapped to 127 genes. The
single base substitution (SBS) pattern of the putative ENSMs was best explained by
signature SBS5 from the COSMIC mutational signatures, a clock-like pattern
correlating with the age of the individual. The count of ENSMs per individual also
showed an increasing trend with age. Among the mutated sites, we found two sites to
have significantly more mutations in older individuals (16:6899517 (RBFOX1 ), p =
0.044; 4:21788463 (KCNIP4 ), p = 0.045). Also, two sites were found to have a higher
odds ratio to detect a somatic mutation in AD samples (6:73374221 (KCNQ5 ), p =
0.014 and 13:36667102 (DCLK1 ), p = 0.023). 32 genes that harbor somatic mutations
unique to AD and the KCNQ5 and DCLK1 genes were used for GO-term enrichment
analysis. We found the AD-specific ENSMs enriched in the GO-term “vocalization
behavior” and “intraspecies interaction between organisms”. Interestingly, we observed
both age- and AD-specific ENSMs enriched in the K+ channels-associated genes. Taken
together this shows our pipeline that combines scRNA-seq and WGS data can
successfully detect putative somatic mutations. Moreover, the application of our
pipeline to the ROSMAP dataset has provided new insights into the association of AD
and aging with brain somatic mutagenesis.
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Author summary

Somatic mutations are changes in the DNA that occur during life. As with increasing
age, somatic mutations also accumulate in human brain cells and can potentially lead to
neurological diseases such as Alzheimer’s disease (AD). Associating the occurrence of
somatic mutations in human brains with increasing age as well as AD can provide new
insights into the mechanisms of aging and the etiology of AD. But somatic mutations do
not accumulate similarly across different cell types. Single cell RNA sequencing provides
an opportunity to derive somatic mutations for different cell types. We describe a
methodology to detect cell-type specific somatic mutations and demonstrate the
effectiveness of this methodology by applying it to human brain single cell data of 76
participants from the ROSMAP project. The detected somatic mutational pattern
resembles a known clock-like mutational signature, and the number of somatic
mutations per person also increases with age. We also identify specific sites that have a
higher incidence rate of somatic mutations in AD or associated with increasing age. We
further use these findings to postulate molecular pathways enriched with somatic
mutations in AD people contributing to the etiology of AD.

Introduction 1

Somatic mutations are post-zygotic genetic variations that can result in genetically 2

different cells within a single organism. [1] Possible reasons for the occurrence and 3

accumulation of somatic mutations in human brains are errors occurring during DNA 4

replication and gradual failing of DNA repair mechanisms caused by extensive oxidative 5

stress. [2, 3] Previous studies have shown that brain somatic mutations originating in 6

neuronal stem/progenitor cells can lead to various neurological disorders and brain 7

tumors. [4–6] While mutations in post-mitotic neurons have been found to play an 8

important role in age-related and neurodegenerative diseases, [7] this association 9

remains relatively poorly understood. The link between the accumulation of age-related 10

mutations in neurons and neurodegenerative disease is intuitively worth exploring, 11

considering aging is a major risk factor for many neurodegenerative diseases, like 12

Alzheimer’s disease (AD) [8]. 13

AD is the most predominant form of dementia, characterized by the extracellular 14

accumulation of amyloid beta (Aβ) plaques and the intracellular aggregation of 15

phosphorylated tau protein into neurofibrillary tangles (NFTs). [9, 10] A recent study 16

identified several putative pathogenic brain somatic mutations enriched in genes that 17

are involved in hyperphosphorylation of tau. [11] These results indicate that the 18

aggregation of these neuropathological substrates can be partly explained by the 19

accumulation of brain somatic mutations, which raises a new direction for investigating 20

the pathogenic mechanism of AD. 21

Most age-related somatic mutations are only present in a small group of post-mitotic 22

neurons or even in a single neuron. For this reason, ultra-deep bulk sequencing and 23

matched peripheral tissues are often required. [11] This type of data is often generated 24

for one specific research question with relatively high cost and are not always available 25

from public databases. In contrast, the availability of public single cell RNA sequencing 26

