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Abstract: 1 

Probabilistic bias and Bayesian analyses are important tools for bias correction, particularly if required 2 

parameters are nonidentifiable. Negative controls are another tool; they can detect confounding and 3 

correct for confounders.  Our goals are to present conditions that assure identifiability of certain causal 4 

effects and to describe and illustrate a probabilistic bias analysis and related Bayesian analysis that use a 5 

negative control exposure. 6 

Using potential-outcome models, we characterize assumptions needed for identification of causal effects 7 

using a dichotomous, negative control exposure when residual confounding exists. We define bias 8 

parameters, characterize their relationships with the negative control and with specified causal effects, 9 

and describe the corresponding probabilistic-bias and Bayesian analyses.  10 

We exemplify analyses using data on hormone therapy and suicide attempts among transgender people. 11 

To address possible confounding by healthcare utilization, we used prior TdaP (tetanus-diphtheria-12 

pertussis) vaccination as a negative control exposure. Hormone therapy was weakly associated with risk 13 

(risk ratio (RR) = 0.9). The negative control exposure was associated with risk (RR = 1.7), suggesting 14 

confounding.  Based on an assumed prior distribution for the bias parameter, the 95% simulation interval 15 

for the distribution of confounding-adjusted RR was (0.17, 1.64), with median 0.5; the 95% credibility 16 

interval was similar. 17 

A dichotomous negative control exposure can be used to identify causal effects when a confounder is 18 

unmeasured under strong assumptions. More realistically, assumptions can be relaxed and the negative 19 

control exposure may prove helpful for probabilistic bias analyses and Bayesian analyses. 20 

 21 
 22 
Introduction: 23 

Residual confounding often threatens valid estimation of causal effects, especially absent randomization 24 

of exposure. In a potential outcome framework, confounding implies non-exchangeability, defined below 25 

as an association of the exposure with the potential outcomes.   26 

Numerous approaches can adjust for, or otherwise account for measured confounders, including 27 

restriction to a single level of the confounder, control or adjustment by stratification or modelling in the 28 

analysis, difference in difference and regression discontinuity analyses, and use of instrumental 29 

variables1.  30 

To detect residual confounding, perhaps due to an unmeasured or mis-measured confounder, one can use 31 

a negative control outcome or negative control exposure2.  A negative control exposure, our focus, is a 32 
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variable that does not cause the outcome but is associated with the suspected, but unmeasured confounder 1 

(detailed in methods).  In an early application, Yerushalmy studied the effects of maternal cigarette 2 

smoking on birth weight (reprinted3). To detect confounding, he assessed the association of paternal 3 

smoking with his offspring’s birthweight; this alternative “exposure” was contemporaneously thought not 4 

to affect the outcome of interest – a negative control exposure; he observed an association and interpreted 5 

it as suggesting confounding.  Later work using cotinine levels suggested this use of paternal smoking as 6 

a negative control was valid2,4. As another example, Flanders et al. studied the effects of air pollution on 7 

emergency department visits for respiratory diseases. They used pollutant levels the day after the outcome 8 

had occurred, which could not cause the outcome, as a negative control exposure to detect residual 9 

confounding or other bias5,6.  A study of influenza vaccination and deaths from influenza7 exemplifies 10 

negative control outcomes. A strong association of vaccination status with influenza deaths before the 11 

influenza season (an alternative “outcome” thought to be unaffected by the exposure of interest – a 12 

negative control outcome) suggested bias in the estimated effect of vaccination. Lipsitch et al. discussed 13 

and formalized these concepts for detection of residual confounding8. 14 

Much subsequent work goes beyond bias detection to use negative controls to adjust for residual 15 

confounding2,9.  Flanders et al. used a negative control exposure to partially correct for residual 16 

confounding10. Their approach, however, involved certain distributional assumptions.  Other approaches 17 

have involved outcome calibration under a rank preservation assumption11, and use of a linear model for 18 

the unmeasured confounder with factor analysis12,13.  Miao et al. recently provided conditions that, if met, 19 

allow identification of causal effects by using two negative controls, which can act as surrogates for the 20 

unmeasured confounder(s)14-16.  21 

Assumptions needed for identifiability can be rather strong if a confounder remains unmeasured.  For 22 

example, in the categorical case, the approach of Miao et al.14 requires two negative controls that serve as 23 

proxies for the unmeasured confounder (say U). They must have several properties including: each proxy 24 

has at least as many categories as U, the proxies are independent conditional on U and certain  probability 25 

matrices have inverses.  26 

Probabilistic bias analyses can address residual biases in the effect estimate that remain after conventional 27 

analyses17. For residual confounding, probabilistic bias analyses use substantive knowledge to help 28 

formulate a distribution of bias parameters that characterize unobserved associations (specified in 29 

methods), apply that distribution to correct conventional effect estimates, such as risk ratios, and produce 30 

a distribution of plausible corrected estimates. Our goals are to describe and illustrate a method that uses a 31 

negative control exposure to partially correct for confounding and to formulate probabilistic bias analyses. 32 

We extend the approach to a fully Bayesian analysis. 33 
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Methods: 1 

Background, Notation, and Definitions 2 

Our specific objectives are to: present and justify conditions sufficient for using a negative control 3 

exposure (𝑁) to identify causal effects of an exposure (𝐸) on an outcome (𝑌) when a confounder (𝑈) is 4 

unmeasured; describe probabilistic bias analyses to address confounding that incorporate information 5 

from the negative control; describe a related Bayesian formulation (Appendix 2); and,  provide R code to 6 

implement these analyses. Here, we measure effects with risk ratios observable in a cohort study. These 7 

approaches rely on substantive knowledge to inform the choice of the prior distribution of plausible bias 8 

parameters. 9 

We assume measured confounders, denoted collectively by 𝑋, are categorical, or can be adequately 10 

approximated as categorical to control confounding (this imposes little restriction other than regularity 11 

conditions). All results are conditional on 𝑋, but for simplicity that dependence is suppressed in the 12 

notation. For example, 𝑀𝑒𝑛𝑥 denotes the number of people at baseline in the cohort with 𝐸 = 𝑒, 𝑁 = 𝑛, 13 

𝑋 = 𝑥 for 𝑒, 𝑛 = 0,1 and 𝑥 = 1,2, … , |𝑋| where |𝑋| is the cardinality of 𝑋; but for simplicity we write 14 

𝑀𝑒𝑛 (conditioning on 𝑋 = 𝑥 is implicit). Conditional risk, defined as the probability that the outcome 15 

occurs (𝑌 = 1) during the follow-up period among those with 𝐸 = 𝑒, 𝑁 = 𝑛 at baseline in the cohort, is 16 

denoted by 𝑅𝑒𝑛 = 𝑝(𝑌 = 1|𝐸 = 𝑒, 𝑁 = 𝑛) = 𝐸(𝑌|𝐸 = 𝑒, 𝑁 = 𝑛). We denote the counterfactual outcome 17 

and counterfactual risk among those with 𝐸 = 𝑒, 𝑁 = 𝑛, if 𝐸 were set to 𝑒′ by 𝑌(𝑒′) and 𝑅𝑒𝑛(𝑒′) =18 

𝐸[𝑌(𝑒′)|𝐸 = 1, 𝑁 = 𝑛] for 𝑒, 𝑛, 𝑒′ = 0 or 1 (Table 1), respectively;  𝑅𝑒𝑛(1) or 𝑅𝑒𝑛(0) must be 19 

counterfactual. Similarly, 𝑅(𝑒) is the counterfactual risk in the population if 𝐸 were set to 𝑒 for all. 20 

The assumed causal relationships are summarized in Figure 1, a Single World Intervention Template 21 

(SWIT)18.  The causal relationships in the SWIT, assumed correct, imply and are consistent with 22 

assumptions A1–A4: 23 

A1)  𝑁 ∐ 𝐸, 𝑌(𝑒) |𝑈, 𝑋;  𝑌(𝑛, 𝑒) = 𝑌(𝑒),  conditional independence between 𝑁 and 𝐸, 𝑌; 𝑁 has no effect; 24 

A2)  𝐸 ∐ 𝑌(𝑒) |𝑈, 𝑋;                                   conditional exchangeability; 25 

A3)  Conditional on 𝐸, 𝑋,  we expect the negative control to be associated with  𝑌 and unmeasured 26 

confounders 𝑈; 27 

A4)  𝑅𝑒𝑛(𝑒′) = 𝑅𝑒𝑛 and 𝑅𝑒𝑛,𝑢(𝑒′) = 𝑅𝑒𝑛,𝑢 if 𝑒′ = 𝑒;   counterfactual-model consistency. 28 

Ideal or U-comparable negative control exposures described by Lipsitch et al.8 should  satisfy 29 

assumptions A1 – A4 (Web Appendix S4). However, additional variables that are not ideal or U-30 

comparable negative controls can satisfy A1 – A4, serve as indicators of residual confounding or other 31 
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bias10 and be used for the probabilistic bias or Bayesian analyses described here (e.g., Supplemental 1 

Figure S3).   2 

We consider the causal effects of exposure among those with 𝐸 = 𝑒, 𝑁 = 𝑛, denoted by 𝐶𝐸𝑒𝑛 for 𝑒, 𝑛 =3 

0,1 (Table 1).  Using risk ratios and counterfactuals, we express 𝐶𝐸𝑒𝑛 as: 4 

1)         𝐶𝐸𝑒𝑛 = 𝑅𝑒𝑛(1)/𝑅𝑒𝑛(0) for 𝑒, 𝑛 = 0,1; 5 

and, the population average causal effect as: 6 

2)         𝑃𝐴𝐶𝐸 = 𝑅(1)/𝑅(0).  7 

In the remainder of methods we first consider 𝐶𝐸10 in detail, providing and justifying assumptions under 8 

which 𝐶𝐸10 can be identified.  We then introduce a bias parameter to relax the assumption needed for 9 

identification and use this parameter as the basis for probabilistic bias analyses.  Finally, we consider 10 

other causal effects. In Appendix 2 provide a fully Bayesian formulation of our approach.  11 

