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ABSTRACT
Stroke is a major cause for death or disability. As imaging based patient stratification improves acute stroke therapy, dynamic
susceptibility contrast magnetic resonance imaging (DSC-MRI) is is of major interest to image brain perfusion. However,
expert-level perfusion maps require a manual or semi-manual post-processing by a medical expert making the procedure time-
consuming and less standardized. Modern machine learning methods such as generative adversarial networks (GANs) have the
potential to automate the perfusion map generation on an expert-level without manual validation. We propose a modified pix2pix
GAN with a temporal component (temp-pix2pix-GAN) that generates perfusion maps in an end-to-end fashion. We train our
model on perfusion maps infused with expert knowledge to encode it into the GANs. The performance was trained and evaluated
using the structural similarity index measure (SSIM) on two datasets including acute stroke patients and patients with steno-
occlusive disease. Our temp-pix2pix architecture showed high performance on the acute stroke dataset for all perfusion maps
(mean SSIM 0.92-0.99) and good performance on data including patients with steno-occlusive disease (mean SSIM 0.84-0.99).
While clinical validation is still necessary in future studies, our results mark an important step towards automated expert-level
perfusion maps and thus, fast patient stratification.

Keywords: stroke, perfusion weighted imaging, dynamic susceptibility contrast MR, cerebrovascular disease, generative ad-
versarial networks

1 INTRODUCTION

Ischemic stroke is a leading cause for death or disability worldwide1.
Standard treatment strategies include recanalization by mechanical
or pharmacological intervention, or a combination of both (Berge
et al. (2021); Turc et al. (2019)). In this context, the eligibility of pa-
tients for treatment is mainly based on large cohorts of interventional
trials that implement few imaging information (Lin et al. (2022);
McDermott et al. (2019)). However, this means that some patients
will not receive treatment that would be of benefit for them and, con-
versely, some patients will be subjected to futile treatment attempts
(Goyal et al. (2016)). An alternative approach to improve outcomes
is an individualized patient stratification based on specific patient
characteristics (Rehani et al. (2020); Sharobeam and Yan (2022)).
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One of the most important techniques for this approach is perfu-
sion weighted-imaging, a special imaging technique used in both
computed tomography (CT) and magnetic resonance imaging (MRI)
(Sharobeam and Yan (2022)). It provides highly relevant information
about (patho)physiological blood flow in and around the ischemic
brain tissue (Copen et al. (2011)). In MRI, the most commonly
used perfusion imaging technique is dynamic susceptibility contrast
(DSC) MRI (Jahng et al. (2014)). It measures brain perfusion by
injecting a gadolinium-based contrast agent into the patient’s blood
(Jahng et al. (2014)), followed by a series of T2- or T2*-weighted
MRI sequences that record the flow of the contrast agent through the
brain. The resulting 4D image is deconvolved voxel-wise with an ar-
terial input function (AIF) (Calamante (2013)). The tissue concen-
tration curve as well as the deconvolved curve result in interpretable
perfusion parameter maps such as the cerebral blood flow (CBF),
cerebral blood volume (CBV), mean transit time (MTT), time-to-
maximum (Tmax), and time-to-peak (TTP) (Calamante (2013)). Im-
portantly, the placement of the AIF is performed either in a semi-
manual or manual manner to achieve the highest quality. Addition-
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Figure 1. Workflow of study. Our GAN is trained on expert-level perfusion maps. The resulting model is able to synthesize perfusion maps from unseen data
without the need of manual AIF selection, at the same expert level that was present in the training data.

ally, automated methods exist that in some areas - such as in stroke -
require little input by experts to provide perfusion parameter maps of
high quality (Hansen et al. (2016); Ben Alaya et al. (2022); Krusche
et al. (2021)). In clinical practice, however, all existing methods of
AIF determination require at least some oversight by experts to rule
out faulty calculations due to suboptimal AIFs. This is a particular
challenge in stroke care, where time is a critical resource as it is one
of the most important determinants of clinical outcome. Therefore,
there is a great clinical need for novel automation approaches that
provide expert-level perfusion maps without the necessity for any
manual input.

