Exploring County-level Spatio-temporal Patterns in Opioid Overdose related Emergency Department Visits

Angeela Acharya¹*, Alyssa M Izquierdo², Stefanie F Gonçalves², Rebecca A Bates³, Faye S Taxman⁴, Martin P Slawski⁵, Huzefa S Rangwala¹, & Siddhartha Sikdar⁶

¹ Department of Computer Science, George Mason University, Fairfax, VA, United States
² Clinical Psychology, George Mason University, Fairfax, VA, United States
³ School of Nursing, George Mason University, Fairfax, VA, United States
⁴ Schar School of Policy and Government, George Mason University, Fairfax, VA, United States
⁵ Department of Statistics, George Mason University, Fairfax, VA, United States
⁶ Department of Bioengineering, George Mason University, Fairfax, VA, United States

*Corresponding author: Angeela Acharya, E-mail: aachary@gmu.edu

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Abstract

Opioid overdoses within the United States are rising at alarming rates. This has been negatively impacting the social and economic well-being of the country. Due to the differences in the socio-ecological factors, the geographical distribution of opioid overdose rates differ across various regions of the United States. Thus, a thorough analysis of the opioid overdose trends at the county-level is crucial in understanding the resource allocation needs and for solving the crisis swiftly. In this study, we analyzed the county-level spatio-temporal variations in opioid overdose rates by combining techniques from spatial statistics, geographical information system (GIS), and data mining. Furthermore, we implemented multilevel modeling to model the temporal changes in the overdose rates and to determine the associated risk factors. Data on emergency department opioid overdose (EDOOD) visits and socio-ecological factors from the state of Virginia was utilized for the analyses. The same approach can be applied for other states without big modification, given similar data. The study identified that the counties within the state of Virginia had notable differences in their EDOOD visit rates with many counties in the southwestern region being consistently identified as the hotspots (areas with higher concentration of EDOOD visits). Similarly, it was noted that most counties had decreasing EDOOD visit rates from 2016 to 2018 which seemed to increase by 2019. The changes in the visit rates were found to be significantly associated with the changes in socioeconomic factors and access to clinical care. The findings from this study have the potential to assist policymakers in proper resource planning thereby improving health outcomes.

Keywords—opioid overdose, county-level, spatio-temporal, emergency department, hotspots, socio-ecological factors

Introduction

The opioid epidemic has significantly impacted the social and economic fabric of communities in the United States. For instance, in 2017, the economic cost of opioid deaths, criminal justice involvement, treatment, and lost wages surpassed $1.02 trillion [1]. Despite efforts to slow the epidemic, opioid overdose deaths have increased over time. Between April 2020 and April 2021, over 100,000 deaths involved opioids—an increase of 28.5% over the previous 12 months [2]. Policymakers are at a standstill to understand this epidemic, including how to quell the death rate and manage the opioid crisis. The burden is at the county level which has the responsibility to provide emergency and clinical care to reduce fatalities. However, there is limited information on the challenges at the county level. This paper assesses emergency department (ED) utilization along with socio-ecological risk factors of opioid overdose at the county level to understand the opioid crisis.

Socio-ecological risk factors of opioid overdose are inextricably linked to personal and environmental factors and systems that hinder rather than support individuals [3]. For instance, among a population receiving healthcare services at a free clinic, prescription opioid misuse was more likely among patients who were employed and less likely among those with post-high school education [4]. Uninsured individuals were significantly more likely than insured individuals to be high-risk drug users [5]. Access to prescription opioids is another prominent risk factor of unintentional opioid overdose deaths [6-7], which has increased in rural areas where there is a greater need for medical services [8-9]. In sum, the intersection of where and how people live are significant factors in health outcomes and requires public health to work with urban planning to create supportive and healthy environments to reduce risks of opioid overdose [10].
The geographic distribution of opioid overdose rates and socio-ecological factors differ across and within states. Counties across the United States with high economic distress, high opioid prescription rates, and lack of opioid treatment program providers have higher levels of opioid overdose mortality rates [11-12]. Fewer studies have examined associations between local socio-ecological factors and overdose rates within states, especially how these factors may change over time. Statewide health disparities, including lower socioeconomic status and access to health care, can differ at the county level and are more predominant in rural areas [13]. A socio-ecological framework posits that opioid overdose patterns would geographically overlap with counties that may lack the resources necessary to prevent overdose [14]. Thus, identifying county-level variations in overdose rates and related risk factors can inform state policies and targeted interventions for counties that are most at risk.