(scRNA-seq) datasets has exploded due to continuous technological innovations, 27

increasing throughput, and decreasing costs. [12] scRNA-seq data is most often used for 28

expression-based analyses, such as revealing complex and rare cell populations, 29

uncovering regulatory relationships between genes, and tracking the trajectories of 30

distinct cell lineages in development. [13, 14] We hypothesized that scRNA-seq data can 31

also be used to detect somatic mutations. 32

In this study, we validated the feasibility of calling short somatic variants using 33
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scRNA-seq data. We constructed a pipeline to detect brain-specific somatic mutation by 34

contrasting genotypes identified with whole genome sequencing (WGS) data with 35

genotypes identified with scRNA-seq data. For each putative somatic mutation we 36

investigated associated genes and their respective association with AD and age. 37

Additionally, we investigated whether AD and age are associated with an increasing 38

number of somatic mutations. 39

Results 40

Excitatory neuron-specific somatic mutations (ENSMs) 41

To study somatic mutations acquired over age and between demented (AD) and 42

non-demented (ND) persons, we collected 90 participants from the ROSMAP data for 43

which WGS data in blood or brain as well as single nuclei RNA sequencing (snRNA-seq) 44

data of the frontal cortex was present (Methods). Since the snRNA-seq data (n=90) 45

were collected from three studies, the read coverage for samples varied between the 46

studies (S1 Fig). To reduce the bias generated from the unbalanced read coverage, we 47

excluded individuals (n=9) with a total read count smaller than 6× 107 . Cells from the 48

snRNA-seq data were annotated according to seven major cell types (Methods). As the 49

amount of cells varied for different cell types (S2 Fig), we first explored the feasibility of 50

detecting somatic mutations for each cell type. This exploratory analysis showed that 51

somatic mutations were only detected from the excitatory neurons (when requiring a 52

minimum number of reads (≥ 5) per sample for a putative variant site, Methods), the 53

dominate cell type in snRNA-seq data. This underpins that a sufficient amount of cells 54

was needed for snRNA-seq based somatic mutation detection. As a consequence, we 55

focus our analysis on excitatory neurons. To further ensure the data quality, we 56

excluded individuals (n=5) which had less than 200 excitatory neurons from our study. 57

After filtering, 76 participants (23 from snRNAseqMFC study, 30 from 58

snRNAseqPFC BA10 study, and 23 from snRNAseqAD TREM2 study) had an 59

adequate read coverage and sufficient number of excitatory neurons. The demographic 60

data (sex, age at death, and cognitive diagnosis (cogdx) categories [15]) of these 61

participants are given in Table 1. More than 72% of them were 85 years of age or older 62

at death; 56% were women. Individuals were grouped based on their cognitive diagnosis 63

in either being non-demented (n=42) or being an AD sample (n=33). 64

Table 1. Summary characteristics of selected sample from the ROSMAP study.

Group Cogdx* n Sex Age, mean ± SD (range)

Non-demented
1 33

23 F; 19 M 85.7 ±4.2 (76-90)2 8
3 1

Alzheimer’s disease
4 32

19 F; 14 M 87.1 ±3.9 (74-90)
5 1

Other dementia 6 1 1 F 83

*Cognitive diagnosis (cogdx) is defined as six categories: 1 NCI: No cognitive impairment (No

impaired domains); 2 MCI: Mild cognitive impairment (One impaired domain) and NO other

cause of CI; 3 MCI: Mild cognitive impairment (One impaired domain) AND another cause

of CI; 4 AD: Alzheimer’s dementia and NO other cause of CI (NINCDS PROB AD); 5 AD:

Alzheimer’s dementia AND another cause of CI (NINCDS POSS AD); 6 Other dementia: Other

primary cause of dementia.
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Fig 1. Schematic overview of the analyses in this study. a. Participants from
the ROSMAP project with both single nuclei RNA sequencing (snRNA-seq) data and
whole genome sequencing (WGS) data available were selected for this study. 76
participants who passed the total read number and cell number filtering were used for
the analyses. These individuals (aged 74-90) were grouped as non-demented (ND)
samples (n=42) or Alzheimer’s disease (AD) patients (n=33) based on the cognitive
diagnosis. b. The snRNA-seq data were collected from three studies (23 from
snRNAseqMFC study, 30 from snRNAseqPFC BA10 study, and 23 from
snRNAseqAD TREM2 study). All specimens for these three snRNA-seq data sources
were collected post-mortem from the frontal cortex. The snRNA-seq data were clustered
and assigned to seven major cell types, but only the reads from excitatory neurons were
used for the study after an exploratory phase. The WGS data were measured from blood
(n=23) or brain (n=53). c. The genotypes for snRNA-seq data were detected using the
GATK pipeline followed by VarTrix, while the genotypes for WGS data were detected
by the GATK pipeline (Method). d. The somatic mutations were determined by
contrasting genotypes derived from WGS data with genotypes derived from snRNA-seq
data. e. For the detected putative somatic mutations, their mutational signature,
associated genes, and respective association with AD and age were investigated.