One possible solution is the application of modern artificial intel-
ligence (AI) methods based on machine learning and here particu-
larly deep learning approaches. These have shown great promise for
solving medical imaging problems in the past years (Wernick et al.
(2010); Lundervold and Lundervold (2019)). Among deep learning
applications, generative adversarial networks (GANs) are particu-
larly promising for the generation of expert level perfusion maps.
For example, GANs can be presented both with an original image
and a processed image and learn to generate the processed image
from the original. This is achieved by the special architecture of
GANs: They consist of two neural networks that try to fool each
other (Goodfellow et al. (2014)). One network, the generator, syn-
thesizes a data sample such as an image, whereas the other network,
the discriminator, decides whether the sample looks like a real sam-
ple or not. At the end of the training, the generated sample should re-
semble the original as closely as possible. For image-to-image trans-
lations GANs are considered to be state-of-the-art in the medical
field (Yi et al. (2019); Zhu et al. (2020)) and a conditional GAN
such as the pix2pix GAN can be applied (Isola et al. (2018)). For ex-
ample, pix2pix GANs have been successfully applied to transform
MR images to CT images (cross-modal) or to transform 3T MR im-
ages to 7T MR images (intramodal) (Brou Boni et al. (2020); Nie
et al. (2018)).

Given that the translation of a time-series of perfusion informa-
tion from source images to a single perfusion map can be seen as a
highly similar medical image-to-image translation problem, GANs
are a highly promising method for this use case. Preliminary work
on GANs for the translation of time-series in dynamic cine appli-

cations has been published (Ghodrati et al. (2021)). Yet, to the best
of our knowledge no study has investigated the generation of DSC
perfusion images from perfusion source data so far.

Thus, we propose a modified slice-wise pix2pix GAN with a tem-
poral component (temp-pix2pix-GAN) to account for the time di-
mension in DSC source perfusion imaging. Our GAN model auto-
matically generates perfusion parameter maps in an end-to-end fash-
ion. We train our model on expert-level perfusion parameter maps
(see Figure 1). The performance of our temp-pix2pix GAN model
is compared to a standard pix2pix GAN without a temporal com-
ponent. We train and test our approach on two different datasets in-
cluding acute stroke patients as well as patients with chronic cere-
brovascular disease.

2 MATERIALS AND METHODS

2.1 Data

In total, 276 patients were included in this study. 204 patients from
study Heidelberg suffered from acute stroke. 204 patients from a
study performed at Heidelberg University Hospital that suffered
from acute stroke. Imaging was performed with a T2*-weighted
gradient-echo EPI sequence with fat supression TR=2220ms,
TE=36ms, flip angle 90◦, field of view: 240x240mm2, image matrix:
128x128mm, 25-27 slices with ST of 5mm and was started simulta-
neously with bolus injection of a standard dose (0.1mmol/kg) of an
intravenous gadolinium-based contrast agent on 3 Tesla MRI sys-
tems (Magnetom Verio, TIM Trio and Magnetom Prisma; Siemens
Healthcare, Erlangen, Germany). In total, 50 to 75 dynamic mea-
surements were performed (including at least eight prebolus mea-
surements). Bolus and prebolus were injected with a pneumatically
driven injection pump at an injection rate of 5ml/s. The study pro-
tocol for this retrospective analysis of our prospectively established
stroke database was approved by the ethics committee of Heidelberg
University and patient informed consent was waived.