Spatio-temporal modeling of county-level data within states can illustrate how opioid overdose rates are clustered based on socio-demographic characteristics [14-18]. Marotta et al. [14] examined cumulative opioid overdose deaths in New York State using data from 2013-2015 and identified geographical hotspots of overdose death rates for different types of opioids. Hernandez et al. [15] examined prescription opioid death rates in Ohio from 2010-2017 and identified 12 hotspots along with three significant changing trends of opioid overdose using temporal trend analysis. Overall, spatio-temporal techniques utilizing local population-level data can provide a profile of opioid overdose risk. Different from prior studies, this study performed a county-level spatio-temporal assessment of overdose rates using the emergency department opioid overdose (EDOOD) visit data. Emergency departments are the primary treatment venue for patients with non-fatal overdoses. EDOOD visit rates increased by 28.5 percent across the United States in 2020, compared to 2018 and 2019 [19]. Identifying changes in EDOOD visits and associated risk factors is critical because non-fatal opioid overdose is the strongest predictor of subsequent fatal overdose [20].

The objective of this study is to take an in-depth look at statewide EDOOD visit rates and related socio-ecological factors over time. To our knowledge, this is the first study to perform a county-level assessment of EDOOD visit rates using spatio-temporal and multilevel analysis. We focus on the state of Virginia for two main reasons. First, its growing rates of fatal opioid overdose [21] are representative of the growing rates of opioid overdose across the United States. In addition, the Virginia Department of Health collects monthly EDOOD visit data as part of syndromic surveillance to measure health trends [22]. This publicly available dataset can serve as a timely indicator of the opioid epidemic. This study utilized a comprehensive, three-pronged approach to understanding the opioid epidemic in Virginia, United States. The goals of the study were to 1) identify spatio-temporal variations of EDOOD visit rates from 2016-2019 among Virginia counties, 2) assess how counties cluster together based on their EDOOD visit rates, and 3) identify socio-ecological factors that are associated with the change in EDOOD visits over time. Understanding the spatio-temporal dynamics of EDOOD visits and potential risk and protective factors of EDOOD visits can help identify targets for policy change and timely resource allocation.

Methods and Materials

Study area

We analyzed the EDOOD visit rates and the associated risk factors across the different counties within the state of Virginia, United States. The state of Virginia consists of 95 counties and 38 independent cities that are considered county-equivalent for census purposes. The analysis was performed for those 133 unique geographic areas.
Measures

Emergency Department Opioid Overdose Visits

The EDOOD visits dataset was obtained from the Virginia Department of Health (VDH) [23] and consists of monthly visit rates. The outcome variable was defined as the rate of EDOOD visits per 100,000 population. We examined data from 2016-2019 to include a wider range of potential risk factors.

Socio-Ecological Factors

Socio-ecological factors at the Virginia county-level were obtained from the County Health Rankings & Roadmaps (CHR&R) dataset from the Robert Wood Johnson Foundation [24]. This publicly available dataset aggregates data from the Centers for Disease Control and Prevention (CDC) as well as other sources (e.g., U.S. Census Bureau, Behavioral Risk Factor Surveillance System) to provide yearly county-level rankings based on attributes related to health behaviors, clinical care, social and economic factors, and physical environment (see Fig 1). Other sources have also aggregated data on socio-ecological factors (e.g., Opioid Environment Policy Scan, Virginia Department of Health, etc.). However, the CHR&R dataset is an adequate proxy for socio-ecological factors for our analysis because it encompasses a wide range of socio-ecological inputs within its four variables.

Clinical Care. This variable includes inputs about access to care and quality of care, such as uninsured rates, and access to primary care physicians, dentists, and mental health providers.

Social and Economic Factors. This variable includes inputs from six unique data sources measuring unemployment, children in poverty, income inequality, single-parent households, social associations, violent crime, and injury deaths.

