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ABSTRACT

Targeted surveillance allows public health authorities to implement testing and isolation strategies 

when diagnostic resources are limited. When transmission patterns are determined by social contact 

rates, the consideration of social network topologies in testing schemes is one avenue for targeted 

surveillance, specifically by prioritizing those individuals likely to contribute disproportionately to 

onward transmission. Yet, it remains unclear how to implement such surveillance and control when 

network data is unavailable, as is often the case in resource-limited settings. We evaluated the 

efficiency of a testing strategy that targeted individuals based on their degree centrality on a social 

network compared to a random testing strategy in the context of low testing capacity. We simulated 

SARS-CoV-2 dynamics on two contact networks from rural Madagascar and measured the epidemic 

duration, infection burden, and tests needed to end the epidemics. In addition, we examined the 

robustness of this approach when individuals' true degree centralities were unknown and were 

instead estimated via readily-available socio-demographic variables (age, gender, marital status, 

educational attainment, and household size). Targeted testing reduced the infection burden by 

between 5 - 50% at low testing capacities, while requiring up to 28% fewer tests than random testing. 

Further, targeted tested remained more efficient when the true network topology was unknown and 

prioritization was based on socio-demographic characteristics, demonstrating the feasibility of this 

approach under realistic conditions. Incorporating social network topology into epidemic control 

strategies is an effective public health strategy for health systems suffering from low testing capacity 

and can be implemented via socio-demographic proxies when social networks are unknown. 

*French abstract available in Supplemental Materials
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INTRODUCTION

A key process of epidemic control is surveillance, whereby health systems test and isolate 

infectious individuals (1). However, many health systems lack the resources to test all symptomatic 

individuals and must allocate resources accordingly. This is particularly the case for emerging 

infectious diseases, such as SARS-CoV-2, where testing resources are unequally distributed across 

countries (2). As early as April 2020, the Africa Centers for Disease Control and Prevention called 

attention to the lack of SARS-CoV-2 diagnostics in the region (3). Indeed, serological surveys from 

multiple countries revealed infection burdens much higher than those predicted from case-based 

surveillance, an indication of underdiagnosis of SARS-CoV-2 cases by diagnostic systems (4–6). 

Testing is an integral part of the COVID-19 responses of sub-Saharan African countries (7), and the 

lack of adequate testing capacity is an impediment to public health efforts.

One way to mediate the limitation of low testing capacity is by using prioritized testing 

schemes, such as schemes that prioritize testing of only symptomatic individuals or testing of close 

contacts of known cases (8). Modeling studies have explored isolating sub-groups on social networks

(9), prioritizing testing of close-contacts of infected individuals (10), expanding contact tracing to 

contacts of contacts (11), and reducing the overall number of contacts between individuals (12) as 

means to reduce transmission. Another potential strategy is to target surveillance of individuals or 

households based on their network characteristics, specifically their connectedness (13). For SARS-

CoV-2, social contact heterogeneity has been identified as a primary driver of the distribution pattern 

of secondary infections, with a small proportion of infections causing a disproportionately high number

of secondary infections (11,14). Given the strong role of social contacts, public health interventions 

that account for heterogeneity in social networks represent a promising avenue for implementing 

epidemiological surveillance in resource-limited contexts. 

Targeted interventions can be particularly useful in contexts where surveillance and testing 

resources are limited, specifically by allocating these resources to individuals that may 

disproportionately contribute to community spread. A challenge to implementing this approach is that 

public health authorities rarely have access to social network data that would guide targeted 

surveillance (15,16). However, some socio-demographic variables predict connectivity on social 

networks and may therefore be useful proxies for the risk of spreading due to high contact rates when

true social networks are not available. For example, a range of socio-demographic variables including

age, household size and structure, income, and educational enrollment were used to predict age-

specific contact rates across 152 countries (17). Similarly, socio-demographic variables such as 

gender, age, income, and education are used in marketing analytics to predict "central clients" (18). 

Thus, when it can be shown that socio-demographic variables predict network centrality, it may be 

possible to use those variables as proxies for the risk of onward transmission in targeted surveillance 

approaches. This would greatly increase the feasibility of including network topology in epidemic 

control.