72 patients with steno-occlusive disease were included from the
PEGASUS study (Mutke et al. (2014)). 80 whole-brain images
were recorded using a single-shot FID-EPI sequence (TR=1390ms,
TE=29ms, voxel size: 1.8x1.8x5mm3) after injection of 5ml
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Gadovist (Gadobutrol, 1 M, Bayer Schering Pharma AG, Berlin)
followed by 25ml saline flush by a power injector (Spectris, Medrad
Inc., Warrendale PA, USA) at a rate of 5ml/s. The acquisition time
was 1:54 minutes. All patients gave their written informed consent
and the study has been authorized by the ethical review committee
of Charite - Universitatsmedizin Berlin.

DSC post-processing was performed blinded to clinical outcome.
For the acute stroke data from Heidelberg, DSC data were post-

processed with Olea Sphere® (Olea Medical, La Ciotat, France), au-
tomatic motion correction was applied. Raw DSC images were used
to calculate perfusion maps of time-to-peak (TTP) from the tissue
response curve. Maps of cerebral blood flow (CBF), cerebral blood
volume (CBV), mean transit time (MTT), and time-to-maximum
(Tmax) were created by deconvolution of a regional concentration
time curve with an arterial input function (AIF). Block-circulant sin-
gular value decomposition (cSVD) deconvolution was applied. The
arterial input function (AIF) was detected automatically. All AIFs
were visually inspected by a neuroradiology expert (MAM, over 6
years experience in perfusion imaging) and only in two cases the
automatically detected AIF needed to be manually corrected.

For PEGASUS patients, DSC data were post-processed with the
PGui software (Version 1.0, provided for research purposes by the
Center for functional neuroimaging, Aarhus University, Denmark).
Motion correction was not available. Raw DSC images were used
to calculate perfusion maps of TTP from the tissue response curve.
Maps of CBF, CBV, MTT, and Tmax were created by deconvolution
of a regional concentration time curve with an AIF. Parametric de-
convolution was applied (Mouridsen et al. (2014)). For each patient,
an AIF was determined by a junior rater (JB, 2 years experience in
perfusion imaging) by manual selection of three or four intravas-
cular voxels of the MCA M2 segment contralateral to the side of
stenosis minimizing partial volume effects and bolus delay. The AIF
shape was visually assessed for peak sharpness, bolus peak time and
amplitude width (Calamante (2013); Thijs et al. (2004)). The AIFs
were inspected by a senior rater (VIM, over 12 years of experience
in perfusion imaging).

The post-processed data was split into a training (acute stroke
data: 142, PEGASUS: 50 patients), validation (acute stroke data: 20,
PEGASUS: 8 patients) and test (acute stroke data: 41, PEGASUS:
12 patients) set. The models were trained on the respective training
set and the hyperparameters were selected based on the performance
on the validation test. The generalizable performance was estimated
by the performance of the test set. The acute stroke data was resized
to 21 slices each containing 128x128 voxels. The DSC source was
rescaled to 80 time points. All images of one parameter map as well
as the DSC source images were normalized between -1 and +1 and
split into slices.

2.2 General methodological approach

We utilized a special type of AI model that was developed for gen-
erating an image based on the input of another image: the pix2pix
GAN (Isola et al. (2018)). A pix2pix GAN consists of two neural
networks that try to mislead each other. The first network, the gener-
ator, aims to produce realistic looking images based on another im-
age (e.g. produce a CT based on a MR image), whereas the second
network, the discriminator, tries to distinguish between the gener-
ated and real images. Based on the discriminator’s feedback, both
networks get better in their respective tasks.

Typically, the input and output to a pix2pix GAN generator is a 2D
image. For this use-case, we modified the pix2pix GAN to take a 3D
image (time sequence of the 2D DSC source image) as an input and

synthesize the corresponding 2D perfusion map slice (e.g. Tmax).
In this work we implemented two different generator architectures.
The first architecture, the classical pix2pix GAN, took in the 3D in-
put image without accounting for the temporal relation between the
images. In contrast to that, the second architecture, the temp-pix2pix
GAN, was designed to first extract the temporal relation between the
images followed by the transformation to the output image (see Fig-
ure 2). In the following, the technical details of the two approaches
are described in depth.