Physical Environment. This variable includes inputs from four unique data sets measuring air pollution, alcohol drinking violations, severe housing problems, driving alone to work, and long commute-driving alone.

Health Behaviors. This variable includes inputs about tobacco and alcohol use, diet and exercise, and sexual activity from seven unique data sources. These inputs further include physical inactivity, excessive alcohol use and impaired driving deaths, sexually transmitted diseases, and teen pregnancy.

The rankings in the CHR&R dataset were calculated using standardized z-scores from several data sources [25]. The county with the lowest z-score received a rank of 1, which indicates the highest quality of socio-ecological factors (e.g., low tobacco use, better access to care, better education). The county with the highest z-score received a ranking of 133, which indicates the lowest quality of socio-ecological factors (e.g., high tobacco use, poor access to care, poor education). The CHR&R dataset has been validated in other studies [26-27].

Fig 1. Socio-ecological factors from County Health Rankings & Roadmaps (CHR&R)
Virginia Hospitals

Hospital data for Virginia were obtained from two publicly available sources: Virginia Economic Development Project [28] and Virginia Health Information [29]. These datasets provide the location of hospitals across Virginia counties. Both these datasets were merged to form a more comprehensive list. Ambulatory Surgery Centers and Rehabilitation Centers were excluded from the list as they do not allow EDs. Considering that the availability of hospitals does not change significantly over time, we only included the most updated list from these data sources. Also, since the information about the location of EDs that were involved in the collection of the EDOOD visits data is not publicly available, the hospital data available from these datasets provide the closest approximation of the number of EDs within each county during the study period.

Neighborhood Adjacency

Data on neighborhood adjacency for Virginia counties was obtained from the US Census Bureau [30]. This data lists each county along with its adjoining neighbors including counties that are not in Virginia but adjacent to Virginia counties. For this study, we only considered the neighboring counties that are a part of Virginia. This data was utilized for our spatial analysis.

Data Analysis

Spatial Analysis

To identify any spatial variations in the opioid overdose rates across Virginia counties, we calculated the spatial autocorrelation using data on neighborhood adjacency and EDOOD visits for the years 2016-2019. Spatial autocorrelation is the phenomenon where the presence of some quantity in an area makes its presence in neighboring areas more or less likely [31]. Positive autocorrelation, which is more common in practice, is the tendency for areas that are close together to have similar values whereas negative autocorrelation is the tendency for areas that are close together to have different values.

Global spatial autocorrelation. Global auto-correlation measures the overall association within the data. In this study, it measures the similarity between the neighboring counties in terms of EDOOD visit rates. We calculated the Moran’s I index, a common measure of global auto-correlation [32]. Then we performed a permutation test to assess the significance of the Moran’s I index analysis. The values of Moran’s I range from +1 (strong positive spatial auto-correlation) to 0 (randomness) to -1 (strong negative pattern). Moran’s I value of 0.7, for instance, indicates that the spatial pattern across counties is homogeneous meaning that the neighboring counties have very similar visit rates.

Local spatial autocorrelation. To study the contribution of each county to the global Moran’s I index and identify local hotspots (clusters of high EDOOD visit rates) and coldspots (clusters of low EDOOD visit rates), we calculated Local Indicators of Spatial Association (LISA) [33] for each county. These auto-correlation indices were used to divide the counties into five distinct groups:

- **High-high:** Counties with high visit rates with neighboring counties that also have high visit rates (also known as hotspots)
- **Low-low:** Counties with low visit rates with neighboring counties that also have low visit rates (also known as coldspots)
- **High-low:** Counties with high visit rates but surrounded by counties that have low visit rates
Low-high: Counties with low visit rates but surrounded by counties with high visit rates

Potential outliers: Counties with no significant local auto-correlation

The classification of counties into regions of low or high visit rates was done based on whether they had rates less than or greater than (or equal to) the mean value. Both local and global autocorrelation analyses were performed in python using the PySAL package [34].

Temporal Analysis

Temporal analysis refers to the study of an outcome over time. We used two different methods--clustering and multi-level modeling--to analyze the EDOOD visit rates over time and identify their association with different socio-ecological risk factors.