Number of detected ENSMs as expected 65

Somatic mutations in the 76 participants were detected using the pipeline described in 66

the Methods and shown in Fig 1. For that the snRNA-seq data of the excitatory 67

neurons are compared to WGS data of blood (n=23) or brain (n=53). IBD estimation 68

using shared variation sites confirmed the matching between the snRNA-seq and WGS 69

samples (pair-wised PI HAT > 0.85, S3 Fig, Methods). From the 9,751,193 short 70

variants called from the snRNA-seq data, we identified 196 sites that harbored at least 71

one sample with an excitatory neuron-specific somatic mutation (ENSM) across all 72

samples. These genetic sites map to 127 genes (Methods), and 104 sites among them 73

were single-nucleotide variants (SNVs). From these 196 sites, 98 were shared between 74
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multiple individuals (n > 2) (S4 Fig). A few sites have mutations present in almost all 75

individual genomes, which are likely to be either RNA editing events [16]; transcription 76

errors, which can occur in a wide variety of genetic contexts with several different 77

patterns [17,18]; or technical errors [19]. 53 sites have mutations uniquely present in the 78

brains of the AD samples (S1 Table). 79

Per individual genome the ENSMs ranged from 24 to 41. This seems to be in 80

agreement with other studies that found an average of 12 somatic SNVs in 81

hippocampal formation tissue using bulk exome sequencing [11], and an average amount 82

of 1700 somatic mutations (substitutions 1500; indels 200) in neurons using a 83

whole-genome duplex single-cell sequencing protocol [20]. 84

Number of ENSMs increase with age 85

To characterize the ENSMs, a mutation signature analysis was performed on 104 86

putative somatic SNVs (Methods). The results show that, from the COSMIC 87

mutational signatures, SBS5 best explains the observed pattern of putative somatic 88

SNVs by Mutalisk (Fig 2). SBS5 is a clock-like signature, i.e. the number of mutations 89

correlates with the age of the individual. This suggests that the underlying mutational 90

processes of the found ENSMs might be part of the normal aging process in excitatory 91

neurons. A previous study using bulk exome sequencing also found an abundance of the 92

SBS5 signature in aged brain tissues. [11] 93
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Fig 2. The mutation signature of 104 putative excitatory neuron-specific
single nucleotide variations (SNVs) in the brain. Among the 30 COSMIC single
base substitution (SBS) signatures, SBS5 was identified as the model that best explains
the observed pattern of putative somatic SNVs by Mutalisk (BIC=892.6). a. The
percentage of each substitution subtype in the 104 putative excitatory neuron-specific
SNVs. Subtype T>C and C>T are the dominate subtypes, account for 43.3% and
35.6% of the fraction separately. b. The top panel shows the observed distribution of
mutations across the 96 possible mutation types; the middle panel shows the summation
of the distributions of the decomposed signatures; the bottom panel shows the difference
of each base substitution subtype between the top and middle panel. c. The cosine
similarity between the distributions of observed mutations and the best decomposition
model (SBS 5).
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When studying the count of somatic mutation in our analyses, we found only a slight 94

increase with age (β = 0.15, Fig 3a) that was not statistically significant (p=0.12). We 95

should note that the number of samples is relatively low and represent a relatively 96

narrow age range (from 74 to 90 years old). Moreover, participants with an age older 97

than 90 years were all censored by age 90 , which could also influence the significance of 98

the age trend. A significant trend is observed when we exclude individuals at age 90 99

from the regression (β = 0.37, P = 0.005; S5 Fig). 100
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Fig 3. Quantitative comparison of the number of excitatory neuron-specific
somatic mutations (ENSMs) in terms of AD and aging. a. The number of
ENSMs per individual against the age of the individual. The line shows how this
number regresses with age. The significance of the coefficient (β ̸= 0) was tested using
t-test. b. Boxplot of the number of ENSMs in non-demented controls (ND) and AD
patients (AD). The Wilcoxon rank sum test does not show a significance difference (ns).