Identifiability Conditions and Probabilistic Bias Analysis for 𝐶𝐸10 12 

We show that 𝐶𝐸10 is identifiable in a cohort study under an easily-specified, but strong assumption 13 

involving the distribution of the negative control 𝑁.   14 

Consistent with the pattern of causal effects summarized in Figure 1 and assumptions (A1)-(A4), we can 15 

write the identifiable risk 𝑅00 as: 16 

3)      𝑅00     =
∑ 𝑅00𝑢𝑢 𝑃(𝐸=0|𝑈=𝑢)𝑃(𝑁=0|𝑈=𝑢)𝑝(𝑈=𝑢)

∑ 𝑝(𝐸=0|𝑈=𝑢)𝑢 𝑝(𝑁=0|𝑈=𝑢)𝑝(𝑈=𝑢)
 17 

where 𝑅𝑒𝑛𝑢 is the conditional risk among those with 𝐸 = 𝑒, 𝑁 = 𝑛, 𝑈 = 𝑢.  Let 𝑅𝑒𝑛𝑢(𝑒′) denote the 18 

counterfactual risk among those with 𝐸 = 𝑒, 𝑁 = 𝑛, 𝑈 = 𝑢 and 𝐸 was set to 𝑒′. We can write the 19 

counterfactual risk 𝑅10(0) as the weighted average: 20 

4)   𝑅10(0) =
∑ 𝑅10𝑢𝑢 (0)𝑃(𝐸=1|𝑈=𝑢)𝑃(𝑁=0|𝑈=𝑢)𝑝(𝑈=𝑢)

∑ 𝑝(𝐸=1|𝑈=𝑢)𝑢 𝑝(𝑁=0|𝑈=𝑢)𝑝(𝑈=𝑢)
     21 

                   =
∑ 𝑅00𝑢(0)𝑢 𝑃(𝐸=1|𝑈=𝑢)𝑃(𝑁=0|𝑈=𝑢)𝑝(𝑈=𝑢)

∑ 𝑝(𝐸=1|𝑈=𝑢)𝑢 𝑝(𝑁=0|𝑈=𝑢)𝑝(𝑈=𝑢)
        (substitute 𝑅00𝑢(0) for 𝑅10𝑢(0), assumption A2) 22 

                   =
∑ 𝑅01𝑢𝑢 (0)𝑃(𝐸=1|𝑈=𝑢)𝑃(𝑁=0|𝑈=𝑢)𝑝(𝑈=𝑢)

∑ 𝑝(𝐸=1|𝑈=𝑢)𝑢 𝑝(𝑁=0|𝑈=𝑢)𝑝(𝑈=𝑢)
        (substitute 𝑅01𝑢(0) for 𝑅00𝑢(0) by A1)                       23 

                   =
∑ 𝑅01𝑢𝑢 𝑃(𝐸=1|𝑈=𝑢)𝑃(𝑁=0|𝑈=𝑢)𝑝(𝑈=𝑢)

∑ 𝑝(𝐸=1|𝑈=𝑢)𝑢 𝑝(𝑁=0|𝑈=𝑢)𝑝(𝑈=𝑢)
             (substitute 𝑅01𝑢 for 𝑅01𝑢(0) by consistency)                       24 

We now state two assumptions either of which, with Assumptions (A1-A4), suffices (Claim 1) to assure 25 

identifiability of 𝐶𝐸10: 26 
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A5a)         𝑝(𝐸 = 1|𝑈 = 𝑢) = 𝑝(𝑁 = 1|𝑈 = 𝑢) for all 𝑢;      (equality of conditional distributions) or 1 

A5b)         𝑝(𝑈 = 𝑢|𝐸 = 1, 𝑁 = 0) = 𝑝(𝑈 = 𝑢|𝐸 = 0, 𝑁 = 1),  for all 𝑢. 2 

Claim 1: Under assumptions (A1-A4) and (A5a) or (A5b): (i) 𝑅10(0) = 𝑅01; and (ii) 𝐶𝐸10 is identified by 3 

the ratio of observable risks 𝑅10/𝑅01. 4 

Proof:  By assumption (A5a), we can substitute 𝑝(𝑁 = 1|𝑈 = 𝑢) for 𝑝(𝐸 = 1|𝑈 = 𝑢), and 𝑝(𝐸 = 0|𝑈 =5 

𝑢) for 𝑝(𝑁 = 0|𝑈 = 𝑢) into the last line of Expression (4), showing that 𝑅10(0) =6 

∑ 𝑅01𝑢𝑢 𝑃(𝐸=0|𝑈=𝑢)𝑃(𝑁=1|𝑈=𝑢)𝑝(𝑈=𝑢)

∑ 𝑝(𝐸=0|𝑈=𝑢)𝑢 𝑝(𝑁=1|𝑈=𝑢)𝑝(𝑈=𝑢)
  which equals 𝑅01 proving (i). Proof of Claim (i) using (A5b) is 7 

similar (Web Appendix S5).  Now, 𝐶𝐸10 =
𝑅10

𝑅10(0)
 which, by (i), equals 

𝑅10

𝑅01
. The latter is consistently 8 

estimated by the ratio of observable risks in the appropriate subgroups of the cohort study, proving (ii).    9 

Following Claim 1, we take the identifiable risk ratio 𝑅10/𝑅01 as the estimator of 𝐶𝐸10.  10 

Note: The intuition behind this estimator is that the distortion caused by the association of the 11 

unmeasured variable U with exposure – is compensated for and balanced by the association of U with the 12 

negative control; under assumption (A5b), the distribution of U is the same in the groups being compared. 13 

Assumptions (A5a-A5b) differ from the equi-distributional confounding assumption of Sofer et al.19 14 

which concerns equality of the conditional distributions of the outcome and of a negative control outcome 15 

(NCO); see also the “confounding bridge” assumption of Miao et al.20 that involves conditional 16 

distributions of the NCO and the outcome, rather than the negative control exposure and the exposure. 17 

There is some plausibility that assumption (A5a) or (A5b) would hold, at least approximately, since 18 

negative controls “… should be selected such that they share a common confounding mechanism as the 19 

exposure and outcome variables …”2.  Nevertheless, the assumption (A5a) or (A5b) is strong and, with 𝑈 20 

unmeasured, unverifiable. Therefore, we introduce a bias parameter that allows for deviations from (A5a-21 

A5b) and that can be used in probabilistic bias analyses.  In particular, we relax the key implication of 22 

assumption (A5a, A5b) that 𝑅10(0) = 𝑅01, and instead assume: 23 

A5c)      
𝑅10(0)

1−𝑅10(0)
= 𝜀1

𝑅01

1−𝑅01
.            24 

A5c assumes that the counterfactual odds 𝑅10(0) is equal to the (observable) odds 𝑅01/(1 − 𝑅01) times a 25 

bias parameter 𝜀1. Using risk odds in assumption (A5c), rather than say risks, assures that 𝑅10(0) is not 26 

outside the range (0,1) for 𝜀1𝜖(0, ∞).  Substituting 𝜀1𝑅01/(1 − 𝑅01 + 𝜀1𝑅01) for 𝑅10(0), justified by 27 

Assumption (A5c), gives:  28 
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5)               𝐶𝐸10 =
𝑅10

𝑅10(0)
=

1

𝜀1

𝑅10(1−𝑅01+𝜀1𝑅01)

𝑅01
                         1 

Note: The bias parameter 𝜀1 reflects residual bias in 𝑅10 as an estimator of the counterfactual risk 𝑅10(0) 2 

on the odds scale. Equation (5) shows that 𝜀1 equals the ratio of the estimator to the causal effect, 3 

sometimes referred to as the confounding risk ratio1,21-23, multiplied by (1 − 𝑅01(1 − 𝜀1)).  For rare 4 

outcomes, (1 − 𝑅01(1 − 𝜀1)) ≈ 1 , and 𝜀1 approximates the confounding risk ratio. This 5 

conceptualization may aid interpretation (see also, Supplemental Web Appendix S1). 6 

To implement a probabilistic bias analysis for residual confounding, we specify a distribution for 𝜀1 (with 7 

support from 0 to infinity); the distribution has greater or less weight in the tails, depending on the extent 8 

to which 𝑅10(0) and 𝑅01 are thought to differ (reflecting differences in the conditional distributions of 𝐸 9 

and 𝑁). If the negative-control association with 𝑈 is thought to mirror the corresponding exposure 10 

association fairly accurately, the 𝜀1-distribution can be formulated with a substantial probability that 𝜀1 is 11 

near 1, whereas if the associations differ substantially, greater weight can be assigned elsewhere.  An R 12 

program to implement probabilistic bias analysis is given in Web Appendix S2. Using a Monte Carlo 13 

approach, the program: randomly selects a value of the bias parameter from the specified distribution; 14 

applies the bias model to calculate the counterfactual risk (𝑅10(0), Assumption A5c);  accounts for 15 

random error by sampling 𝑅10(0) and 𝑅10 from binomial distributions; applies Equation (5) to calculate a 16 

bias-adjusted estimate of 𝐶𝐸10; and creates a simulation interval.17 17 

Identifiability Conditions and Probabilistic Bias Analysis for 𝐶𝐸01 18 

Assumptions (A1-A4; A5a or A5b) imply that 𝐶𝐸01 = 𝐶𝐸10 (proven as Claim 2 in Web Appendix S5), 19 

which implies that 𝐶𝐸01, like 𝐶𝐸10, is identifiable as the ratio of observable risks 𝑅10/𝑅01.  To relax 20 

assumption (A5a or A5b) and conduct probabilistic bias analyses, we introduce a second bias parameter 21 