Here, we use epidemic simulations on empirical and simulated social networks to investigate 

the effectiveness of targeted testing of highly connected individuals to control an epidemic when 

testing capacity and social network information is limited. We simulate SARS-CoV-2 outbreaks on 
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two close-contact social networks derived from social and spatial movement data on individuals living

in rural communities in the Sambava district of the SAVA region in northeastern Madagascar (19). 

We then compare the effectiveness of testing strategies that target testing based on social 

connectivity to those that test randomly using the full knowledge of the social network, evaluating the 

time needed to control the epidemic, the total infection burden, and the number of tests needed. 

Finally, we repeat the simulations using socio-demographic variables (age, household size, marital 

status, educational attainment) from the study population to guide targeted testing, rather than 

information on individuals' degree centralities from the social networks, thus investigating whether 

these commonly available data are suitable proxies for heterogeneity in transmission.

RESULTS

Madagascar Social Network Topology

The social networks from Mandena and Sarahandrano in rural Madagascar had characteristics of 

networks where heterogeneous transmission patterns are likely to occur. The Mandena network 

contained 120 nodes and 4136 total edges, with a mean node degree of 34.47 and normal degree 

distribution. However, the distribution of edge weights was strongly left-skewed. The mean edge-

weight was 0.18, but less than two percent of edges had a weight above 1 (equal to 24 hours over a 

week-long period). The majority of edge weights were below 0.05, equivalent to 80 minutes of close 

contact a week. The Sarahandrano network contained 318 nodes and 16140 total edges, with a 

mean node degree of 50.7 and a normal degree distribution. Like the Mandena network, the 

distribution of edge weights was strongly left-skewed, but degree centrality was overall higher than on

the Mandena network. The mean edge-weight was 0.31, with 614 edges, or 3.8%, having a weight 

above 1. Fifty-percent of edge-weights were below 0.08.

Control Efficiency

We compared the control efficiency of targeted and random surveillance strategies at low and high 

testing capacities, corresponding to the ability to test 25% and 100% of the population monthly. The 

targeted strategy had the largest effect on reducing daily incidence while using the fewest tests, 

particularly at a 25% testing capacity (Fig. 1, Fig. 2). For all three measures of effectiveness, targeted 

testing was more effective on the Mandena network than the Sarahandrano network (Fig. 2, Table 1). 

An uncontrolled epidemic, with no testing, resulted in a median of 0.82 infections per capita on the 

Mandena network and 0.94 infections per capita on the Sarahandrano network (Table 1, Fig. 2). In 

contrast, at a monthly testing capacity of 25%, targeting highly connected individuals resulted in a 

median of 0.41 and 0.90 new infections per capita on the Mandena and Sarahandrano networks, 

respectively (Table 1, Fig. 2). The infection burden decreased with increasing testing capacity for 

both control strategies, but the random testing strategy was most sensitive to an increase in testing 

capacity (Table 1, Fig. 2).
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Figure 1. Targeted testing reduces daily incidence while requiring fewer tests than random
testing. Cumulative daily incidence (top row) and cumulative tests required (bottom row) for the two 
testing strategies across two testing capacities on the Mandena and Sarahandrano networks. Testing
capacities refer to ability to test a percentage of the total population monthly. The vertical dashed line 
represents the start of the control strategies at day 4. Lines represent median values from 1000 
simulations.
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Figure 2. Targeted testing reduces the total infection burden and the number of tests 
needed, even at low testing capacities. Comparison of efficiency of two control strategies at two 
testing capacities on the Mandena and Sarahandrano networks. Testing capacities correspond to 
monthly testing capacities equal to testing 25% and 100% of the total population. The dashed black 
line represents median values from simulations with no testing. Raw data is represented by points 
and median values per strategy are represented by bold horizontal lines. The figure displays results 
from 1000 simulations for each combination of testing capacity and control strategy.
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Table 1. Median and 95% CI of efficiency metrics for two control strategies on two 
empirical social contact networks from rural Madagascar. Represents median and confidence 
intervals from 1000 simulations. Testing capacity corresponds to monthly testing capacity, with 100%
equal to the ability to test the full population monthly. Note that efficiency at 0% testing capacity is the 
same for both strategies because it represents the control strategy of no testing.