2.3 Network architecture

The GAN architecture was adapted from the pix2pix GAN (Isola
et al. (2018)). In our first architecture we utilized the original U-
Net generator as proposed in the paper with the time steps being
represented in the channels. For the second architecture we modified
the U-Net by adding 3D temporal convolutions before feeding the
result into the U-Net in the generator (see Figure 2).

Both GAN architectures consisted of two neural networks: the
generator G and the discriminator D. On the one hand, the genera-
tor’s task was to synthesize perfusion parameter maps such as Tmax
or CBF from the DSC source image. The discriminator, on the other
hand, learned to distinguish between the real DSC source image to-
gether with the real perfusion parameter map and the real DSC with
the generated perfusion parameter map.

In general, the objective function of a conditional GAN such as
the pix2pix GAN is:

LcGAN(G,D) = Ex,y[logD(x,y)]+Ex,z[log(1−D(x,G(x,z))] (1)

where x is the input image (DSC source in our case) and y the output
image (Tmax for example) and z a noise vector. The generator tries
to maximize the objective which is achieved when the discrimina-
tor outputs a high probability of the generated image pair being real
and a low probability for the real image pair respectively. In con-
trast to that, the discriminator tries to minimize this objective and
identify the real input images. The pix2pix GAN does not directly
incorporate the noise vector z but introduces noise in the network
using dropout in the generator.

The loss of the generator consisted of two parts. The first part
was the adversarial loss which took into account the feedback of the
discriminator as described above. Additionally, a reconstruction loss
directly penalized deviation from the original image:

lossL1 = ∥y−G(x,z)∥1 (2)

This second loss was added to the adversarial loss and weighted by a
scalar λ which was set to 1. The pix2pix generator was a U-Net with
6 down- and upsampling layers (see Figure 2B). One DSC source
slice at a time was fed as an input to the generator. The different
time points of the DSC were concatenated in the channel dimension.
Each downsampling layer consisted of a batch normalization layer
as well as a LeakyReLU with slope 0.2 and the upsampling layers of
ConvTranspose-layers, batch normalization and a ReLU activation.
After the last convolution, a tanh was applied.

In contrast to that, the generator of the temp-pix2pix GAN took
one slice of the DSC source at all time points as an input. The time
sequence of slices was then fed through 6 3D convolutions over the
time dimension iteratively reducing this dimension to 1. Each con-
volutional layer was followed by a batch normalization layer and a
LeakyReLu with slope 0.2. After the temporal path, the output was
fed into a 2D U-Net with convolutions over the spatial dimensions
with 6 down- and upsampling layers as described above (see Fig-
ure 2C).
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Figure 2. Architecture of the pix2pix and temp-pix2pix GAN. A shows the overall GAN architecture whereas B and C depict the two different generators and
D the discriminator.

The discriminator adapted the architecture of the discriminator
from the PatchGAN as suggested by Isola et al. (2018). It con-
sisted of 3 convolutional layers with batch normalization and a
LeakyReLU activation function followed by another convolutional
layer and a sigmoid activation function (see Figure 2D). For both
the generator and discriminator the kernel size was 4 with strides of
2.

2.4 Training

For each architecture, 5 GANs were trained on the acute stroke
dataset from Heidelberg for each of the five parameter maps (CBF,
CBV, MTT, Tmax and TTP). The models were trained for 100
epochs with a learning rate of 0.0001 for both generator and dis-
criminator using the Adam optimizer with β1 = 0.5 and β2 = 0.999.
The batch size was 4 and dropout 0. As the PEGASUS dataset was
smaller, the models trained on the acute stroke data served as a
weight initialization for the PEGASUS models and were then fur-
ther trained for 50 epochs. Thus, in total, 10 models were trained per
architecture.