RBFOX1 and KCNIP4 harbor age-associating ENSMs 101

As several detected ENSMs are being detected in multiple individual genomes (S4 Fig), 102

we next tested the association of age with somatic mutation prevalence for each site 103

individually using a logistic regression (Methods). We added AD status as an 104

explanatory term and excluded the sample with other primary cause of dementia 105

(Methods) from this analysis. Two sites (16:6899517 (RBFOX1 ), p = 0.044; 4:21788463 106

(KCNIP4 ), p = 0.045) are found to have significantly more mutations in older 107

individuals. The age distributions in mutated and unmutated samples for these two 108

sites are shown in Fig 4. Some caution should be treated when interpreting this plot for 109

individuals older than 90 years as these are all mapped to 90 years old. 110

ENSM sites in KCNQ5 and DCLK1 associate with AD status 111

Genes that were enriched with somatic mutations in AD samples might have a higher 112

possibility to be associated with AD. We found 53 ENSM sites that were only detected 113

in AD samples. This prompted the question whether the number of ENSMs associate 114

with AD status. A Wilcoxon rank sum test indicated that there was no significant 115

difference (p=0.71) in the average count of ENSMs between AD samples and 116

non-demented controls (Fig 3b). This finding is in line with a previous report [11,21] 117
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Fig 4. The occurrence of somatic mutation with age in (a) RBFOX1 and (b)
KCNIP4 genes. Logistic regression was used to test the prevalence of somatic
mutations with increasing age.

that indicated that somatic mutations are associated with AD in certain patterns, but 118

not by amount. 119

Next, we examined whether the occurrence of an ENSM is overrepresented within 120

AD samples. A Fisher’s exact test that identifies sites that have a higher odds ratio to 121

detect a somatic mutation in AD samples (Methods), yielded two sites with significant 122

odds ratios. These sites are mapped to two genes (6:73374221 (KCNQ5 ), p = 0.014 and 123

13:36667102 (DCLK1 ), p = 0.023). 124

Genes harboring AD specific ENSMs do relate to Alzheimer or 125

processes involved in Alzheimer 126

The 53 AD specific ENSM sites map to 42 genes. When we exclude genes for which also 127

an ENSM occurs in an ND individual (n=10), we end up with 32 genes that have 128

ENSMs only seen in AD samples (S1 File). Among these 32 genes, there are several 129

well-known AD-associated genes, like SLC30A3, TTL, and CTSB, which thus harbor 130

somatic mutations unique for AD. 131

Together with the two genes for which AD samples had a higher occurrence of 132

ENSMs (KCNQ5 and DCLK1 ), we conducted a GO-term analysis to investigate the 133

biological pathways that may be involved (Methods). The most enriched biological 134

processes is “vocalization behavior” (FDR < 0.009) which is known to be associated 135

with AD. [22] Also, “intraspecies interaction between organisms” is found to be 136

significant (FDR < 0.042), and detected genes with this function are DLG4, 137

CNTNAP2, and NRXN3 (Fig 5). Our results also identified a group of genes 138

(CACNA1B, CNTNAP2, DLG4, KCNQ3, and KCNQ5 ) enriched with the GO-term 139

“ion channel complex” (FDR < 0.031). KCNQ genes encode five members of the Kv7 140

family of K+ channel subunits (Kv7.1–7.5). Four of these (Kv7.2–7.5) are expressed in 141

the nervous system. [23] Concerning AD-related neuropathology, a link between Aβ 142

accumulation and Kv7 channels has been reported by some studies. [24, 25] 143
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Fig 5. GO-terms enriched with genes having AD-specific ENSMs. 32 genes
that have ENSMs only seen in AD samples, and the KCNQ5 and DCLK1 genes that
have a higher occurrence in AD samples are used in the GO-term enrichment analysis.
The left panel of the figure shows the enriched terms, their corrected p-value, the
number of genes annotated with that term (size of circle), and the fraction of
overlapping genes that harbor a AD-specific ENSM (color of circle). The FDR corrected
significant GO-terms are grouped into three categories: Biological Process (BP),
Cellular Component (CC), and Molecular Function (MF). The right panel shows the
subset of genes having an AD-specific ENSM that are annotated with the enriched GO
terms, red squares, while a blue squares indicates that the gene does not have that
annotation. Those genes that are not annotated with any of these GO-terms are not
included in this panel.