Mandena Network Sarahandrano Network

Efficiency 
Metric

Testing 
Capacity

Random
Testing

Targeted
Testing

Random
Testing

Targeted
 Testing

Epidemic
Duration

0%
44

(13,67)
44

(13,67)
42

(33,58)
42

(33,58)

25%
46

(11,73)
40

(10.75, 71)
46

(36,67.1)
50

(16,76)

100%
48

(11,88)
34

(11,71)
58

(39,91)
57

(16,89)

Infections
Per Capita

0%
0.82

(0.03,0.87)
0.82

(0.03,0.87)
0.94

(0.91,0.97)
0.94

(0.91,0.97)

25%
0.73

(0.02,0.87)
0.41

(0.02,0.78)
0.92

(0.87,0.95)
0.90

(0.01,0.94)

100%
0.49

(0.02,0.69)
0.22

(0.02,0.57)
0.83

(0.54,0.88)
0.81

(0.01,0.87)

Tests per
Capita

25%
0.28

(0,0.45)
0.20

(0.01,0.32)
0.28

(0.22,0.38)
0.29

(0.01,0.41)

100%
0.42

(0.02,0.64)
0.15

(0.01,0.39)
0.57

(0.39,0.66)
0.54

(0.01,0.6)

Testing was more efficient when targeting highly connected individuals on the Mandena 

network, requiring less than three-quarters of the number of tests needed when testing randomly at 

25% capacity. This was equivalent to 34 tests when testing randomly and 24 tests with targeted 

testing. In contrast, both testing strategies used similar numbers of test on the Sarahandrano 

network, approximately 89 tests. Targeted testing only shortened the epidemic length on the 

Mandena network (Table 1, Fig. 2), where it was able to stop transmission chains earlier in the 

epidemic than random testing (Fig. 1, Fig. 3). On the Sarahandrano network, both control strategies 

flattened the epidemic curve by reducing the number of infections, and this prolonged the epidemic by

preventing rapid spread through the population, as was seen in the simulations without testing (Fig. 1,

Fig. 2).
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Figure 3. Targeted testing most efficiently reduces disease spread across social networks. 
Final epidemic spread of one simulation on the Mandena network for three different control strategies.
Nodes are represented by points, colored based on day of infection, and sized according to their 
degree centrality. Nodes that were never infected are white. All control strategies used a monthly 
testing capacity of 25%.

Visualizing a simulated SEIR epidemic on the Mandena network illustrates how each strategy 

works at a fine scale (Fig. 3). The strategy of no control allowed for the highest infection burden, 

including individuals with low centrality who were infected later in the epidemic than in other 

strategies. Testing randomly did stop some transmission chains, but transmission rapidly spread 

early in the epidemic, with the highest daily incidence of 7 cases on day 32 of the epidemic . In 

contrast, targeted testing slowed transmission by halting transmission chains that would result in a 

high number of secondary infections (Fig. 3); daily incidence never rose above 5 cases. This resulted 

in a longer epidemic duration of 50 days, but daily incidence during the second half of the epidemic 

was never above one new infection per day.

We conducted sensitivity analyses to identify scenarios in which targeted testing is more 

efficient than random testing. Across all three categories of the sensitivity analyses, targeted testing 

remained the most efficient strategy (Fig. S4.1 - S4.5). The efficiencies of both strategies became 

similar when testing capacity was low and testing began 15 days after the start of the epidemic, after 
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which most individuals in the network had already been infected, and testing could do little to control 

the infection burden (Fig. S4.1). The relative efficiency was also reduced at low levels of 

ascertainment, particularly below levels of 0.25, when infected individuals only had a 0.25 probability 

of being correctly identified and tested (Fig. S4.2). At this point, the low accuracy of ascertainment 

reduced the ability to identify highly connected individuals for targeted testing. Targeted testing was 

more effective than random testing at all transmission rates, but was most effective at transmission 

rates between 0.15 and 0.23 (Fig. S4.3). At lower transmission rates, daily incidence was low enough 

that random testing could test most infected individuals. At higher transmission rates, the epidemic 

spread quickly and many individuals were already infected when testing began on day 4. Higher 

testing capacities increased the relative effectiveness of targeted testing at high transmission rates 

and decreased the relative effectiveness at low transmission rates. Sensitivity analyses concerning 

network size were highly stochastic; however, targeted testing always resulted in a lower infection 

burden than random testing (Fig S4.4). Similarly, there were few clear differences between the two 

testing strategies on networks of different assortativity values, with very small magnitudes of 

difference between the two strategies (Fig. S4.5). 