Clustering. To identify similarities between the temporal trends of visit rates in different counties, we used dynamic time warping (DTW) [35]. DTW is a data mining technique used to compute the similarity between multiple time series (e.g., opioid overdose rates over time) and cluster them together based on their shapes and magnitudes. We utilized the moving average of the monthly visit rates (for a smoother curve) to perform the clustering. After we obtained clusters of counties, we mapped the clusters using choropleth maps for easy visualization. Analyses were performed in Python using the tslearn package [36] and the PySAL package [34].

Multilevel Modeling. To identify how the changes in EDOOD visit rates relate to the changes in different socio-ecological factors, we performed multilevel modeling [37] with the visit rates as the outcome variable and four different time-varying aggregated variables from the CHR&R dataset as our predictors. Multilevel modeling is advantageous given that it accounts for correlations across time within individual counties. Moreover, multilevel models handle missing data in visit rates for any county and at any time point without pairwise deletion of individual counties. Multilevel modeling was performed in R using the lme4 package [38]. A forward stepping procedure was used to create the final model [39]. First, an unconditional means model (i.e., baseline model) was created. From this model, an intraclass correlation coefficient (ICC) -- representing the proportion of variance explained within counties -- was computed. Next, conditional growth models were created to examine the linear effect of time on EDOOD visit rates, with time modeled as a fixed and random slope in separate models. The model (i.e., either fixed or random slope) with better fit compared to the unconditional growth model was used moving forward. Finally, a conditional random growth model was created to examine the linear effects of the time-varying covariates (socio-ecological factors) on the visit rates. Health Behaviors, Clinical Care, Social and Economic Factors, and Physical Environment were included as level 1 (i.e., within-county) predictors. We ran ANOVA-like table with tests of random effects for each model using the ImerTest package. Each model was compared to the preceding model using these ANOVA tests.

Results

Spatial Analysis

EDOOD Visit Rates

The EDOOD visit rates differed within the state and across time. As shown in Fig 2A, counties in southwestern Virginia have higher EDOOD rates on average and the ones in the mid-region have the
lowest rates (0 in many cases). There were increasing EDOOD visit rates by 2019 as compared to the prior years (signified by darker colors in Fig 2A). Additionally, not all counties had a hospital, implying that some counties may have a recorded EDOOD visit rate of 0 even though the actual overdose rate may be higher. Fig 3 represents a plot of the number of hospitals in each county as provided in the hospital data that we collected.

Fig 2. Choropleth plots of A) EDOOD visit rates (darker color signifies higher rates), and B) results from LISA analysis returned for the years 2016-2019 highlighted by different colors (red: high-high – hot spots, blue: low-low – cold spots, pink: high-low, light blue: low-high, and gray: potential outliers).
Global Auto-Correlation

The results from the Moran’s I index indicate that there is some similarity between counties and their neighbors with respect to their EDOOD visit rates in all four years. As shown in Table 1, the values of indices are greater than 0 for all the years indicating a positive global spatial autocorrelation. The strongest association seems to be present in the year 2018 (Moran’s I = 0.24).

Table 1. Global Moran’s I Indices Returned for the Years 2016-2019

<table>
<thead>
<tr>
<th>Year</th>
<th>Moran’s I Index</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>2016</td>
<td>0.12</td>
<td>0.002</td>
</tr>
<tr>
<td>2017</td>
<td>0.12</td>
<td>0.004</td>
</tr>
<tr>
<td>2018</td>
<td>0.24</td>
<td>0.001</td>
</tr>
<tr>
<td>2019</td>
<td>0.16</td>
<td>0.001</td>
</tr>
</tbody>
</table>

Note. Positive value: Neighboring counties have homogeneous patterns. Negative value: Neighboring counties have heterogeneous patterns.