All hyperparameters mentioned above were tuned and selected
according to visual inspection and the performance on the valida-
tion set. Due to the computational limitations an automated search

was not feasible. The code was implemented in PyTorch and is pub-
licly available2. The models were trained on a TESLA V100 GPU
(NVIDIA Corporation, Santa Clara, CA, USA).

2.5 Performance evaluation

The generated images were first visually inspected. Additionally,
four metrics were applied: the mean absolute error (MAE) or
L1 norm of the error, the normalized root mean squared error
(NRMSE), the structural similarity index measure (SSIM) and the
peak-signal-to-noise-ratio (PSNR).

The MAE is defined voxel-wise and measure the average absolute
of the error between the real image y and the generated image ŷ:

MAE =
1
n

n

∑
i=1

|yi − ŷi| (3)

The NRMSE is defined as the root mean squared error normalized
by average euclidean norm of the true image y:

NRMSE =
RMSE√
1
n ∑

n
i=1 y2

i

(4)

2 https://github.com/prediction2020/DSC-to-perfusion
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Figure 3. Synthesized perfusion parameter maps (middle and bottom row) compared to the ground truth reviewed by an expert (top row) for one representative
patient from the acute stroke test dataset. The perfusion parameter maps generated by the temp-pix2pix all look similar to the ground truth whereas the time-
dependent parameters (Tmax and TTP) are not well captured by the pix2pix GAN.

with

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)2 (5)

The SSIM is defined as a combination of luminance, contrast and
structure and can be summed up as:

SSIM(y, ŷ) =
(2µyµŷ + c1)(2σyŷ + c2)

(µ2
y +µ2

ŷ + c1)(σ2
y +σ2

ŷ + c2)
, (6)

where µy and µŷ are the average values of y and ŷ respectively, σy
the variance and σyŷ the covariance. c1 and c2 are constants for stabi-
lization and defined as c1 = (k1L)2 and c2 = (k2L)2 with L being the
dynamic range of the pixel values and k1,k2 ≪ 1 small constants.
The higher the SSIM, the more similar are the two images with 1
denoting the highest similarity. The PSNR is defined as:

PSNR = 10log
(

MAXI

MSE

)
(7)

with MAXI being the maximal possible pixel/voxel value. It de-
scribes the ratio between the maximal possible signal power and
noise power contained in the sample.

3 RESULTS

Visual inspection of the results of the acute stroke dataset showed
that the perfusion parameter maps generated by the temp-pix2pix
GAN looked similar to the ground truth (see Figure 3). For the

pix2pix model, on the other hand, only the CBF, CBV and MTT
were of sufficient quality, whereas the time-dependent parameters
TTP and Tmax did not consistently resemble the ground truth (also
Figure 3).

The quantitative analysis in the acute stroke dataset revealed for
all parameter maps a high SSIM ranging from 0.92-0.99 for the
temp-pix2pix model (Figure 4). In contrast to this, the pix2pix GAN
showed a comparable or worse SSIM ranging from 0.86-0.98. A per-
formance difference between the pix2pix and temp-pix2pix model
was especially prominent for Tmax and TTP (SSIM 0.92 vs 0.86 and
0.95 vs 0.91, respectively). For the PEGASUS dataset, the perfusion
maps generated by both the fine-tuned pix2pix and temp-pix2pix
GAN look similar to the ground truth (see Figure 5). For both net-
works, MTT appeared to be the least well reconstructed parame-
ter map which is also reflected in the metrics (Figure 6). Further-
more, the high intensities of Tmax were not well captured by the
pix2pix GAN (Figure 5). The performance metrics of the pix2pix
and temp-pix2pix GAN and the ground truth for the PEGASUS
dataset showed low error and high SSIM and PSNR for CBF, CBV
and Tmax. Here, for most metrics, the temp-pix2pix GAN achieved
a slightly better performance in contrast to the pix2pix GAN. For
MTT and TTP the temp-pix2pix showed a better performance com-
pared to the pix2pix GAN (SSIM 0.84 vs 0.78 and 0.86 vs 0.82
respectively). Overall, the metrics of the synthesized MTT and TTP
maps obtained a worse performance compared to the other parame-
ter maps. Figure 7A showed two patients whose generated parame-
ters showed the worst performance. For the acute stroke dataset these
are two Tmax maps (Figure 7A, first and second column). Whereas
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Figure 4. Mean performance metrics for evaluating the similarity between the ground truth and the synthesized parameter maps generated by the pix2pix GAN
(green) and the temp-pxi2pix GAN (blue) on the acute stroke dataset. A and B show the mean absolute error (MAE) and normalized mean root squared error
(NRMSE) respectively (the lower the better). C and D show the structural similarity index measure (SSIM) and the peak-signal-to-noise-ratio (PSNR) (the
higher the better). For all parameter maps the temp-pix2pix architecture shows a better or comparable performance compared to the pix2pix GAN. For the
time-dependent parameter maps Tmax and TTP the difference between the pix2pix and temp-pix2pix GAN performance is larger than for the other three maps.
The errorbar represents the standard deviation.