(𝜀2), that plays a role like that of 𝜀1:  𝜀2 reflects differences between the estimator 
𝑅10

𝑅01
 based on observed 22 

risks and the estimand 𝐶𝐸01. We have assumption (A5d):      23 

A5d)              
𝑅01(1)

1−𝑅01(1)
= 𝜀2

𝑅10

1−𝑅10
                         24 

implying:             25 

6)     𝐶𝐸01 =
𝑅01(1)

𝑅01
=

𝑅10

𝑅01(𝜀2−𝜀2𝑅10+𝑅10)
          26 

By specifying a distribution for 𝜀2 we can conduct probabilistic bias analyses for 𝐶𝐸01, like those for 27 

𝐶𝐸10. 28 

Identifiability Conditions and Probabilistic Bias Analysis for 𝐶𝐸11, 𝐶𝐸00 and 𝑃𝐴𝐶𝐸 29 
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Causal effects 𝐶𝐸11, 𝐶𝐸00 and 𝑃𝐴𝐶𝐸 can differ from 𝐶𝐸10 and 𝐶𝐸01 and so are not necessarily identified 1 

as 𝑅10/𝑅01 under Assumptions A1-A4, A5b. However, we can identify these effects if we can assume a 2 

multiplicative model for the effect of 𝐸 given 𝑈, conditional on 𝑈 = 𝑢 and 𝑁 = 𝑛: 3 

A6)      𝑅𝑒𝑛𝑢(𝑒′) = 𝑒𝛽1∙𝑒′𝑅0𝑛𝑢                                        (multiplicative homogeneity of effects E) 4 

In words, assumption (A6) states that the counterfactual risk, if 𝐸 were set to 𝑒′, is 𝑒𝛽1∙𝑒′ times the risk 5 

among those with 𝐸 = 0, 𝑁 = 𝑛 and 𝑈 = 𝑢.  We show in Appendix 1 (Claim 3) that Assumption (A6) 6 

implies that 𝐶𝐸𝑒𝑛 and 𝑃𝐴𝐶𝐸 both equal 
𝑅𝑒𝑛(1)

𝑅𝑒𝑛(0)
= 𝑒𝛽1. By Assumptions (A1-A5), 𝐶𝐸10 (and 𝐶𝐸01) are 7 

identified, and therefore so are 𝐶𝐸11,𝐶𝐸00 and 𝑃𝐴𝐶𝐸. Using bias parameters to account for errors in 8 

assumptions (A1-A6) and combining results, we have 9 

A7)      𝐶𝐸11 =
1

𝜀3
𝐶𝐸10 and 𝐶𝐸00 =

1

𝜀4
𝐶𝐸10. 10 

Analyses based on use of  𝜀3 and 𝜀4 use the strong assumption of a multiplicative effect of exposure in 11 

addition to (A1-A5) and are viewed as supplementary. 12 

Fully Bayesian Analysis for 𝐶𝐸10 and 𝐶𝐸01 13 

Appendix 2 outlines use of prior distributions for 𝑅10 and 𝑅01 and two parameters 𝜘1 and 𝜘2 to provide a 14 

fully Bayesian formulation of the problem24.  Parameters 𝜘1 and 𝜘2 (defined in Appendix 2: Equation 1A 15 

and just below) reflect the same associations in the Bayesian formulation as do 𝜀1 and 𝜀2 in probabilistic 16 

bias analyses. Web Appendix S3 documents an R program to implement Bayesian analyses for 𝐶𝐸10 and 17 

𝐶𝐸01.    18 

Example 19 

We illustrate these methods by applying them to investigate the possible effect of gender-affirming 20 

hormone therapy on risk of suicide attempts. We use data from ongoing studies of transgender people 21 

25,26, summarized in Table 2. The cohort consists of people from two health plans in California, who were 22 

20 years old or younger on December 31, 2015, and received a transgender-specific diagnosis (e.g., 23 

‘gender dysphoria’) by age 20.  We defined exposure as receiving gender-affirming hormones or puberty 24 

suppression therapy at or before age 20. The outcome of interest was at least one episode of self-inflicted 25 

injury or poisoning, or any hospitalization or emergency room visit for a mental health problem 26 

documented in the medical records during the 1-year follow-up period starting at age 20. Web Appendix 27 

S6 includes additional descriptive information about the cohort. We were concerned about potential 28 

confounding by healthcare utilization, as greater utilization might associate with both more hormone 29 

therapy and more (documentation of) mental health diagnoses. Therefore, we used recorded receipt of 30 
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TdaP vaccine at or before age 20 years as a negative control exposure. If healthcare utilization was a 1 

confounder, we thought that TdaP vaccination should, like hormone therapy, be associated with both 2 

healthcare utilization and the outcome. The crude risk ratio (cRR) for exposure is 0.88. After adjusting for 3 

the negative control, the Mantel-Haenszel mRR is 0.88 (95% CI: 0.56 – 1.38; Table 3). The negative 4 

control was associated with risk, both among the exposed (𝑅𝑅1 = 1.70; 95% 𝐶𝐼: 0.76 − 3.79) and the 5 

unexposed (𝑅𝑅2 = 1.66;  95% 𝐶𝐼: 1.07 − 2.56).   6 

To implement the probabilistic bias analyses, we specify prior distributions for 𝜀1.  As provided in the R 7 

program (Web Appendix S2), we chose a log-normal distribution for 𝜀1, with median 1 and the ratio of 8 

the 10th percentile to the median of 0.5.  For this specification, the 10th and 90th percentiles of the prior for 9 

𝜀1 are 0.50 and 2.0, indicating that 𝜀1 will fall in this range with 80% probability under the prior. The 10 

resulting distribution of confounding-adjusted causal effect estimates (simulation intervals)17 is given in 11 

Figure 2, for the assumed prior. The 95% simulation interval is from 0.17 to 1.64, with median 0.52. 12 

These results are approximately interpretable as semi-Bayesian, as the bias parameter is sampled from a 13 

prior distribution17.  Using the fully Bayesian analysis described in Appendix 2 with uninformative priors 14 

for 𝑃(𝑌 = 1|𝐸 = 1, 𝑁 = 2) and 𝑃(𝑌 = 1|𝐸 = 2, 𝑁 = 1) , a log-normal prior for 𝜘1) and setting the 15 

median of the prior (log-normal) to 1 and the variance so that the ratio of the median to the 10th percentile 16 

was 0.5, the 95% credibility interval was (0.19 to 1.69) with median 0.54. In a sensitivity analysis, we 17 

doubled the variance of the prior for 𝜘1- reflecting greater uncertainty in the value of the bias parameter. 18 

The 95% credibility interval was then (0.16, 2.08). 19 

 20 

Discussion 21 

We have justified assumptions that, if correct, imply one can use a negative control exposure to account 22 

for unmeasured confounding and identify causal effects (𝐶𝐸10 and 𝐶𝐸01). If exposure effects are 23 

multiplicative, this suffices to also identify 𝐶𝐸11 and 𝐶𝐸00 as well as other effects, such as the population 24 

average effect. The key assumption (A5a or A5b) is strong, so we have also described and illustrated two 25 

ways to relax the assumption. These inter-related methods, probabilistic bias analyses and Bayesian 26 

analyses, both use information from a negative control exposure to account for residual confounding and 27 

require the researcher to specify a prior distribution for a bias parameter; they yielded similar results, as 28 

expected, in our example.  Our formulation of probabilistic bias analyses, as is common17, includes a bias 29 

model, postulating a prior distribution for the bias parameters, and Monte Carlo simulation to obtain a 30 

distribution for the bias-adjusted estimate of interest. Our method extends the approach to incorporate 31 

information from the negative control. We also describe a complementary Bayesian formulation.  32 
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Exchangeability implies that risk among those actually exposed is the same as the risk among the 1 

unexposed if they had been exposed, and conversely; it can be defined as independence of the actual 2 

exposure and response types27-29.The methods proposed for addressing non-exchangeability are natural 3 

ones in the sense that they use the negative control as a reflection of exposure associations with 4 

unmeasured confounders that define non-exchangeability.  If the negative control has more than two 5 

categories, say 𝑁 = 𝑛 for 𝑛 = 0,1, … , 𝑁, then the approach described here is still applicable by selecting 6 

two categories (or combinations of categories) and contrasting them. For example, if a priori knowledge 7 

suggested that 𝑃(𝑈 = 𝑢|𝐸 = 1, 𝑁 = 0) ≈ 𝑃(𝑈 = 𝑢|𝐸 = 0, 𝑁 ∈ 𝑆1) where 𝑆1 = {3,4}, then 𝑅10(0) could 8 

be estimated by 𝑅0𝑆1
. To the extent allowed by a priori knowledge, original categories can be combined 9 

to most closely approximate the identifying assumption.  10 

Two causal effects are most readily addressed by the proposed approach, the effect of exposure among 11 

the exposed without negative control exposure (𝐸 = 1, 𝑁 = 0), and the effect of exposure among the 12 

unexposed with negative control exposure (𝐸 = 0, 𝑁 = 1). The researcher can use substantive knowledge 13 

to assess how well the association of the negative control with the unmeasured confounder reflects the 14 

association of exposure with the confounder.  In the example when using Bayesian analyses, doubling the 15 

variance of the prior distribution for 𝜘1 led to wider credibility intervals, but not substantially so 16 