Local Auto-Correlation

The LISA values were calculated for every county in Virginia for the years 2016-2019. The five distinct subgroups returned by LISA were plotted in choropleth maps (Fig 2B) alongside the raw EDOOD visit rates (Fig 2A). They are shown in the maps in distinct colors: red (high-high), blue (low-low), light blue (low-high), pink (high-low), and gray (potential outliers). The potential outliers were determined using a permutation test which helped identify non-significant associations within the neighborhoods (counties) thereby returning the hotspots (red clusters) and the cold spots (blue clusters) of EDOOD visits. These regions had significantly higher and lower concentrations of EDOOD rates, respectively.
There were some counties (pink clusters and blue clusters) that had significantly different visit rates than their neighboring counties. As expected, the hotspots were concentrated around the southwestern region in all the years. The cold spots were scattered across the eastern, mid, and northern regions. The locations of the LISA subgroups seem to be changing over time.

Temporal Analysis

Clustering

Five distinct groups of counties (clusters) were returned by the DTW clustering algorithm. The clusters with the plots of their temporal trends and their corresponding geospatial mapping are provided in Fig 4. In all but two clusters (Groups A, C, and E), counties had EDOOD visit rates that slightly decreased from 2016-2018 and then increased into 2019. These clusters differed in terms of the magnitude of the EDOOD visit rates: most counties in Group E (e.g., Dickenson, Galax, Grayson, Henry) had higher rates on average and most counties in Group C (e.g., Accomack, Arlington, Fairfax, Manassas) had lower rates on average. Counties in Group A (e.g., Alleghany, Buchanan, Caroline, Russel), had rates that were not too high and not too low. One cluster, Group B, comprised counties (e.g., King George, Halifax, Amelia, Augusta) where visit rates slightly increased from 2016-2019. Finally, Group D included counties (e.g., Bland, Scott, Williamsburg) that had a constant trend (0 visits in all four years). The exception is one county (Dinwiddie County) that had a slightly increasing trend. However, this county was kept in the same cluster as the ones with zero values, likely due to very low visit rates (range 0-5).

Multilevel Modeling

The baseline unconditional model returned an ICC of 0.63, which indicates that 63% of the variance is attributable to differences between counties while 37% of the variance is attributable to differences within counties over time. Given that more than 5% of the variance is attributable to differences within counties over time, the use of multilevel modeling is justified. We ran ANOVA-like table tests of random effects for each model and compared each model to the preceding test. First, we found that the fixed growth model was a better fit than the unconditional model ($X^2 = 6.32, df = 1$, $Pr(>Chisq) = 0.011, p < .05$). Next, we found that the random growth model was a better fit than the fixed growth model ($X^2 = 41.64, df = 2, Pr(>Chisq) = 9.037 \times 10^{-10}, p < 0.001$). Thus, we proceeded to run a random growth model with our time-varying socio-ecological predictors. Table 2 shows the goodness of fit values for all four models. The fixed growth model showed that time predicted decreases in EDOOD visits from 2016-2019 (see Table 2). When incorporating predictors into the model (i.e., conditional random growth model), Clinical Care and Social and Economic Factors emerged as significant time-varying predictors of the slope for EDOOD visits (see Table 2). This suggests that a 1 unit decrease in Clinical Care z-scores (i.e., higher ranking/better quality of clinical care) increased the slope of EDOOD visit rates by 5.53. In addition, a 1 unit increase in Social and Economic Factors z-scores (i.e., lower ranking/lower quality of social and economic factors) increased the slope of visit rates by 5.64. These sociological factors are important predictors of changes in EDOOD visits.
Fig 4. 5 different cluster groups (A, B, C, D, E) as determined by the Dynamic Time Warping (DTW) clustering algorithm along with their corresponding choropleth mapping. Each group has a different temporal trend of EDOOD visits.

Note. For every county within the clusters, we plotted the moving average of the EDOOD visit rates across time. Each cluster group is represented by a unique color in the choropleth map. The same color is used to represent the clusters group names.
Table 2. Multilevel Growth Models with Socio-Ecological Risk Factors as Time-Varying Covariates (TVCs)