Applying Control Strategies to Networks with Unknown Topologies

We focused on five socio-demographic variables as predictors of an individual's degree 

centrality: age, gender, household size, marital status, and education level. A model including socio-

demographic variables did a poor job of predicting degree percentile across the two networks (R2 = 

0.03). However, the model was able to rank individuals by degree centrality (Mandena Spearman’s ρ 

= 0.15 (p=0.09); Sarahandrano Spearman’s ρ = 0.18 (p=0.002)). The model distinguished high-

degree individuals from low-degree individuals: the top ten individuals in each network had a 

predicted degree that was on average approximately twice as high as the bottom ten individuals (Fig. 

S3.3). Marital status was the only variable included in all models within 4 AIC units of the top model, 

but all socio-demographic variables were included in the averaged model. Specifically, cohabiting 

individuals had lower degree centrality than single individuals. Further details are reported in the 

Supplementary Materials. 
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Figure 4. Targeted testing based on individuals’ degree centrality proxies performs 
similarly to targeted testing based on individuals’ known degrees. Comparison of efficiency of 
two control strategies at two testing capacities on the Mandena and Sarahandrano networks using 
true degree centralities (circles) or degree centralities predicted from socio-demographic variables 
(diamonds).Testing capacities correspond to monthly testing capacities equal to testing 25% and 
100% of the total population. The dashed black line represents median values from simulations with 
no testing. Points represent the median and error bars the 95%CI based on 1000 simulations.

Despite the poor capacity of socio-demographic variables to predict degree percentile, the 

predictions based on socio-demographic variables performed remarkably well in guiding the targeted 

testing strategy. Indeed, testing based on these centrality "proxies" was as effective as using "true" 

centralities obtained from a social network (Fig. 4). The infection burden was slightly higher when 

using estimated degree centralities to target testing, but it remained lower than strategies of no 

testing and testing randomly. Although socio-demographic characteristics were not strong predictors 

of absolute degree centrality values, we found that their ability to differentiate between very high and 

low connected individuals was enough to successfully implement a control strategy that considers 

network topology.

DISCUSSION

In the face of global diagnostic and vaccine inequity, many countries are tasked with developing novel

public health interventions that optimize limited diagnostic capacities to control the SARS-CoV-2 
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epidemic. Given the role of social contact variation in community transmission of SARS-CoV-2, we 

explored whether control strategies that consider social network topologies, specifically individuals’ 

degree centralities, could limit disease transmission while using fewer resources than current, non-

prioritized testing strategies. We found that strategies that target well-connected, infected individuals 

are the most effective, reducing epidemic duration and overall infection burden, particularly at low 

testing capacities. In fact, in simulations on empirical social contact networks from rural Madagascar, 

targeted testing reduced the infection burden and shortened the epidemic even at a testing capacity 

of only one test per day, equivalent to a monthly testing capacity of 25% of the population. These 

strategies were robust even when targeting was imperfect due to unknown network topologies and 

based solely on socio-demographic variables. Importantly, this implies that this theoretical network-

based approach is feasible in practice because it can be implemented using commonly available data

on individuals, such as age, marital status, and household size. Our findings therefore demonstrate 

the benefits of considering social network topology in data-driven epidemic control strategies even 

when social network data is incomplete or not available.

We find that strategies that prioritize testing highly connected individuals offer the most benefit

in contexts with low testing capacities. In our simulations, this is achieved by controlling the epidemic 

before it reaches the point at which limited testing capacity cannot contain it. However, even when the

start of testing is delayed by 24 days, the targeted strategy can avoid on average nine infections on 

the Mandena network, or 0.075 infections per capita (Fig. S4.1). Early, aggressive testing has been 

used to successfully control SARS-CoV-2 in several countries (South Korea: (20), New Zealand: 

(21)), and a similar mechanism explains why strategies that target highly connected individuals are so

efficient in our simulations. In addition to delayed testing, high transmission rates can result in 

epidemics that targeted testing is unable to control at limited testing capacities. This was seen in our 

sensitivity analyses (Fig. S4.3) and on the Sarahandrano network, where higher average edge 

weights resulted in higher community transmission than on the Mandena network. On the 

Sarahandrano network, 12 individuals (95% CI: 2- 36) had already been exposed by the start of 

testing on day 4, and neither testing strategy effectively controlled an epidemic at low testing 

capacities (Fig. 2, Table 1).  The relatively low connectivity between rural communities in sub-