(Example 1) – suggesting some degree of robustness to a modest change in uncertainty regarding the prior 17 

distribution of 𝜘1. While it is possible to extend the approach to apply it to effects in other subgroups and 18 

to a population average causal effect (Appendix 1), assignment of the prior distribution is perhaps more 19 

uncertain because an additional assumption (multiplicative effect of exposure) is needed. Therefore, we 20 

view these additional analyses as secondary. We caution that an association between a negative control 21 

and the outcome can reflect bias other than non-exchangeability, such model mis-specification5. Our 22 

analyses are not designed to correct for these other biases. 23 

Results of the probabilistic bias analysis and the Bayesian analysis both utilize a negative control to 24 

correct for residual confounding and are based on researcher-supplied inputs that are informed, to the 25 

extent possible, on subject matter knowledge. The probabilistic bias analyses depend on the prior 26 

distributions for 𝜀1 and 𝜀2 and the Bayesian results on those for 𝜘1 and 𝜘2; here we used log-normal 27 

distributions for both. With a non-informative prior for the other parameters, the 95% credibility interval 28 

(Bayesian analysis) was similar to the simulation interval (probabilistic bias analysis).  Absent 29 

assumptions (such as A5b), parameters 𝜘1 and 𝜘2 or bias parameters 𝜀1 and 𝜀2 are not identifiable; 30 

however, “indirect learning” is possible30, evidenced here in the change from prior to posterior 31 

distribution of 𝜘1(Web Appendix S1: Figures S1 and S2). This indirect learning and changes in the 32 

distributions result from learning about the identifiable parameters30. 33 
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In some situations, when the confounder is known but unmeasured, external results may provide direct 1 

estimates of 𝜘 1 or 𝜀1.  For example using equation 5, 𝜀1 could be estimated as 𝜀1 =
𝑅10−𝑅10𝑅01

𝑎𝐶𝐸10𝑅01−𝑅10𝑅01
 2 

where 𝑎𝐶𝐸10 is an external estimate of the causal effect (e.g., adjusted for all confounders in a study 3 

where U was measured). However, if external measurements of the exposure, confounders and outcome 4 

are available, we can also consider other, possibly more efficient, approaches17 or perhaps use of a 5 

directly calculated confounding risk ratio. We could also use priors for both 𝜘1and a causal effect (e.g., 6 

𝐶𝐸01), plus another parameter (e.g., 𝑅10). Evaluation of the posterior distribution, however, would likely 7 

then require Gibbs sampling or other technique more complicated than the straightforward one used here. 8 

In summary, we have provided assumptions sufficient for using a negative control to identify causal 9 

effects when a confounder is unmeasured, and have described and illustrated the application of both 10 

probabilistic bias analysis and Bayesian formulations to address residual confounding. The latter methods 11 

use a negative control exposure, use researcher-supplied prior information about how well the negative 12 

control captures the associations that create confounding, and produce results partially adjusted for the 13 

residual confounding.  14 

  15 
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Appendix 1 1 

Claim 3: Under assumptions (A1-A4, A5b, and A6), 𝐶𝐸𝑒𝑛 = 𝑅𝑒𝑛(1)/𝑅𝑒𝑛(0) = 𝑒𝛽1 and 𝑃𝐴𝐶𝐸 = 𝑒𝛽1. 2 

Proof: 𝑅𝑒𝑛(𝑒′) is a weighted average of the counterfactual outcomes 𝑅𝑒𝑛𝑢(𝑒′). Therefore: 3 

         
𝑅𝑒𝑛(1)

𝑅𝑒𝑛(0)
=

∑ 𝑅𝑒𝑛𝑢𝑢 (1)𝑃(𝐸=𝑒|𝑈=𝑢)𝑃(𝑁=𝑛|𝑈=𝑢)𝑝(𝑈=𝑢)

∑ 𝑝(𝐸=𝑒|𝑈=𝑢)𝑢 𝑝(𝑁=𝑛|𝑈=𝑢)𝑝(𝑈=𝑢)
/

∑ 𝑅𝑒𝑛𝑢𝑢 (0)𝑃(𝐸=𝑒|𝑈=𝑢)𝑃(𝑁=𝑛|𝑈=𝑢)𝑝(𝑈=𝑢)

∑ 𝑝(𝐸=𝑒|𝑈=𝑢)𝑢 𝑝(𝑁=𝑛|𝑈=𝑢)𝑝(𝑈=𝑢)
         4 

                   =
∑ 𝑅𝑒𝑛𝑢𝑢 (1)𝑃(𝐸=𝑒|𝑈=𝑢)𝑃(𝑁=𝑛|𝑈=𝑢)𝑝(𝑈=𝑢)

∑ 𝑅𝑒𝑛𝑢𝑢 (0)𝑃(𝐸=𝑒|𝑈=𝑢)𝑃(𝑁=𝑛|𝑈=𝑢)𝑝(𝑈=𝑢)
                     5 

                   =
∑ 𝑅𝑒𝑛𝑢𝑢 (0)𝑒𝛽1𝑃(𝐸=𝑒|𝑈=𝑢)𝑃(𝑁=𝑛|𝑈=𝑢)𝑝(𝑈=𝑢)

∑ 𝑅𝑒𝑛𝑢𝑢 (0)𝑃(𝐸=𝑒|𝑈=𝑢)𝑃(𝑁=𝑛|𝑈=𝑢)𝑝(𝑈=𝑢)
 6 

                   = 𝑒𝛽1.                     7 

Thus: 𝐶𝐸11 = 𝐶𝐸00 = 𝐶𝐸10 = 𝐶𝐸01.  The 𝑃𝐴𝐶𝐸 is a weighted average of the four 𝐸, 𝑁 – specific effects 8 

𝐶𝐸𝑒𝑛 (with weights 𝑃(𝐸 = 𝑒, 𝑁 = 𝑛)), so 𝑃𝐴𝐶𝐸 equals the common value 𝑒𝛽1. 9 

 10 

Appendix 2 11 

The Appendix describes a Bayesian formulation of our approach.  The analytic goal now is to calculate 12 

Bayesian credibility intervals and the posterior median for the causal effects, conditional on the 13 

observations and using the negative control exposure. We use the terminology and definitions from 14 

Lash1,17.  We present details only for the analysis of 𝐶𝐸10, as those for 𝐶𝐸01 are directly analogous. 15 

Results for 𝐶𝐸11 and 𝐶𝐸00 depend on an additional, strong assumption and are considered supplementary. 16 

Parameters 17 

The bias parameter 𝜀1 of the main text was introduced to relax assumption (A5a); it allows for differences 18 

between the distribution of 𝐸 given 𝑈 and that of 𝑁 given 𝑈. Following assumption (A5c), we define the 19 

(relative) bias parameter 𝜘1 as: 20 

1A)    𝜘1 = 
𝑅10(0)

1−𝑅10(0)
/

𝑅01

1−𝑅01
.    21 

Parameters 𝑅10, 𝑅01 (Table 1) and 𝜘1 fully parameterize the conditional distributions of: outcome 𝑌 22 

and 𝑌(0) among those with 𝐸 = 1, 𝑁 = 0, and those among individuals with 𝐸 = 0, 𝑁 = 1.  For 23 

example, the distribution of 𝑌(0) among those with 𝐸 = 1, 𝑁 = 0 is: 24 

𝑃(𝑌(0) = 1|𝐸 = 1, 𝑁 = 0) = 𝑅10(0) = 𝜘1𝑅01/(1 − 𝑅01 + 𝜘1𝑅01),  (expression 1A).   25 

𝐶𝐸10 can be expressed using only 𝑅10, 𝑅20 and 𝜘1.  Much like 𝜀1, we define 𝜘2 =
𝑅01(1)

1−𝑅01(0)
/

𝑅10

1−𝑅10
  so that 26 

𝑃(𝑌(1) = 1|𝐸 = 0, 𝑁 = 1) = 𝑅01(1) = 𝑅10/𝑅01(𝜀2 − 𝜀2𝑅10 + 𝑅10). This formulation parallels that of 27 

probabilistic bias analysis in the main text; e.g., Equation 1A replaces Assumption A5a). 28 
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Sampling Distribution 1 

The conditional likelihood of the observed data, given the parameters 𝑅10 = 𝑝1 and 𝑅01 = 𝑝2 is: 2 

 2A)    𝑃(𝑌 = 𝑦1|𝐸 = 1, 𝑁 = 0, 𝑅10 = 𝑝1)𝑃(𝑌 = 𝑦0|𝐸 = 0, 𝑁 = 1, 𝑅01 = 𝑝0) 3 

                                                         =
𝑀10!

(𝑀10−𝑦1)!𝑦1!
𝑝1

𝑦1(1 − 𝑝1)(𝑀10−𝑦1) 𝑀01!