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Unconditional</th>
<th>Fixed Growth</th>
<th>Random Growth</th>
<th>Random Growth with TVCs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fixed Effects</td>
<td>β (SE)</td>
<td>β (SE)</td>
<td>β (SE)</td>
<td>β (SE)</td>
</tr>
<tr>
<td>Intercept</td>
<td>8.73(0.34)***</td>
<td>9.14(0.37)***</td>
<td>9.14(0.42)***</td>
<td>9.14(0.41)***</td>
</tr>
<tr>
<td>Time (Year)</td>
<td>—</td>
<td>-0.273(0.10)*</td>
<td>-0.273(0.13)</td>
<td>-0.273(0.14)</td>
</tr>
<tr>
<td>Health Behaviors</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>1.001(2.54)</td>
</tr>
<tr>
<td>Clinical Care</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>-5.53(2.76)*</td>
</tr>
<tr>
<td>Social and Economic Factors</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>5.64(1.78)**</td>
</tr>
<tr>
<td>Physical Environment</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>8.72(4.93)</td>
</tr>
<tr>
<td>Random Effects</td>
<td>Variance</td>
<td>Variance</td>
<td>Variance</td>
<td>Variance</td>
</tr>
<tr>
<td>Intercept</td>
<td>13.59</td>
<td>13.61</td>
<td>20.50</td>
<td>18.57</td>
</tr>
<tr>
<td>Residual</td>
<td>7.90</td>
<td>7.79</td>
<td>5.22</td>
<td>5.26</td>
</tr>
<tr>
<td>Time (Year)</td>
<td>—</td>
<td>—</td>
<td>1.55</td>
<td>1.55</td>
</tr>
<tr>
<td>Goodness of Fit</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AIC</td>
<td>2889.1</td>
<td>2884.8</td>
<td>2847.2</td>
<td>2828.2</td>
</tr>
<tr>
<td>BIC</td>
<td>2902.0</td>
<td>2901.9</td>
<td>2872.8</td>
<td>2871.0</td>
</tr>
<tr>
<td>Deviance</td>
<td>2883.1</td>
<td>2876.8</td>
<td>2835.2</td>
<td>2808.2</td>
</tr>
<tr>
<td>Log Likelihood</td>
<td>-1441.6</td>
<td>-1438.4</td>
<td>-1417.6</td>
<td>-1404.1</td>
</tr>
<tr>
<td>Parameters</td>
<td>3</td>
<td>4</td>
<td>6</td>
<td>10</td>
</tr>
</tbody>
</table>

Note. *p < .05, **p < .01, ***p < .001.

Discussion

To our knowledge, this is the first study to combine techniques from statistics, data mining, and geographic information systems (GIS) to examine how a county performs in terms of EDOOD visits. Our
spatial analysis revealed that EDOOD visit rates significantly varied across Virginia counties with clusters of overdose hotspots (primarily southwestern region) and coldspots (mid, eastern, and northern regions). Most importantly, the locations changed over time with 5 hotspots (i.e., Galax, Henry, Grayson, Martinsville, and Roanoke) and 1 coldspot (i.e., Accomack) remaining stable. Most counties had EDOOD visit rates that slightly decreased from 2016 to 2018 and increased into 2019. But, there was one cluster (i.e., Group B) with increasing rates throughout the four-year period and one (i.e., Group D) with constant rates. We found that the number of hospitals by county varies which affects the EDOOD visit rates. Finally, the multilevel analysis revealed that better quality of clinical care and lower social and economic factors (i.e., levels of education, employment, income, family and social support, and community safety) predicted increased EDOOD rates over time.

Southwest Virginia is a rural area in which residents have higher rates of morbidity and mortality due to a shortage of healthcare services [40]. Residents in southwest Virginia often cannot afford annual health insurance deductibles and many medical expenses are not covered by insurance [41]. A portion of individuals reported only seeking healthcare as a last resort and many did not receive regular care from a health provider. Rural populations also have greater prescription rates of opioid analgesics [8]. Collectively, the southwest counties experience greater levels of both non-fatal and fatal overdose rates. Individuals in southwestern counties with lower access to care and quality of care, therefore, may be more at risk of opioid overdose. For example, Martinsville County had one of the highest EDOOD rates throughout the four-year period.