Saharan Africa has been proposed to slow the epidemic pace of SARS-CoV-2, as compared to the 

US or Europe (22). However, at the community-scale, such as those portrayed in our empirical 

networks, connectivity between individuals was high. Therefore, at this scale, epidemics may spread 

rapidly following an initial introduction, and implementing measures quickly are key to limiting 

infections. Notably, at the beginning of the pandemic in 2020, many African countries implemented 

control measures more quickly than European countries (23), effectively limiting spread during the 

first wave of the epidemic. Our simulations show that implementing targeted testing strategies at the 

beginning of local epidemics similarly reduces disease burdens while requiring few testing resources. 

While the concept of developing a disease control strategy configured by a social network is 

not novel (12,24,25), this study is one of the few that explicitly considers limited testing capacities on 

par with those in low-income countries. Madagascar tested 26,425 individuals (less than 0.01% of the

total population) for SARS-CoV-2 between March and September 2020 (26), only a fraction of the 
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testing capacity required by mass-testing campaigns that have been implemented elsewhere (e.g. 

Slovakia, (27)). This is further complicated by the relative remoteness of some communities, with 

more than 50% of the population living further than two hours from a hospital (28). In both Mandena 

and Sarahandrano, for example, no SARS-CoV-2 testing has been available to date. While cost and 

physical access to testing are significant barriers to disease control in Madagascar (29), our findings 

suggest that, if and when testing is available to rural communities, targeted testing can mitigate the 

negative impact of limited testing capacity on epidemic control. For example, antigen-based rapid 

diagnostic testing is inexpensive, does not require refrigeration, provides instant results, and could be

implemented at a local scale via outreach teams of skilled health workers (7). However, for prioritized 

testing schemes such as this to be possible, the global inequality in access to rapid diagnostic tests 

must first be overcome (30).

Many theoretical studies have shown the effectiveness of incorporating network topology into 

epidemic control strategies (31,32), but the feasibility of doing so has been questioned because the 

true social network is almost never known. One alternative is occupationally-targeted strategies that 

target high contact rates or high risk environments (e.g. health-care or food service worker) (33). 

However, in rural communities such as Mandena and Sarahandrano, all community members are 

agriculturalists, with little variation in occupation. To overcome this obstacle, we considered socio-

demographic predictors of network centrality to guide targeted testing rather than the true values of 

network centrality or occupationally-based targeting. While demographic predictors did not accurately

rank individuals by degree centrality, they were able to distinguish between individuals with high and 

low contact rates. Despite this imperfect predictive performance, estimated measures of degree 

centrality based on common socio-demographic variables performed as well as “true” degree 

centrality when used to prioritize testing schemes in our simulated epidemics. Health authorities can 

implement targeted control strategies by taking into account easy to measure individual 

characteristics (e.g. age, gender, household size, marital status), many of which are available in 

healthcare and governmental records, or can be quickly generated through surveys. The exact socio-

demographic variables to include will vary depending on local demographics and cultural practices, 

and will require input from local experts. For example, in urban communities or communities with 

higher market integration, degree centrality may be more closely related to economic activities (e.g. 

workforce labor, commuting dynamics, income levels), rather than the social ties (e.g. marital status, 

household size) found on our rural networks. Further, when an incomplete network exists, it could be 

used to validate whether proposed demographic variables covary with degree centrality in that 

community. We found that even imperfect models can inform prioritization strategies if they are able 

to differentiate the most connected from the least connected individuals. This suggests that a high 

level of predictive performance is not necessary to successfully integrate social network topologies 

into control strategies via socio-demographic proxies. This robustness to low predictive performance 

of socio-demographic variables further supports the feasibility of this approach in settings where 

social network and socio-demographic data quality and availability may be low.

We included two social networks from rural Madagascar in our study to assess the 

generalizability of our results among rural communities. Targeted testing was more efficient on the 
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Mandena network than the Sarahandrano network, where no testing strategy could control epidemics

at low testing capacities. Epidemics spread very quickly on the Sarahandrano network due to the 

combination of highly connected individuals (mean degree centrality of 50.7) and a high disease 

transmission rate (R0 = 12.48). Our sensitivity analyses confirmed that the effectiveness of targeted 

testing was dependent on the transmission rate of the disease (Fig S4.3), and targeted testing may 

not be appropriate when disease transmission is extremely low or high. This agrees with other 

mathematical models of SARS-CoV-2, which show that the effectiveness of testing to control 

epidemics becomes limited at increasing transmission rates (10,13). However, socio-demographic 

variables performed equally well as proxies for true degree centrality on both networks (Fig. S3.3, Fig.