(𝑀01−𝑦0)!𝑦0!
𝑝0

𝑦0(1 − 𝑝0)(𝑀01−𝑦0) 4 

𝑦1 is the number of subjects with 𝑦1 = 1, 𝐸 = 1 and 𝑁 = 0; 𝑀10 is the number with 𝐸 = 1 and 𝑁 = 0; 𝑦0 5 

and 𝑀01 are the corresponding numbers where 𝐸 = 0 and 𝑁 = 1; the “data” are 𝑦1, 𝑀10, 𝑦0, 𝑁01, 𝐸 and 𝑁. 6 

Prior Distributions for parameters 𝑅10, 𝑅01, and 𝜘1 7 

 8 

We use a log-normal prior for 𝜘1: 9 

3A)    𝑓𝜘1
(ln (𝑒1)) =

1

𝑒1𝜎1√2𝜋
𝑒−

1

2
(ln (𝑒1)−𝜇1)2/𝜎1

2

  for 0 ≤ 𝜘1 < ∞  and 0 elsewhere,   10 

where 𝜇1 and 𝜎1
2 are the mean and variance of ln(𝑒1) The median of 𝑒1 is 𝑒𝜇1 and the variance is 11 

(𝑒𝜎1
2

− 1)𝑒2𝜇1+𝜎1
2
. To double the variance of 𝑒1 (on the original, non-log scale), we solve: (𝑒𝜎2

2
−12 

1)𝑒2𝜇1+𝜎2
2

= 2(𝑒𝜎1
2

− 1)𝑒2𝜇1+𝜎1
2
 for 𝜎2. For 𝜎1 = 0.54 (the initial value of in 𝜎1 used in the Example, 13 

main text), we use 𝜎2 = 0.67 to double the variance of 𝑒1. 14 

We use a beta prior for 𝑅10:   15 

4A)    𝑓𝑅10
(𝑝1) =

Γ(𝛼1+𝛽1)

Γ(𝛼1)Γ(𝛽1)
𝑝1

𝛼1−1(1 − 𝑝𝑖)𝛽1−1,                                    0 < 𝑝1 < 1               16 

and a beta prior for 𝑅01: 17 

5A)    𝑓𝑅01
(𝑝2) =

Γ(𝛼0+𝛽0)

Γ(𝛼0)Γ(𝛽0)
𝑝0

𝛼0−1(1 − 𝑝0)𝛽0−1,                                    0 < 𝑝0 < 1  18 

          𝑓𝑅10
(𝑝1) and 𝑓𝑅01

(𝑝0) are 0 for 𝑝1 or 𝑝0 ∉ [0,1]. 19 

The priors 𝑓𝑅01
(𝑝0) and 𝑓𝑅10

(𝑝1) are non-informative uniform priors if we use 𝛼𝑗 = 𝛽𝑗 = 1. 20 

Posterior Distribution 21 

For analysis of  𝐶𝐸10, the posterior distribution is: 22 

6A)     𝑓𝑅10,𝑅01,𝜘1|𝑌1,𝑌0
(𝑝1, 𝑝0, 𝑒1|𝑦1, 𝑦0) 23 

                =
1

𝐺
𝑝1

𝑦1(1 − 𝑝1)(𝑀10−𝑦1) Γ(𝛼1+𝛽1)

Γ(𝛼1)Γ(𝛽1)
𝑝1

𝛼1−1(1 − 𝑝1)(𝛽1−1)𝑝0
𝑦0(1 − 𝑝0)𝑀01−𝑦0

Γ(𝛼0+𝛽0)

Γ(𝛼0)Γ(𝛽0)
 24 

                               × 𝑝0
𝛼0−1(1 − 𝑝0)𝛽0−1 1

𝑒1
𝑒−

1

2
(ln (𝑒1)−𝜇1)2/𝜎1

2

  25 
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                 =
1

𝐺
𝑝1

𝑦1+𝛼1−1(1 − 𝑝1)𝑀10−𝑦1+𝛽1−1𝑝0
𝑦0+𝛼0−1(1 − 𝑝0)𝑀01−𝑦0+𝛽0−1 1

𝑒1
𝑒−

1

2
(ln (𝑒1)−𝜇1)2/𝜎1

2

 1 

                                                                        for 0 < 𝑝1 < 1, 0 < 𝑝0 < 1, and 0 < 𝑒1 < ∞, and 2 

                 = 0 elsewhere, 3 

where 
1

𝐺
=

Γ(𝑀10+𝛼1+𝛽1)

Γ(𝑦1+𝛼1)Γ(𝑀10−𝑦1+𝛽1)

Γ(𝑀01+𝛼0+𝛽0)

Γ(𝑦0+𝛼0)Γ(𝑀01−𝑦0+𝛽0)

1

𝜎1√2𝜋
 .  4 

The posterior distribution for analysis of 𝐶𝐸10 is the product of two independent beta distributions and a 5 

log-normal distribution. It is therefore straightforward to sample from this joint distribution, by 6 

independently sampling: 𝑝1 (for 𝑅12) from a beta(𝑦1 + 𝛼1, 𝑀10 − 𝑦1 + 𝛽1), 𝑝0 (for 𝑅01) from beta(𝑦0 +7 

𝛼0, 𝑀01 − 𝑦0 + 𝛽0), and 𝑒1 (for 𝜘1) from a log-normal(𝜇1, 𝜎1
2) distribution.    8 

Evaluation 9 

To evaluate the posterior distribution, the supplemental R code (Web Appendix S3) performs the 10 

described sampling in 100,000 independent replications. For each sample, it calculates 
1

𝜀1

𝑅10(1−𝑅01+𝜀1𝑅01)

𝑅01
  11 

(or 
𝑅10

𝑅01(𝜀2−𝜀2𝑅10+𝑅10)
), equal to the parameter of interest 𝐶𝐸10 (or 𝐶𝐸01). It then calculates desired 12 

statistics from the empiric distribution of sampled values (e.g., 2.5 and 97.5 percentiles for the 95% 13 

credibility interval for 𝐶𝐸10, and the 50th percentile for the median).  The program uses 𝛼𝑖 = 𝛽𝑖 = 1 as 14 

the default parameters for the beta distribution, as this choice yields uninformative, uniform priors. The 15 

user must input the parameters of the log-normal prior distribution of 𝜘𝑖 (details and further explication in 16 

Web Appendices S1-S2).  17 
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Table 1  Summary of Parameter Definitions and relationship to Causal Effects  1 

Parameter 

Symbol 

Definition 

 𝑀𝑒𝑛 Number at risk at baseline in cohort, with 𝐸 = 𝑒, 𝑁 = 𝑛 for 𝑒, 𝑛 = 0,1    

 𝑅𝑒𝑛 Risk during follow-up among those with 𝐸 = 𝑒, 𝑁 = 𝑛 for 𝑒, 𝑛 = 0,1    

 𝑅𝑒𝑛𝑢 Risk during follow-up among those with 𝐸 = 𝑒, 𝑁 = 𝑛, 𝑈 = 𝑢 for 𝑒, 𝑛 = 0,1    

 𝑅𝑒. Risk during follow-up among those with 𝐸 = 𝑒 for 𝑒 = 0,1    

 𝑅𝑅𝑒. Risk ratio comparing risk among those with 𝐸 = 𝑒, 𝑁 = 1 to that among those with 𝐸 =
𝑒, 𝑁 = 0 for 𝑒 = 0,1; e.g.,  𝑅𝑅1. = 𝑅11/𝑅10. 

 𝑌(𝑒) Counterfactual value of 𝑌 if 𝐸 were set to 𝑒 

 𝑅𝑒𝑛(𝑒′) Counterfactual risk among those with 𝐸 = 𝑒, 𝑁 = 𝑛, if 𝐸 were set to 𝑒′ for 𝑒, 𝑛, 𝑒′ =
0,1.    

 𝑅𝑒𝑛𝑢(𝑒′) Counterfactual risk among those with 𝐸 = 𝑒, 𝑁 = 𝑛, 𝑈 = 𝑢, if 𝐸 were set to 𝑒′ for 

𝑒, 𝑛, 𝑒′ = 0,1.    
 𝐶𝐸𝑒𝑛 Causal effect of 𝐸 among those with 𝐸 = 𝑒, 𝑁 = 𝑛 for 𝑒, 𝑛 = 0,1; 𝐶𝐸𝑒𝑛 =

𝑅𝑒𝑛(1)/𝑅𝑒𝑛(0) 

  

 𝜀1  (𝜘1)¶ Bias Parameter for Probabilistic bias of 𝐶𝐸10; Equation 5, Assumption A5c   

 𝜀2  (𝜘2) ¶ǂ Bias Parameter for Probabilistic bias of 𝐶𝐸01; Equation 6, Assumption A5d   

 𝜀3, 𝜀4
ǂ,ƚ Bias Parameter for Probabilistic bias Analyses of 𝐶𝐸11, 𝐶𝐸00; Assumption A7 

¶bias parameter for probabilistic bias analysis; corresponding parameter for Bayesian analysis in Parentheses 2 
ǂThese parameters discussed and used for probabilistic bias analyses for 𝐶𝐸11 and 𝐶𝐸00. 3 
 4 
Table 2 Distribution of Self-harm Episodes (Y), Hormone Use (E), Prior Vaccination (N)  5 

Variable                        - Value of the Variable - 

Number self-harm episodes (Y)  1+ 0 1+ 0 1+ 0 1+ 0 

Hormone use (E; yes/no)   yes yes no no yes yes no no 

Vaccinated (N; yes/no)   yes yes yes yes no no no no 

Number with this combination 10 58 30 152 11 116 42 380 

 6 

Table 3.  Summary of Estimated Values of Selected, Identifiable Parameters in the Example 7 

Parameter Estimated 

Value 

Description 

 𝑐𝑅𝑅 0.88 crude Risk Ratio – association of risk with 𝐸  

 m𝑅𝑅 0.88 Mantel-Haenszel Risk Ratio, adjusted for the negative control 

 𝑅𝑅1 1.70 Risk ratio for association of risk with 𝑁 among those with 𝐸 = 1 

 𝑅𝑅0 1.66 Risk ratio for association of risk with 𝑁 among those with 𝐸 = 0 

 𝑅10 0.087 Risk among those with 𝐸 = 1 and 𝑁 = 0 

 𝑅01 0.165 Risk among those with 𝐸 = 2 and 𝑁 = 1 

 8 
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 1 

 2 

Single World Intervention Template (SWIT)18 showing causal relationships. 𝐸 represents the exposure 3 

variable, 𝑋 measured confounder(s), 𝑈 unmeasured confounder(s), 𝑁 a negative control and 𝑌(𝑒) the 4 

potential outcome of 𝑌 if 𝐸 were set to 𝑒.  These relationships are assumed correct, and are consistent 5 
with assumptions A1–A4. 6 

 7 

 8 

Figure 2.  Histogram showing the distribution of confounding-adjusted causal effect estimates from 9 
probabilistic bias analysis, with the prior distribution of the bias parameter as described for the Example. 10 