Conversely, our multilevel analysis revealed that counties with poor access to care and quality of care (i.e., higher clinical care z-scores) had lower EDOOD visit rates. Many of these counties lack providers as they are in regions with fewer or no hospitals. This might result in individuals going to nearby counties with hospitals to seek care, thereby causing an increase in the visit rates in the neighboring counties. In fact, counties characterized as coldspots in our spatial analysis are areas that have greater clinical health disparities, and therefore the true rate of EDOOD visits is more likely to be unknown. Further analysis is needed to identify other county-level differences in these ecological conditions. The multilevel analysis also found that a decrease in socio-economic factors over time was associated with an increase in EDOOD visit rates. These findings are consistent with studies that demonstrate associations between poor economic and social conditions and high opioid overdose mortality rates (Monnat et al., 2019).

Study findings also revealed that there were sub-groups of counties that shared similar EDOOD visit trends. For instance, some counties had 0 visit rates throughout the four-year period. Most of these counties do not have hospitals in the region (e.g., Scott, Highland, Sussex) (see Fig 3). Similarly, while most of the counties had decreasing rates up to 2018, almost all had an increasing rate of EDOOD visits towards 2019. Some counties (e.g., King George, Halifax, Amelia, Augusta) had increasing rates throughout the four-year period (Group B in Fig 4). Many counties in this group are clustered together in the spatial map suggesting a possible association with the neighborhood characteristics. Additionally, most hotspots and coldspots identified using our spatial analysis did not remain the same over time which suggests variability in EDOOD visits rates. Additional studies should be conducted to understand the characteristics that may be driving these differences.

Most prior studies have identified risk factors of opioid overdose using static features [42-43] which limits an understanding of the drivers of ED visits for opioid use. While it is generally known that counties with poor socio-economic characteristics and quality of healthcare (e.g., counties in the southwestern region) are hotspots for overdoses, more attention should be given to the development of
healthcare options in those areas through telemedicine, incentivizing the workforce, and providing for auxiliary ED facilities. Moreover, for counties with very high EDOOD visit rates which are surrounded by counties with no hospitals (e.g., Roanoke county), there may be a need to consider locating a hospital or auxiliary ED facility (i.e., patient care) in the surrounding counties.

There are some limitations and assumptions of this study that could be addressed in the future. While the study used data from Virginia for the years 2016-2019, the project can be expanded to include a broader time frame and nationwide data. The spatio-temporal variations of EDOOD visits were assessed separately but they could be modeled together to identify how these interact with other outcomes and with each other. Also, EDOOD visit rates were being largely influenced by the lack of hospitals in approximately one-third of the counties which limited estimating the true opioid overdose rates in each unique area. Future research could investigate how to account for this factor. Additionally, the hospital data that we used for visualization was updated in 2021 while our analysis was from 2016-2019; some of the information about the hospitals may have been different around those years.

Conclusion

Not surprisingly, there are differences between the counties in Virginia in their EDOOD visit patterns across time. These differences are significantly associated with Social and Economic factors (i.e., education, employment, community safety, income, and family and social support) and Clinical Care (i.e., access to care and quality of care). Targeting areas that are consistently hot spots for EDOOD rates and identifying areas that vary over time is critical to address the social determinants of opioid use disorders and health care access. Given telehealth, satellite facilities, and workforce incentives, policymakers have options to address the underlying factors related to reducing fatalities from opioid overdose behaviors.

Declarations

Funding statement. This research was supported in part by the NSF grants DGE: 1922598 (PI: Sikdar) and 1945764 (PI: Sikdar), and the NIH grant F31-DA051154 (PI: Gonçalves).

Data availability statement. The data used for this study are publicly available and are referenced in the paper.

Declaration of interests statement. The authors declare no conflict of interest.

Acknowledgements. We would like to thank the faculty members and students who are a part of the NSF Research Traineeship (NRT) program at George Mason University for providing us with a collaborative environment, and for all the help and guidance provided to conduct this interdisciplinary research project. We would also like to extend our thanks to Sulabh Shrestha (GMU, Computer Science) for proofreading the manuscript.
COUNTY-LEVEL SPATIO-TEMPORAL PATTERNS OF OPIOID OVERDOSES

References

COUNTY-LEVEL SPATIO-TEMPORAL PATTERNS OF OPIOID OVERDOSES

https://doi.org/10.1080/02791072.2019.1599472

https://doi.org/10.1097/EDE.0000000000001299