Discussion 144

Late-onset Alzheimer’s disease, whose incidence increases with age, is often referred to 145

as a geriatric disease. Although the accumulation of Aβ peptide and phosphorylated tau 146

protein are the neuropathological main characteristics of AD, they fail to explain the 147

molecular pathogenesis. As such, a cell-level investigation might be necessary to study 148

the underlying pathogenic mechanism. Here, we identified somatic mutations using 149

public data collected from 76 ROSMAP donors and investigated their associations with 150

AD and aging. 151

Although scRNA-seq data are normally used for expression-based analyses, our 152

results have shown that scRNAseq data can be used for the detection of somatic 153

mutations at a cell-type specific level. As long as RNA sequences align correctly to a 154

reference genome, the pipeline that was used for variant calling can be used for both 155

bulk RNA-seq and scRNAseq data. [26] However, calling variants for each cell 156

separately is not efficient, suffers from low coverage, and each cell is likely to have a 157

unique set of identified variants. For this reason, we aggregated cells per individual and 158

per cell-type, generating cell-type specific pseudo-bulk data. An exploratory run of the 159

pipeline revealed that this approach was only feasible for excitatory neuron as it was the 160

most abundant cell type in the snRNA-seq data resulting in sufficient coverage. This 161

observation shows that a sufficient amount of cells or relatively deep sequencing is 162

required for somatic mutation detection. 163
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Our analysis showed that the prevalence of somatic mutations in the gene KCNIP4 164

and RBFOX1 is associated with increasing age (when corrected for AD status). 165

KCNIP4 encodes a member of the family of voltage-gated potassium (K+) 166

channel-interacting proteins (KCNIPs), which suggests altered ion transports/channels 167

may be associated with the aging process. [27] RBFOX1 is a neuron-specific splicing 168

factor predicted to regulate neuronal splicing networks clinically implicated in 169

neurodevelopmental disorders. [28, 29] The increased somatic mutations in RBFOX1 170

with age indicates neurodevelopmental disorders may also associate with human brain 171

aging. 172

We detected the occurrence of somatic mutations close to well-known AD-associated 173

genes, like SLC30A3, TTL, and CTSB. SLC30A3 is known to be down-regulated in the 174

prefrontal cortex of AD patients. [30] SLC30A3 is assumed to play a protective role 175

against ER stress, which has been thought to be involved to neurodegenerative diseases 176

such as AD. [31] TTL is a cytosolic enzyme involved in the post-translational 177

modification of alpha-tubulin. [32] A previous study found that levels of TTL were 178

decreased in lysates from AD brains compared to age-matched controls and that, in 179

contrast, D2 tubulin was significantly higher in the AD brains, indicating that loss of 180

TTL and accompanying accumulation of D2 tubulin are hallmarks of both sporadic and 181

familial AD. [33] Gene CSTB encodes cystatin B (CSTB), an endogenous inhibitor of 182

cystine proteases. [34] Human CSTB has been proposed to be a partner of Aβ and 183

colocalises with intracellular inclusions of Aβ in cultured cells. [35] Protein levels of 184

CSTB have been also reported to increase in the brains of AD patients. [36] These 185

observations suggest that somatic mutations may initiate or are involved in the AD 186

process in many ways. 187

Advance AD-related dementia is often accompanied with language problems, 188

behavioral issues and cognitive decline. [8] Our results identified AD associated somatic 189

mutations in the genes CNTNAP2, DLG4, and NRXN3 which are involved in, among 190

other processes, vocalization behavior, intraspecies interaction between organisms and 191

behavior and cognition. Our results show that AD-related language problems and 192

behavioral issues might be associated with somatic mutations in excitatory neurons. In 193

addition, we identified AD-associated somatic mutations in CACNA1B, CNTNAP2, 194

DLG4, KCNQ3 and KCNQ5, which are all ion-channels or involved with ion-channels. 195

Previous studies have reported on the possible role of altered neuronal excitability, 196

controlled by different ion channels and their associated proteins, occurring early during 197

AD pathogenesis. [37, 38] Specifically K+ channels which are the most numerous and 198

diverse channels present in the mammalian brain, may partly explain this alteration in 199

neuronal excitability. [39] Also, a dysfunction of K+ channels has been observed in 200

fibroblasts [40] and platelets [36] of AD patients. Additionally, Aβ has been 201

demonstrated to not only be involve in the AD pathogenesis, but also modulate K+
202

channel activities [41] and may have a physiological role in controlling neuronal 203

excitability [42]. Somatic mutations involved in K+ channels were detected to associate 204

with both AD and age indicating the existence of common processes behind 205

neurodegenerative disease and aging. It also seems that K+ channels are naturally 206

subjected to oxidation by reactive oxygen species (ROS) in both aging and 207

neurodegenerative disease which are characterized by high levels of ROS. [43] 208