the generated Tmax in the first column did not capture the high inten-
sities well, the generated map in the second column visually looked
well. For the PEGASUS models, MTT performed the worst (Fig-
ure 7A, third and fourth column). In the third column the generated
MTT appears less noisy than the ground truth. In contrast to that, in
the fourth column the generated MTT map looked noisier compared
to the ground truth. Figure 7B showed the Tmax maps generated by
the temp-pix2pix and pix2pix GAN for four patients for which an
AIF could not be placed.

4 DISCUSSION

In the present study, we propose a novel pix2pix GAN variant with
temporal convolutions - coined temp-pix2pix - to generate expert-
level perfusion parameter maps from DSC-MR images in an end-to-
end fashion for the first time. The temp-pix2pix architecture showed
high performance in a dataset of acute stroke patients and good per-
formance on data of patients with chronic steno-occlusive disease.
Our results mark a decisive step towards the automated generation
of expert-level DSC perfusion maps for acute stroke and their appli-
cation in the clinical setting.

In acute stroke, “time is brain” (Saver (2006)). This requires rapid
decision making in the clinical setting to ensure an optimal outcome
for an affected patient. In such a situation, when DSC perfusion-
weighted imaging is used to stratify patients for treatment, a ma-
jor bottleneck is the generation of parameter maps derived from the
DSC source images. These maps of TTP, CBF, CBV, MTT, and
Tmax are different representations of the information encoded in
the time-intensity curve for each voxel. For all except TTP, to de-
rive robust and valid parameter maps, the time-intensity curve must
be deconvolved with an AIF (Calamante (2013)). Ideally, the AIF
is derived for each voxel separately, but in the clinical setting the

calculation of a global AIF is preferred (Calamante (2013)). The
gold standard is the manual selection of several - usually 3 or 4 -
AIFs in the hemisphere contralateral to the stroke, from segments of
the middle cerebral artery (Calamante (2013)). The manual selection
of AIFs is a tedious and time-consuming process that can only be
performed after training (Calamante (2013)). Therefore, automated
methods whose results are subsequently reviewed by an expert are
preferred in clinical practice (Calamante (2013)). While automated
methods have shown inconclusive results in the literature (Hansen
et al. (2016); Ghodrati et al. (2021); Galinovic et al. (2012); Pistoc-
chi et al. (2022); Deutschmann et al. (2021)), they are successfully
used in acute stroke to identify stroke-affected tissue. In our sample,
this was confirmed as the AIFs only required expert adjustment in
two out of 204 patients in the acute stroke set. Nevertheless, this ap-
proach still requires a manual check resulting in a time delay of a few
minutes per patient before patient stratification. As a consequence,
there is a major clinical need for automated methods that provide
final perfusion parameter maps without any manual input. Here, we
chose a GAN AI approach, as presenting this methodology expert
level perfusion maps would lead to a model after training that could
then generate expert-level perfusion maps, implicitly encoding the
choice of AIFs within ∼ 1.8 seconds per patient. Our exploratory
results show that this approach was successful.