  11 
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Online Supplement 1 

Web Appendix S1 2 

This Web Appendix (S1) includes additional comments about use of the R programs (Web Appendix S2 3 

and S3).  4 

Probabilistic bias analyses (R program in Appendix S2) require the user to specify a distribution for 𝜀1 (or  5 

𝜀2).  Specifying a distribution with a median of 1 (e.g., as in the example, main text), would be 6 

appropriate if a priori information suggested that the counterfactual odds 
𝑅10(0)

1−𝑅10(0)
  is expected to exceed 7 

the true, identifiable odds 
𝑅01

1−𝑅01
 with about 50-50 probability.  However, if a priori information suggests 8 

that the counterfactual odds is more likely than not to be larger than the identifiable odds 
𝑅01

1−𝑅01
 or, 9 

similarly, that 𝑅10/𝑅01 is likely to over-estimate the causal effect 𝐶𝐸10, then the median should be chosen 10 

greater than 1. This might reflect a situation in which exposure was more strongly associated with high-11 

risk values of U than was the negative control.  Conversely, if the counterfactual odds is more likely than 12 

not to be smaller than the identifiable odds 
𝑅01

1−𝑅01
, then the median should be chosen less than 1.  The 13 

variance reflects uncertainty, with larger variances indicating a wider range of values of 𝜀1 judged to be  14 

compatible with a priori information.  15 

Bayesian analyses require the user to specify the prior distribution of 𝜘1 (corresponding comments also 16 

hold for 𝜘2).  To do so using the R program supplied (Appendix S3), the user inputs the median of 𝜘1, 17 

which is the mode of the log-normal distribution used as the prior for 𝜘1. The log-normal parameter 𝜇1 18 

(equation 6A of the Appendix, main text) is the logarithm of this median. The user also inputs the desired 19 

value for the ratio of the 10th percentile of 𝜘1 divided by the median in the distribution of 𝜘1. The program 20 

uses these inputs to calculate the variance 𝜎1
2(equation 6A of the Appendix 2, main text) that yields these 21 

user-supplied percentiles.  It then generates random samples from the posterior distribution (that depends 22 

on the parameters as described. To illustrate, suppose, for example, that the researcher thought that the 23 

median was 1 and that the 10th percentile was one-half as large as the median. This relationship would 24 

hold if the standard deviation of the log-normal prior were set to 0.54.  In this case, the prior would 25 

specify that 80% of the values of  𝜘1 were between 0.5 (the 10 percentile) and 2.0 (the 90 percentile).  26 

Since 𝑓𝜘1
(ln (𝑒1)|𝑑𝑎𝑡𝑎) = 𝑓𝜘1

(ln (𝑒1)), i.e. the posterior and prior are the same for 𝜘1, we expect the 27 

Bayesian analysis to agree closely with the probabilistic bias analysis.   28 

Note S1: The analysis described for 𝐶𝐸10 (or 𝐶𝐸01) is fully Bayesian as all parameters needed to write the 29 

(conditional) probability of the data used have a prior, a reflection of the relationships in equations 2A-30 
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6A, Appendix 2 of the main text.  In particular, a prior distribution for the causal effects 𝐶𝐸10 (or 𝐶𝐸01) is 1 

indirectly specified through the priors for 𝑅10, 𝑅01 and 𝜘1 (or 𝜘2). 2 

Note S2: To measure causal effects using risk odds ratios (rather than risk ratios as above), then we can 3 

define 𝐶𝐸10
′ =

𝑅10(1)/(1−𝑅10(1))

𝑅10(0)/(1−𝑅10(0))
.  The definitions (of 𝑅10, 𝑅01, 𝜘1and 𝐶𝐸10) and distributions above are 4 

unchanged (programs to conduct probabilistic bias and Bayesian analyses using risk ratios are given in 5 

Web Appendices S2 and S3).   6 

Comparison of the prior distribution for 𝜘1, illustrated by empirically simulating it (Figure S1) for the 7 

situation described in the example (main text), with the corresponding posterior distribution (Figure S2) 8 

shows a meaningful shift (e.g. median changes from 0.99 to 0.48), illustrating that the data do provide 9 

information about the causal effect under the assumed priors.  10 

Note S3:  Specification of priors for  𝑅10, 𝑅01 and 𝜘1 implies a prior for 𝐶𝐸10 because of the deterministic 11 

relationships (equation 5, main text).  In view of these inter-relationships of the parameters, specifying a 12 

prior for the causal effects themselves, e.g. for 𝐶𝐸10, in addition to priors for  𝑅10, 𝑅01 and 𝜘1 could lead 13 

to inconsistencies in view of the deterministic relationships.  However, one could specify priors for, say, 14 

𝑅10, 𝜘1 and 𝐶𝐸10, but not, say, 𝑅01. In this case the posterior distribution would be different from that in 15 

Appendix 2 (main text), but could be evaluated using Gibbs sampling or other Markov Chain Monte 16 

Carlo approach.  Here, the approach implemented in the program specifies a prior for the causal effect 17 

(𝐶𝐸10) indirectly through those for 𝑅10, 𝑅01 and 𝜘1 (Figure S1; the prior for example of main text), and 18 

does not separately specify a prior for 𝐶𝐸10. 19 

Note S4:  If direct evidence, a priori considerations or otherwise expected differences between the 𝐸 and 20 

𝑁 conditional distributions (departures from assumption A5) suggest that  𝑅10(0) will tend to exceed 𝑅01 21 

so that 𝜘1is less than 1 (in Assumption A5a), that would suggest that 𝐸 tends to more strongly associate 22 

with high-risk values of 𝑈 than does 𝑁.  This pattern suggests that 𝑅01(1) should tend to be less than 𝑅10  23 

and that  𝜘2 may be greater than 1.  These considerations suggest, that if the prior distribution of 𝜘1 has 24 

substantial mass below 1, then that for 𝜘2 might reasonably specified to have substantial mass above 1 25 

(and conversely). 26 

Web Appendix S2 27 
Appendix S2 is an R program for Probabilistic Bias Analysis; effects are measured using risk ratios (See 28 
also Web Appendix S1). 29 

# Probabilistic Bias Analysis for Causal Effect CE21 (or CE12), using Risk Ratios 30 
library(tidyverse) 31 
library(pscl) 32 
library(dplyr) 33 
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library(data.table) 1 
library(readxl) 2 
# ------------- user inputs ---------------------------- # 3 
med = 1     #user input, desired median (log(med)=mean yields mu, of log-normal dist) 4 
q10 = 0.5   #user input, desired ratio: 10-percentile/med: used to calculate sd 5 
n=100000    #user input, number of random draws 6 
N = 1        7 
 8 
##   ------------------------ input data ---------------------------------- 9 
dat <- array( rep(0,8), dim=c(2,2,2))  10 
dat[1,1,1]= 10   #P(Y=1, E=1, NC=1) 11 
dat[2,1,1]= 58   12 
dat[1,2,1]= 30   13 
dat[2,2,1]= 152   14 
 15 
dat[1,1,2]= 11   #P(Y=1,E=1,NC=2) 16 
dat[2,1,2]= 116   17 
dat[1,2,2]= 42   18 
dat[2,2,2]= 380    19 
 20 
n1 =  dat[1,1,2]+dat[2,1,2] 21 
n2 =  dat[1,2,1]+dat[2,2,1] 22 
 23 
##  --------------------------- END: input data ------------------------------------ 24 
 25 
save = NULL 26 
 27 
# ----- calculate conditional Probs from input dat, so they to sum to 1  28 
for (j in 1:2){ 29 
  for (k in 1:2){ 30 
    dat[1,j,k]=dat[1,j,k]/sum(dat[,j,k]) 31 
    dat[2,j,k]=1-dat[1,j,k] 32 
    }} 33 
dat 34 
# ----- END: calculate cond probs. 35 
 36 
AVERAG<-0 37 
use=NULL 38 
# ===================-------------------------------------------=============== 39 
# ================== -------- Crude Risk Ratio --------- ================== 40 
RR1=  dat[1,1,1]/dat[1,1,2] 41 
RR2=  dat[1,2,1]/dat[1,2,2] 42 
cRR = (dat[1,1,1]+dat[1,1,2])/sum(dat[,1,]) 43 
cRR = cRR/((dat[1,2,1]+dat[1,2,2])/sum(dat[,2,]) ) 44 
R11=  dat[1,1,1] 45 
R12=  dat[1,1,2] 46 
R21=  dat[1,2,1] 47 
R22=  dat[1,2,2] 48 
 49 
mRR=     dat[1,1,1]*(dat[1,2,1]+dat[2,2,1])/sum(dat[,,1]) 50 
mRR=mRR+ dat[1,1,2]*(dat[1,2,2]+dat[2,2,2])/sum(dat[,,2]) 51 
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den=     dat[1,2,1]*(dat[1,1,1]+dat[2,1,1])/sum(dat[,,1]) 1 
den=den+ dat[1,2,2]*(dat[1,1,2]+dat[2,1,2])/sum(dat[,,2]) 2 
mRR= mRR/den 3 
mRR 4 
#RD_E.NC     #association of E, NC 5 
 6 
crude=data.frame(RR1=RR1, RR2=RR2, R11=R11, R12=R12, R21=R21, R22=R22, cRR)  #RD for 7 
Exposure, then for NC 8 
crude 9 
c(R11/R12, R21/R22) #Y-assoc with N|E=1 or 2 10 
# 11 
# ------- start log-normal, prior for e1  -----------; 12 
z10=qnorm(0.10, mean=0, sd = 1) #get z-score @ 10-percentile 13 
sd = (log(q10)-log(med))/z10    #set sd on log scale so (log(q10)-log(med))/sd)=z10 14 
z90=qnorm(0.90, mean=0, sd = 1) 15 
c(z10, z90) 16 
c(exp( log(med)+z10*sd),exp( log(med)-z10*sd) ) 17 
e1= rnorm(n, log(med), sd) 18 
#e2= rnorm(n, -log(med), sd)     #use symetric value for e2, per Note S4 19 
e1=exp(e1)   20 
c(quantile(e1, probs=c(0.025, 0.5, 0.975)), sd) #display 95% interval for e1 21 
#e2=exp(e2) 22 
#c(exp(qnorm(0.10, mean=0, sd = sd) ),  23 
#  exp(qnorm(0.90, mean=0, sd = sd) ) )  #display 20%, 80% of epsilon 24 
#reverse the order 25 
R12_0 = (e1*R21/(1-R21))/(1+(e1*R21/(1-R21)) ) # calc R12(0) from R21 1st (use obs'd R21) 26 
#r21  = rbinom(n, n2, R21)/n2                   # sample R21, with random error 27 
r12_0 = rbinom(n, n2, R12_0)/n2              # sample R12(0), with random error 28 
r12   =   rbinom(n, n1, R12  )/n1                # sample R12, with random error 29 
# in Example, v. similar result if change, sample R21 & R12 1st, correct w/ e1 last 30 
# CE12= r12*(1-r21+e1*R21)/(e1*r21)  # use this if change order, RR for CE10; modify for ROR 31 
CE12 = r12/r12_0                                    # RR for CE10 32 
#CE21= r12/(r21*(e2-e2*r12+r12))   # use this if desire RR; modify for ROR 33 
# ---------------- Figure 2 -------------------------- 34 
hist(CE12, breaks=50, main=expression("Simulation Interval, CE"[paste(1,",",0)]), 35 
     xlab = expression("CE"[paste(1,",",0)]), 36 
     sub="Blue lines indicate 2,5 and 97.5 Percentiles", cex.sub = 0.8) 37 
abline(v=quantile(CE12, probs= 0.975),col="blue",lwd=2) 38 
abline(v=quantile(CE12, probs= 0.025),col="blue",lwd=2) 39 
quantile(CE12, probs=c(0.025, 0.5, 0.975)) # display empiric 95% credibility interval 40 
 41 
Web Appendix S3 42 
R program for Bayesian analyses, described in Appendix 2, main text (see also Web Appendix S1); 43 
effects measured using risk ratios. 44 
# Bayesian Analysis for Causal Effect CE12 (or CE21), using Risk Ratios 45 