4). Therefore, although the benefit of targeted testing is dependent on the characteristics of the 

pathogen and social network, the ability to implement targeted testing via socio-demographic proxies 

appears generalizable, at least in rural contexts. Future research on a diversity of social networks is 

needed to explore the efficiency of these strategies in other contexts.

Our social networks represented realistic, but necessarily simplified versions, of true social 

networks. For example, we assumed social contacts were static and did not change, either as a result

of dynamic social behavior (34), or changes in behavior due to the epidemic (e.g. social distancing). 

However, our simulations were relatively short, lasting less than three months on average, and static 

networks have been successfully used to model rapid epidemics, such as SARS-CoV-1 (35). Our 

social networks necessarily only included individuals over 18 years old, who represent less than 50% 

of the population nationally. Although contact patterns may differ for individuals under 18 years old, 

our sensitivity analyses found that the targeted strategy was most effective for a variety of network 

topologies, suggesting these results will hold when applied to the full network of all ages. In addition, 

the small size of our networks (120 and 318) meant that epidemics were short and highly influenced 

by stochasticity, which we attempted to control for by simulating 1000 epidemics with different initial 

conditions. By using empirical social contact networks, we included realistic social network topologies

that more accurately represent exposure risk in rural Madagascar than simulated networks or 

networks based on studies from the Global North, where the majority of social networks originate 

from. A recent meta-analysis found only four social contact studies, less than 7% of those included in 

the meta-analysis, incorporated data from sub-Saharan Africa (36). Expanding social network data 

collection outside of the Global North would allow for more realistic and context-specific estimates of 

disease dynamics on social networks globally.

Incorporating social network topology into SARS-CoV-2 interventions greatly increases the 

efficiency of control strategies under limiting testing capacities. Our theoretical model found that 

prioritized testing of highly-connected individuals reduced the infection burden while using fewer tests

than random testing under low-testing capacity. These control strategies were effective even when 

the true network topology was unknown and testing was prioritized using only common socio-

demographic variables. Incorporating a similar strategy could aid countries with limited diagnostic 

resources to manage the SARS-CoV-2 epidemic and other infectious disease outbreaks within their 

communities. Importantly, this theoretical study focused on testing to control the epidemic at the 
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population level, and assumed that diagnostics are not tied to treatment. SARS-CoV-2 control 

strategies should be adapted according to a country’s public health policy to ensure that vulnerable 

populations do not lose access to diagnostics and treatment. While our study focused on SARS-CoV-

2, testing strategies that consider network topology may be useful for other diseases with similar 

transmission pathways, particularly when social contact drives transmission. This simulation 

approach could be easily re-parameterized to characterize different diseases of interest. As social 

contact network data becomes more widely available, considering social network topology is a 

promising method for allocating limited resources during public health crises.

METHODS

Social Contact Networks

We modeled SARS-CoV-2 dynamics using a susceptible-exposed-infected-recovered (SEIR) model 

simulated across undirected networks where each individual was represented explicitly as a node in 

the network and their contacts by edges. Importantly, we modeled epidemics on empirical social 

networks, rather than simulated ones, to ensure our results were most relevant to settings with limited

testing capacities. Empirical contact networks contain unique network topologies that may be lacking 

from simulated networks and more accurately represent the true social structure of a population, with 

important consequences for disease transmission (37). However, half of all empirical social contact 

networks used in epidemic modeling are derived from European contexts (36), where SARS-CoV-2 

testing capacities are relatively high. To ensure our results were most relevant to settings with limited 

testing capacities, we simulated epidemics on two contact networks obtained from rural communities 

in Madagascar, where testing capacities are currently limited.

The social contact networks were constructed using survey and GPS tracker data of 

consenting adults (over 18 years of age) living in two villages in the SAVA region of northeastern 

Madagascar. The first village, Mandena (14°28'36″ S 47°48'50″ E), as described by Kauffman et al. 