This may have a positive impact on the clinical setting. First, it
would eliminate the need for manual review of AIFs. This would
reduce the time needed to calculate perfusion parameter maps and
also reduce resource requirements as radiologists and neurologists
would no longer need to be trained on how to identify optimal AIFs.
Second, as we have shown, it is even possible to calculate parameter
maps for patients who currently have to be excluded due to motion
artifacts that make it impossible for the standard software to calcu-
late the parameter maps. At this point, it is important to emphasize
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Figure 5. Synthesized perfusion parameter maps (middle and bottom row) compared to the ground truth reviewed by an expert (top row) for one representative
patient from the PEGASUS test dataset. Both pix2pix and temp-pix2pix GAN synthesized most parameter maps that resemble the ground truth. Parts of MTT
were not entirely captured by pix2pix and temp-pix2pix. Moreover, the pix2pix GAN did not synthesize the higher intensities of Tmax well. For MTT and
Tmax, the temp-pix2pix GAN showed better performance in all metrics compared to the pix2pix GAN.

Figure 6. Mean performance metrics for evaluating the similarity between the ground truth and the synthesized parameter maps generated by the pix2pix GAN
(green) and the temp-pxi2pix GAN (blue) on the PEGASUS dataset. A and B show the mean absolute error (MAE) and normalized mean root squared error
(NRMSE) respectively (the lower the better). C and D show the structural similarity index measure (SSIM) and the peak-signal-to-noise-ratio (PSNR) (the
higher the better). For most metrics and parameter maps the temp-pix2pix architecture shows a better performance compared to the pix2pix GAN. In terms of
the metrics, the generated MTT maps showed the worst performance. The errorbar represents the standard deviation.
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Figure 7. The two patients with the poorest performance according to the metrics for each of the two datasets (A) and patients for which no AIF could be
computed (B). A: The first and second column show Tmax for two acute stroke patients. Whereas the synthesized image in the first column does not fully
capture the hypoperfused areas, the generated image in the second column looks quite close to the ground truth. Column three and four show MTT for two
PEGASUS patients. While the generated image in the third column shows less noise than the ground truth, the GAN introduced noise in the fourth column in the
synthesized image. B: Four Tmax maps generated by temp-pix2pix (upper row) and pix2pix (lower row) for cases from the acute stroke data for which no AIF
could be computed and, thus, with conventional methods not imaging would be available. Note that since motion artifacts affect the quality of the time-series,
in these cases the baseline pix2pix performs better than the temp-pix2pix.

that our study is exploratory and the generated model was and is only
used for internal research purposes. This is due to the fact that the
generative AI has fundamentally learned to approximate the non-AI
algorithm that was originally used to calculate the perfusion parame-
ter maps. To maximize clinical impact, we thus encourage the devel-
opers and vendors of relevant clinically used perfusion software to
consider adding GAN-based automated perfusion calculation mod-
ules to their products. To facilitate this process, we have made our
code publicly available.

One of the most important contributions of our approach was the
consideration of the temporal dimension of the time series input. Not
surprisingly, the temp-pix2pix architecture performed better than the
pix2pix GAN without a temporal component in both datasets. This
was particularly noticeable in the acute stroke dataset for parame-
ters directly related to the correct order of the time intensity curve,