library(tidyverse) 46 
library(pscl) 47 
library(dplyr) 48 
library(data.table) 49 
library(readxl) 50 
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# ------------- user inputs ---------------------------- # 1 
med = 1     #user input, desired median (log(med)=mean yields mu, of log-normal dist) 2 
ratio_10 = 0.5   #user input, desired ratio: 10-percentile/med: used to calculate sd 3 
n=100000    #user input, number of random draws 4 
 5 
##   ------------------------ input data ---------------------------------- 6 
dat <- array( rep(0,8), dim=c(2,2,2))  7 
dat[1,1,1]= 10   #P(Y=1, E=1, NC=1) 8 
dat[2,1,1]= 58   9 
dat[1,2,1]= 30   10 
dat[2,2,1]= 152   11 
 12 
dat[1,1,2]= 11   #P(Y=1,E=1,NC=2) 13 
dat[2,1,2]= 116   14 
dat[1,2,2]= 42   15 
dat[2,2,2]= 380    16 
# ========= -------- Some Risks, ORs, & RRs ------- ================ 17 
OR1=  (dat[1,1,1]/dat[2,1,1])/(dat[1,1,2]/dat[2,1,2]) 18 
OR2=  (dat[1,2,1]/dat[2,2,1])/(dat[1,2,2]/dat[2,2,2]) 19 
  20 
RR1=  (dat[1,1,1]/dat[1,1,2])/((dat[1,1,1]+dat[2,1,1])/(dat[1,1,2]+dat[2,1,2]) ) 21 
RR2=  (dat[1,2,1]/dat[1,2,2])/((dat[1,2,1]+dat[2,2,1])/(dat[1,2,2]+dat[2,2,2]) )   22 
R11=  dat[1,1,1] 23 
R12=  dat[1,1,2]/(dat[1,1,2]+dat[2,1,2]) 24 
R21=  dat[1,2,1]/(dat[1,2,1]+dat[2,2,1]) 25 
R22=  dat[1,2,2] 26 
cRR = (dat[1,1,1]+dat[1,1,2])/((dat[1,1,1]+dat[2,1,1]+dat[1,1,2]+dat[2,1,2]) ) 27 
cRR = cRR /((dat[1,2,1]+dat[1,2,2])/((dat[1,2,1]+dat[2,2,1]+dat[1,2,2]+dat[2,2,2]) )) 28 
aRR =    dat[1,1,1]*(dat[1,2,1]+dat[2,2,1]) + dat[1,1,2]*(dat[1,2,2]+dat[2,2,2])  29 
aRR=aRR/( dat[1,2,1]*(dat[1,1,1]+dat[2,1,1]) + dat[1,2,2]*(dat[1,1,2]+dat[2,1,2]) ) 30 
 31 
crude=data.frame(OR1=OR1, OR2=OR2, RR1=RR1, RR2=RR2, R11=R11, R12=R12, R21=R21, 32 
R22=R22)  #RD for Exposure, then for NC 33 
(R12/(1-R12))/(R21/(1-R21)) 34 
crude 35 
y1= dat[1,1,2] 36 
n1= dat[2,1,2]+y1 37 
y2= dat[1,2,1] 38 
n2= dat[2,2,1]+y2 39 
# -- first, sample r21 & r12  40 
r21= rbeta(n, y2+1, n2-y2+1) 41 
r12= rbeta(n, y1+1, n1-y1+1) 42 
# -- second, sample e1 from log-normal prior 43 
#      use input median and ratio of median to 10th percentile: get sd 44 
z10=qnorm(0.10, mean=0, sd = 1)      #get z-score @ 10-percentile 45 
sd = (log(ratio_10)-log(med))/z10    #set sd on log scale so (log(rtio_10)-log(med))/sd)=z10 46 
z90=qnorm(0.90, mean=0, ratio_10, sd = 1) 47 
c(z10, z90, med, sd) 48 
c(exp( log(med)+z10*sd),(med),exp( log(med)-z10*sd) ) #display e1 at 10%, 50%, 90% 49 
#sd= sd3      #<------ set sd=sd3 for sensitivity analyses to double Var of prior 50 
              #if sd= sd3 NOT commented out,  doubles Var (value from end of pgm) 51 
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#for Example, sd=0.674   <-- use to double variance from initial value of 0.54 1 
e1= rnorm(n, log(med), sd)  #sd,  sd3 in a sens Anal w/ double Var 2 
c(exp(qnorm(0.10, mean=log(med), sd = sd) ),  3 
  exp(qnorm(0.90, mean=log(med), sd = sd) ) )  #display empiric 20%, 80% of e1 4 
e1=exp(e1) 5 
# ------- END: sample e1 from log-normal prior -----------; 6 
 7 
#quantile( e1, probs=c(0.025, 0.5, 0.975))  #display 2.5th  97.5 percentiles 8 
CE12= r12*(1-r21+e1*R21)/(e1*r21)  # use this for RR,  could do ROR 9 
 10 
#CE21= r12/(r21*(e2-e2*r12+r12)),  for RR 11 
# ---------------- Figure S2 -------------------------- 12 
hist(CE12, breaks=50, main=expression("Posterior Distribution CE"[paste(1,",",0)]), 13 
     xlab = expression("CE"[paste(1,",",0)]), 14 
     sub="Blue lines indicate 95% Credibility Interval", cex.sub = 0.8) 15 
abline(v=quantile(CE12, probs= 0.975),col="blue",lwd=2) 16 
abline(v=quantile(CE12, probs= 0.025),col="blue",lwd=2) 17 
quantile(CE12, probs=c(0.025, 0.5, 0.975)) # sisplay empiric 95% credibility interval 18 
 19 
c(R12/(R12+dat[2,1,2]), R21/(R21+dat[2,2,1]), RR1, RR2, cRR, aRR) 20 
# -------- empirically evaluate prior for CE ------ 21 
prior=FALSE 22 
if (prior==TRUE){ 23 
  r21= rbeta(n, 1, 1) 24 
  r12= rbeta(n, 1, 1) 25 
  e1= rnorm(n, log(med), sd) 26 
  e1=exp(e1) 27 
  s2=sd**2 28 
  c(var(e1), (exp(s2) -1)*exp(s2) ) 29 
  CE12= r12*(1-r21+e1*R21)/(e1*r21)  # use this for RR,  could do ROR 30 
  quantile(CE12, probs=c(0.025, 0.5, 0.975)) 31 
  parm2 = as_tibble(CE12, CE=CE12) 32 
  names(parm2)="CE" 33 
  parm2 34 
  parm2 = subset(parm2, parm2$CE< 30) 35 
  # ---------------- Figure S1 -------------------------- 36 
  hist(parm2$CE, breaks=50, main=c(expression("Prior Distribution CE"[paste("1",",","0")]*~"(truncated 37 
to display)")),  38 
       sub="Blue lines indicate 2.5th and 97.5 percentile", cex.sub = 0.8, 39 
       xlab = expression("CE"[paste(1,",",0)])) 40 
  abline(v=quantile(parm2$CE, probs= 0.975),col="blue",lwd=2) 41 
  abline(v=quantile(parm2$CE, probs= 0.025),col="blue",lwd=2) 42 
  } 43 
# for use in Sensitivity (Bayesian analyses) find sd* that double var on e-scale 44 
#solver - arbitrary function called fx(x), one variable 45 
fx<- function(x){  #just an example 46 
  s1=0.54**2  #var used (log-scale), solve for x for Var doubles (real scale) 47 
  2*(exp(2*s1)-exp(s1) ) - (exp(2*x)-exp(x) ) } 48 
sd3=sqrt(uniroot(fx,interval=c(-10,3))$root ) 49 
c(sd, sd3 )  #set sd=sd3 for sensitivity analyses to double Var of prior 50 
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Web Appendix S4 1 
Lipsictch et al1 note that an ideal negative control exposure would have the same causes in common with 2 

the outcome as did the actual exposure.  Figure S3 is a single world intervention graph in which 𝐸 and 𝑁 3 

have different causes in common with Y, but wherein 𝑁 can still serve as a negative control exposure. 4 