Calling variants and detecting somatic mutations from public scRNA-seq data 209

expands the use scope of scRNA-seq data, and may provide new insight into postzygotic 210

genetic change at a cell-type specific level. The use of a single cell-type (excitatory 211

neuron) and the minimal read coverage requirement minimized biases driven by 212

gene-specific expression. However, some limitations can also not be ignored. With the 213

pipeline that was used, the results are sensitive to the chosen settings of the parameters. 214

RNA editing events and transcription errors that happen in RNA sequences might also 215
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be identified as somatic mutations using this pipeline, but the association between this 216

type of mutation and AD or aging could also be interesting. [44] Additionally, as the 217

pipeline is relatively complex, quality control was highly critical for this study. Another 218

limitation of this study is the relative narrow age range of the included individuals. 219

Moreover, ages above 90 were censored to be 90. These two factors may explain that we 220

only found a relative weak association between age and the accumulation of somatic 221

mutations. On the other hand, the significant trend after removing individuals with an 222

age higher than 90 might also indicate that nonagenarians and centenarians generally 223

have a more healthy individual genome. Next, heterozygous variants from the WGS 224

data were ignored in this study (due to potential ambiguity due to differences in gene 225

expression). Therefore, many potential somatic mutation were excluded from the start. 226

Finally, as 10x scRNA-seq data was used to detect somatic mutations, only variants 227

located on the DNA that gets transcribed into mRNA were detected. 228

Our study has explored the feasibility of using scRNA-seq data to detect somatic 229

variants. We developed a pipeline that combines scRNA-seq and WGS data and 230

successfully detected putative somatic mutations, as such, broadened the use-scope of 231

scRNA-seq data. By applying this pipeline on data obtained from the ROSMAP 232

project, we generated potential new insights into the association of AD and aging with 233

brain somatic mutagenesis. It should be noted that follow-up studies with larger cohorts 234

are required to validate our results. 235

Materials and methods 236

Case selection 237

Single nuclei RNA sequencing (snRNA-seq) data and whole genome sequencing (WGS) 238

data were obtained from the Religious Order Study (ROS) and the Rush Memory and 239

Aging Project (MAP), two longitudinal cohort studies of aging and dementia. [45] 240

Information collected as part of these studies, collectively known as ROSMAP, includes 241

clinical data, detailed post-mortem pathological evaluations and tissue omics profiling. 242

The snRNA-seq data used in this project were from three sources: 1) snRNAseqMFC 243

study (n=24), 2) snRNAseqAD TREM2 study (n=32) [46], and 3) snRNAseqPFC BA10 244

study (n=48) [47]. All specimens for these three snRNA-seq data sources were collected 245

post-mortem from the frontal cortex, sub-regions might slightly differ between studies. 246

The snRNA-seq data from the three studies were all sequenced according to the 10x 247

Genomics manufacturer’s protocol. The detailed information for cell partitioning, 248

reverse transcription, library construction, and sequencing run configuration for the 249

three studies is available on Synapse (snRNAseqMFC: syn16780177, 250

snRNAseqAD TREM2: syn21682120, snRNAseqPFC BA10: syn21261143). WGS data 251

was from a subset of the ROSMAP participants with DNA obtained from brain tissue, 252

whole blood or lymphocytes transformed with the EBV virus. The details for WGS 253

library preparation and sequencing, and WGS Germline variants calling were described 254

in the previous study. [48] The individuals (n=90) that have both snRNA-seq data and 255

WGS data (27 from brain tissue and 63 from whole blood) available were selected for 256

this study. Individuals annotated with no cognitive impairment or mild cognitive 257

impairment were defined as non-demented (ND) controls; AD patients with or without 258

other cause of cognitive impairment were defined as AD samples. 259

Cell type annotation 260

Each snRNA-seq dataset was separately processed for clustering and cell type 261

annotation which was done as follows. The processed count matrix was loaded in Seurat 262
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3.2.2. [49] The data was log-normalized and scaled before analysis. Next, with the 2,000 263

most variable genes (default with Seurat), principal components analysis (PCA) was 264

performed. The number of principal components used for clustering was determined 265

using the elbow method. Further, Seurat’s FindNeighbours and FindCluster functions 266

were used, which utilizes Louvain clustering, the resolution was set at 0.5. A UMAP 267

plot (S6 Fig) was made to visualise and inspect the clusters. The following cell types 268

were identified using known and previously used markers: excitatory neurons (SLC17A7, 269