namely TTP and Tmax. Maps of CBF, CBV and MTT (derived by
the central volume theorem as CBV/CBF) also performed quite well
in the baseline architecture without a temporal component, as for
these maps the order of input is not as relevant. This is because
CBV corresponds to the area under the time intensity curve and
CBF is calculated based on the height of the slope, which are in-
different to the order. In the chronic stroke dataset, the temp-pix2pix
also outperformed the baseline GAN without a temporal component.
However, the difference in performance was not as pronounced as in
the acute stroke dataset. This could be due to the fact that patients
with acute vascular obstruction usually have significantly higher de-
lays than patients with chronic steno-occlusive disease, and the per-
formance advantage of temp-pix2pix increases with increasing de-
lay. It is noteworthy that in contrast to the acute stroke patients in
the chronic steno-occlusive cohort, MTT and TTP maps performed
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worse than the other parameter maps. This might be related to the
more complex perfusion pathophysiology in chronic steno-occlusive
disease. Whereas in acute stroke, delay is the main contributor to
blood flow abnormalities, in chronic steno-occlusive disease it is the
sum of delay and considerable dispersion due to vessel abnormalities
(Calamante et al. (2006)). This could pose particular difficulties for
neural networks to learn the relationships required to create param-
eter maps: MTT is as a parameter that depends on two other param-
eters (CBV and CBF) in the original software solutions, which are
likely to have greater variability in chronic steno-occlusive disease.
Addtionally, TTP delays are attributable to both delay and disper-
sion, with varying weights in individual patients leading again to a
larger variability (this effect is much less pronounced in Tmax pa-
rameter maps due to the deconvolution procedure). Such increased
variability might lead to less stable models and thus increased noise
in the generated maps.

Our work is the first work to utilize GANs to create perfusion
parameter maps in DSC-imaging. A few works exist that used dif-
ferent machine learning and deep learning methods to generate pa-
rameter perfusion maps from the DSC source image. For instance,
McKinley et al. (2018) used several classical voxel-wise machine
learning approaches to generate manually validated perfusion pa-
rameter maps and identified a tree-based algorithm as the best per-
forming model. Their best results for Tmax achieved a lower per-
formance with a NRMSE of 0.113 compared to our best model with
a NRMSE of 0.095. Vialard et al. (2021) suggested a deep learn-
ing based spatiotemporal U-net approach for translating DSC-MR
patches to CBV maps in patients with brain tumors. With a SSIM
of 0.821 their generated CBV maps obtained a worse performance
compared to our CBV generated by the temp-pix2pix model with
a SSIM of 0.986. In the field of stroke, Ho et al. (2016) proposed
a patch-based deep learning approach to generate CBF, CBV, MTT
and Tmax. The average RMSE for their generated Tmax showed a
higher error of 1.33 compared to ours with 0.06. Hess et al. (2019)
utilized a different voxel-wise deep learning approach to approxi-
mate Tmax from DSC-MR. This approach was clinically evaluated
in another study (Meier et al. (2019)). In Hess et al. (2019) they
reported the performance in terms of MAE with clipping to not ac-
count for noise. Their generated Tmax achieved a MAE with clip-
ping of 0.524 compared to our approach showing a MSE of 0.016.
These differences compared to our study might be due to the novel
use of the GAN method and the fact that our model considered whole
slices instead of patches to better account for the spatial dimension.

Our study has several limitations. First, our network was based on
2D slices instead of the full 3D volumes due to computations restric-
tions. It is likely that results could be improved further using the full
3D images. Secondly, our study is an exploratory hypothesis gen-
erating study. Its results need to be clinically validated in a future
study before an integrating into clinical practice would be possible.
Lastly, our approach so far is a black-box approach. It could be ex-
tended with explainable AI to generate insights which areas in the
source images are particularly relevant for the creation of different
perfusion parameter maps. This could further elucidate the causes
of the performance differences between maps that we identified and
could guide the way for further improvements.

5 CONCLUSION

We generated expert-level perfusion parameter maps using a novel
GAN approach showcasing that AI approaches might have the abil-
ity to overcome the need for oversight by medical experts. Our ex-

ploratory study paves the way for fully-automated DSC-MR pro-
cessing for faster patient stratification in acute stroke. In the clinical
setting where time is crucial for patient outcome, this could have a
big impact on standardized patient care in acute stroke.
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