Assumption (A5), while still possible, may be now less plausible. 5 

Web Appendix S5 6 

Claim 1: Under assumption (A1-A4) and (A5a) or (A5b): (i) 𝑅10(0) = 𝑅01; and (ii) 𝐶𝐸10 is identified by 7 

the ratio of observable risks 𝑅10/𝑅01. 8 

Proof:  Proofs of (i) under assumption A5a and (ii) are in the main text. Here we show that (A1-A4) and 9 

(A5b) implies (i).  By conditional independence of 𝐸 and 𝑁 (Assumption A1) and rules of conditional 10 

probabilities:      11 

1S)       𝑝(𝑈 = 𝑢|𝐸 = 1, 𝑁 = 0) = 𝑝(𝐸 = 1|𝑈 = 𝑢)𝑝(𝑁 = 0|𝑈 = 𝑢)𝑝(𝑈 = 𝑢),  for all 𝑢,  and: 12 

2S)       𝑝(𝑈 = 𝑢|𝐸 = 0, 𝑁 = 1) = 𝑝(𝐸 = 0|𝑈 = 𝑢)𝑝(𝑁 = 1|𝑈 = 𝑢)𝑝(𝑈 = 𝑢),  for all 𝑢. 13 

From the last line of Equation 4) of the main text:  14 

   𝑅10(0) =  
∑ 𝑅01𝑢𝑢 𝑃(𝐸=1|𝑈=𝑢)𝑃(𝑁=0|𝑈=𝑢)𝑝(𝑈=𝑢)

∑ 𝑝(𝐸=1|𝑈=𝑢)𝑢 𝑝(𝑁=0|𝑈=𝑢)𝑝(𝑈=𝑢)
                                    (Equation 4, main text) 15 

                = ∑ 𝑅01𝑢𝑢  𝑝(𝑈 = 𝑢|𝐸 = 1, 𝑁 = 0)                                      (by Equation 1S) 16 

                = ∑ 𝑅01𝑢𝑢  𝑝(𝑈 = 𝑢|𝐸 = 0, 𝑁 = 1)                                      (by Assumption A5b) 17 

                =  
∑ 𝑅01𝑢𝑢 𝑃(𝐸=0|𝑈=𝑢)𝑃(𝑁=1|𝑈=𝑢)𝑝(𝑈=𝑢)

∑ 𝑝(𝐸=0|𝑈=𝑢)𝑢 𝑝(𝑁=1|𝑈=𝑢)𝑝(𝑈=𝑢)
                                    (by Equation 2S)  18 

                =  𝑅01                                                                                      (equals 𝑅01, a weighted average). 19 

Note: Equations 1S and 2S show that Assumption (A5b) is implied by (A5a) and that (A5b) is weaker.  20 

 21 

Claim 2: Under assumptions (A1-A4, A5b), 𝐶𝐸10 = 𝐶𝐸01. 22 

Proof:  The proof parallels that of Claim 1.  𝑅𝑒𝑛(𝑒′) is the weighted average of the counterfactual 23 

outcomes 𝑅𝑒𝑛𝑢(𝑒′), weighted by 𝑃(𝑈 = 𝑢|𝐸 = 𝑒, 𝑁 = 𝑛) = 𝑃(𝐸 = 𝑒|𝑈 = 𝑢)𝑃(𝑁 = 𝑛|𝑈 = 𝑢)𝑝(𝑈 =24 

𝑢)/ ∑ 𝑃(𝐸 = 𝑒|𝑈 = 𝑢)𝑃(𝑁 = 𝑛|𝑈 = 𝑢)𝑝(𝑈 = 𝑢)𝑢 , so:        25 

     𝐶𝐸01 =
𝑅01(1)

𝑅01(0)
 26 

               =
∑ 𝑅01𝑢𝑢 (1)𝑃(𝐸=0|𝑈=𝑢)𝑃(𝑁=1|𝑈=𝑢)𝑝(𝑈=𝑢)

∑ 𝑝(𝐸=0|𝑈=𝑢)𝑢 𝑝(𝑁=1|𝑈=𝑢)𝑝(𝑈=𝑢)
/

∑ 𝑅01𝑢𝑢 (0)𝑃(𝐸=0|𝑈=𝑢)𝑃(𝑁=1|𝑈=𝑢)𝑝(𝑈=𝑢)

∑ 𝑝(𝐸=0|𝑈=𝑢)𝑢 𝑝(𝑁=1|𝑈=𝑢)𝑝(𝑈=𝑢)
 27 

               = ∑ 𝑅01𝑢𝑢 (1)𝑃(𝑈 = 𝑢|𝐸 = 0, 𝑁 = 1)/ ∑ 𝑅01𝑢𝑢 (0)𝑃(𝑈 = 𝑢|𝐸 = 0, 𝑁 = 1) 28 

               = ∑ 𝑅10𝑢𝑢 (1)𝑃(𝑈 = 𝑢|𝐸 = 0, 𝑁 = 1)/ ∑ 𝑅10𝑢𝑢 (0)𝑃(𝑈 = 𝑢|𝐸 = 0, 𝑁 = 1) 29 

               = ∑ 𝑅10𝑢𝑢 (1)𝑃(𝑈 = 𝑢|𝐸 = 1, 𝑁 = 0)/ ∑ 𝑅10𝑢𝑢 (0)𝑃(𝑈 = 𝑢|𝐸 = 1, 𝑁 = 0) 30 
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               =
∑ 𝑅10𝑢𝑢 (1)𝑃(𝐸=1|𝑈=𝑢)𝑃(𝑁=0|𝑈=𝑢)𝑝(𝑈=𝑢)

∑ 𝑝(𝐸=1|𝑈=𝑢)𝑢 𝑝(𝑁=0|𝑈=𝑢)𝑝(𝑈=𝑢)
/

∑ 𝑅10𝑢𝑢 (0)𝑃(𝐸=1|𝑈=𝑢)𝑃(𝑁=0|𝑈=𝑢)𝑝(𝑈=𝑢)

∑ 𝑝(𝐸=1|𝑈=𝑢)𝑢 𝑝(𝑁=0|𝑈=𝑢)𝑝(𝑈=𝑢)
 1 

               =
𝑅10(1)

𝑅10(0)
= 𝐶𝐸10   2 

The second equality follows by properties of the counterfactuals 𝑅01(1) and 𝑅01(0), the third equality by 3 

equations 1S and 2S, the fourth by assumptions (A1) and (A2), the fifth by assumption (A5b), the sixth by 4 

equations 1S and 2S, and the last two by definitions.  5 

Web Appendix S6 6 

This Web Appendix contains additional, basic descriptive information about the cohort in the Example of 7 

the main text.  First, we note that, during the follow-up period, the age of cohort members with gender-8 

affirming hormone or puberty suppression therapy, was very similar to the age of those without that 9 

therapy by definition of the cohort.  In particular, the therapy had to have been received by age 20, and 10 

the follow-up for the outcome of interest was from age 20 to age 21.  Thus, age during the time at risk 11 

should not have led to meaningful confounding.  Table S1 includes additional descriptive information for 12 

cohort of the example in the main text and shows reasonable degree of balance between treatment groups 13 

– so these factors should also not have led to meaningful confounding.  Consistent with this, we did not 14 

adjust for additional covariates and did no modeling or smoothing; causal effect estimates for the example 15 

can be calculated from just the data in Table 2 (main text). 16 

Table S1.  Descriptive Information for Cohort of Example in the Main Text a 17 

Characteristic Gender-Affirming Therapy b 

N (%) 

No Gender-Affirming Therapy 

N (%) 

Ethnicity   

    Hispanic 171 (28.3) 44 (22.6) 

    Non-Hispanic Black 58 (9.6) 13 (6.7) 

    Other, including Non-Hispanic White 375 (62.1) 138 (70.8) 

Gender Identity   

    Trans-feminine 261 (43.2) 89 (45.6) 

    Trans-masculine 322 (53.3) 106 (54.4) 

    Transgender with unclear sex  

     assigned at birth 

21 (3.5) 0 (0) 

Age at Index Date c (Years)   

     Mean (SD) 16.6 (1.9) 17.2 (1.8) 

All Subjects 604 (75.6) 195 (24.4) 
a Percentages may not sum to 100 due to rounding 18 
b Receiving gender-affirming hormones at or before age 20 19 
c Index date refers to the day of the first evidence of transgender status in Kaiser Permanente EMR 20 
 21 

  22 
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Web Appendix, Figure S1 1 

 2 

Figure S1 describes the prior distribution of  𝐶𝐸2,1 for the example in the main text; see also Web 3 

Appendix S1.  Values of 𝐶𝐸2,1 were truncated at 30 to display. 4 

  5 
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Web Appendix, Figure S2 1 

 2 

Figure S2 describes the posterior distribution of  𝐶𝐸2,1 for the example in the main text; see also Web 3 

Appendix S1. (Values not truncated.) 4 

 5 

Web Appendix, Figure S36 

 7 
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