CAMK2A, NRGN ), inhibitory neurons (GAD1, GAD2 ), astrocytes (AQP4, GFAP), 270

oligodendrocytes (MBP, MOBP, PLP1 ), oligodendrocyte progenitor cell (PDGFRA, 271

VCAN, CSPG4 ), microglia (CSF1R, CD74, C3 ) and endothelial cells (FLT1, 272

CLDN5 ). [47] Based on the markers’ expression patterns across clusters determined by 273

Seurat’s FindMarkers function, cell types were assigned to cells (S2 File). When clusters 274

were characterized by markers of multiple cell types, they were assigned “Unknown”. 275

snRNA-seq short variants calling 276

Single nuclei RNA reads were mapped to the reference human genome GRCh37 using 277

STAR aligner (STAR v2.7.9a). After alignment, duplicate reads were identified using 278

MarkDuplicates (Picard v2.25.0) and reads with unannotated cell barcodes were 279

removed using samtools (smatools v1.11). Reads containing Ns in their cigar string were 280

splitted into multiple supplementary alignments using SplitNCigarReads (GATK 281

v4.2.0.0) to match the conventions of DNA aligner. Base Quality Recalibration was 282

performed per-sample to detect and correct for patterns of systematic errors in the base 283

quality scores using BaseRecalibrator and ApplyBQSR (GATK v4.2.0.0). Short variant 284

discovery was performed on chromosome 1-22 with a two-step process. HaplotypeCaller 285

was run on each sample separately in GVCF mode (GATK v4.2.0.0) producing an 286

intermediate file format called gVCF (for genomic VCF). gVCFs from each individual 287

were combined together and run through a joint genotyping step (GATK v4.2.0.0) to 288

produce a multi-sample VCF file. S7 Fig indicats the steps of snRNA-seq short variants 289

calling in a flow chart. Variant filtration was then performed using bcftools (bcftools 290

v1.11). A basic hard-filtering was performed using cutoffs of 1) the total read depth 291

DP<50000; 2) the quality of calling QUAL>100; 3) the quality by depth QD>2; 4) the 292

strand odds ratio SOR<2; 5) the strand bias Fisher’s exact test FS<10. 293

Identical individual check using IBD estimation 294

To make sure the sequences of snRNA-seq and WGS are matching and from the same 295

individual, we performed a pairwise identical by descent (IBD) estimation using filtered 296

variants from snRNA-seq and WGS in a combined VCF file. The estimation was 297

calculated using PLINK v1.9. [50] The proportion IBD value PI HAT from the output 298

of PLINK was used as the estimator, when the profiles are from the same individual the 299

PI HAT value will be close to 1, otherwise it will be close to 0. 300

Somatic mutation detection using VarTrix 301

VarTrix, a software tool for extracting single cell variant information from 10x 302

Genomics single cell data, was used to detect somatic mutations. For single nuclei gene 303

expression data, VarTrix requires a pre-called variant set in VCF format, an associated 304

set of alignments in BAM or CRAM format, a genome FASTA file, and a cell barcodes 305

file produced by Cell Ranger as input. After an exploratory phase, we observed that 306

only cells annotated as excitatory neuron had enough read coverage for somatic 307

mutation detection. Therefore, for each individual, a subset of the BAM file including 308

only reads from cells annotated as excitatory neuron was used as the input of VarTrix. 309
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Correspondingly, the pre-called variant set was also detected from the subset of the 310

BAM file which only including barcodes from cells annotated as excitatory neuron. 311

Human reference genome GRCh37 was used as the genome FASTA file. In this 312

study, VarTrix was run in coverage mode generating a reference coverage matrix and an 313

alternate coverage matrix indicating the number of reads that support the reference 314

allele and the alternate allele. These matrices were later used for filtering variant sites 315

and detecting somatic mutations in the excitatory neurons. Since the snRNA-seq data 316

were collected from three studies, the average coverage varied between different sources. 317

To minimize the batch effect from different studies, we filtered the variant site based on 318

the read number of each individual. Specifically, we calculated a cutoff Ci for each 319

individual i as below: 320

Ci =
ni∑N

i=1 ni/N
C

where ni is the number of reads for individual i, N is the number of individuals. 321

The constant value C is set as 25 to guarantee a relatively large minimum average read 322

coverage across individuals. A variant site would be used for somatic mutation detection 323

when for all individuals the read depth at this site is higher than the cut-off Ci for that 324

individual. Next, a somatic mutation was identified as present in one individual when: 325

1) the genotype of this individual at the site in WGS was ref/ref and the ratio of reads 326

that support the alternate allele is larger than 0.1 at the same site, or 2) the genotype 327

of this individual at the site in WGS was alt/alt and the ratio of reads that support the 328

reference allele is larger than 0.1 at the same site. When the genotype of a individual at 329

a certain site was heterozygote in WGS, we ignored the site for that individual, 330

regardless of the allele ratio in snRNA-seq, because we cannot distinguish an observed 331

homozygous variant at a site in snRNA-seq is due to somatic mutagenesis or reads 332

missing when there is a heterozygous variant in WGS at the same site. 333

Mutation signature analysis 334

To characterize the contribution of mutation signatures, we pooled all putative somatic 335

single nucleotide variations (SNVs) for signature analysis. We formatted the pooled 336

SNVs in a VCF file and used it as input for running Mutalisk [51] with the following 337

configurations: maximum likelihood estimation (MLE) method; linear regression. The 338

input file was compared with 30 single base substitution (SBS) signatures from the 339

COSMIC mutational signatures database. The best model of signature combination was 340

suggested from the tool by considering the Bayesian information criterion (BIC). 341

Variants annotation and effect prediction 342

The gene annotation and functional effect prediction for all putative variants were 343

performed using SnpEff (SnpEff v5.0). [52] The human genome GRCh37 was used as 344

reference genome. If there were multiple genes mapping to one variant site, the gene 345

having higher putative effect was used for the disease and age association analyses. 346

GO-term enrichment analysis 347

The gene ontology (GO-term) enrichment analysis was performed using “topGo” 348

package [53] in R and compressed by REVIGO [54] with semantic similarity score 349

“Lin” [55]. The genes that were annotated to the variant sites with read depths higher 350

than the cut-offs for all samples were used as background. The p-values from the 351

uneliminated GO-terms were corrected using “Benjamini & Hochberg” method, 352

significant results were reported with false discovery rate (FDR) < 0.05. 353
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Statistical analysis 354

All calculations were performed using R (version 3.6.3). Wilcoxon rank sum test, linear 355

regression, Fisher’s exact test, and logistic regression were performed using the “stats” 356

R package. [56] By categorizing the “present” of somatic mutation as 1 and the “absent” 357

of somatic mutation as 0, the logistic function was defined as: 358

p = 1/(1 + exp(−(β0 + β1age+ β2group))), where age is the age of the sample at death, 359

group is the assigned group for the individual based on the cogdx category, and β0..2 360

are the coefficients of the intercept and the explanatory variables. For this analysis, 361

only individuals from the AD and ND group were used. 362
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Supporting information

S1 Fig. The distribution of the number of single-nuclei RNA (snRNA)
reads across individuals. The dashed red line indicates the cutoff of < 6× 107,
individuals below this line were excluded from the study. The colors indicated the study
that the individual was from. Individuals with color blue and red were from the two
batches (B1 and B2) of snRNAseqMFC study; individuals with color orange were from
snRNAseqAD BA10 study; individuals with color purple were from
snRNAseqPFC TREM2 study.

S2 Fig. The number of cells per cell type per individual. The cell types were
distinguished with seven different colors. Individuals with color blue and red were from
the two batches (B1 and B2) of snRNAseqMFC study; individuals with color orange
were from snRNAseqAD TREM2 study; individuals with color purple were from
snRNAseqPFC BA10 study.
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S3 Fig. IBD estimation between paired genetic profiles from WGS and
snRNA-seq. The IBD estimation was performed to ensure the WGS and snRNA-seq
profiles which share the same identifier were from the same individual. PI HAT is a
measure of overall IBD alleles. If the genetic profiles are from different persons, the
value PI HAT will be close to 0. On the contrary, if the profiles are from the same
person, the value PI HAT will be close to 1.

S4 Fig. Distribution of sample counts with excitatory neuron-specific
somatic mutations at the same site.

S5 Fig. The count of mutations regressed with age. Individuals at age 90 were
removed from this figure. The significance of the coefficient (β ̸= 0) was tested using
t-test.

S6 Fig. The UMAP plot for cell type clustering in each study. See Method
for details.

S7 Fig. The pipeline of short snRNA-seq variants calling. This pipeline
follows the best practices workflows from GATK.

S1 File. Supplementary file for AD specific ENSM sites.

S2 File. Supplementary file for cell type annotation.

S1 Table. Counting of mutagenic sites based on the cognitive diagnosis.
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