(19), has approximately 2700 people (based on census data from local authorities). The second 

village, Sarahandrano (14°36’27’’ S 49°38’50’’), is home to approximately 900 people. Data 

collection occurred over 7 weeks in Mandena and over 3 separate sampling periods, ranging from 5 

to 8 weeks each over a 9-month time period, in Sarahandrano. Subjects participated in a social 

network survey that asked for information on individuals with whom they have regular contact or 

supportive social relationships. These social surveys were used for recruitment of additional 

individuals into the study via snowball sampling (38). Subjects (n = 123 and 321, respectively) were 

provided with a GPS tracker programmed to record a location every three minutes to wear for at least 

one week. Participants wore the GPS for at least one week, with a subset of individuals agreeing to 

wear a new, freshly charged GPS for additional weeks (n = 76; 61.8% and n=154; 48.0% for 

Mandena and Sarahandrano, respectively). The close-contact networks were then imputed to 

account for individuals wearing GPS trackers in different weeks of the study. Edges in the network 

represent the probability a dyad came into close contact and the predicted proportion of 3 minute-

periods of close-contact between dyads over the number of possible contacts in one week (details in 

supplement). We included edges with a weight above a threshold value equal to at least one hour of 
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contact during the week, resulting in final network sizes of 120 and 318 for the Mandena and 

Sarahandrano networks, respectively. To create a time-integrated network, we rescaled the weight so

that a value of 1 corresponded to 24 hours in contact over the course of the week.

Epidemic Model Simulations

At each time step, equivalent to one day, an individual could become susceptible, exposed, pre-

symptomatic, infected (symptomatic and asymptomatic) or recovered (Fig. S2.1). For each contact 

event (e.g. edge between a susceptible and infected node), a susceptible individual’s probability of 

becoming exposed was a function of the transmission probability  of the infected contact and the  𝛽 of the infected contact and the 

edge weight. Therefore, a susceptible individual’s probability of becoming exposed at each time step 

was a function of how many infected contacts (j) they were connected to on the network and their 

transmission rates (βj) (Eq. 1) :

Equation 1

Where i is the susceptible individual, j is the infected individual connected to i,  βj is the time-

dependent transmission rate of individual j, and wij is the edge-weight between nodes i and j.  

Individuals then moved through exposed, pre-symptomatic, infected, and recovered compartments 

following time-dependent transition rates. 

Each transition event was drawn from a Bernoulli distribution defined by a daily transition 

probability rate. Time-dependent transition rates more accurately describe SARS-CoV-2 epidemic 

dynamics than memoryless transition rates, which assume transition rates are independent of the 

time spent in the compartment (39). Therefore, we relaxed the memoryless assumption of all 

transition rates, and parameterized the model to approximate an outbreak of SARS-CoV-2 Omicron 

variant. The incubation period (α) followed a gamma distribution with a mean of 3.1 days () followed a gamma distribution with a mean of 3.1 days (sd 2.6), 

including one day of pre-symptomatic transmission  (40). The mean recovery period (γ) followed a ) followed a 

Poisson distribution with a mean of 9.67 days (41) (Fig. S2.2). We modeled waning immunity (ζ) using) using

a gamma distribution with a mean of 90 days (sd 20.12), parameterizing the scale of the distribution 

so that recovered individuals had a probability of becoming susceptible beginning 40 days post 

infection, with that probability increasing logistically until 150 days post-infection, when no immunity 

remained (Fig S2.2). 

The transmission rate β was time-dependent: infected individuals had a transmission rate 

equal to β upon entering the infected class, and this transmission rate decreased exponentially as 

they spent more time infected (Fig. S2.3).  was parameterized to approximate realistic effective  𝛽 of the infected contact and the 

reproductive numbers at the beginning of the outbreak given the rapid susceptible depletion on 

smaller networks. This resulted in a mean estimated reproductive number of 8.99 on the Mandena 

network and 12.48 on the Sarahandrano network during the first 5 days (see supplement for further 

details), appropriate for a completely susceptible population exposed to the Omicron variant of 

SARS-CoV-2 (42). A range of transmission rates were explored via a sensitivity analysis reported 
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below. The pre-symptomatic transmission rate was defined as 50% of the infectious transmission rate

(43). We assumed thirty percent (30%) of infected individuals were asymptomatic (44), and that 

asymptomatic individuals had a transmission rate equal to 30% of the transmission rate ) of (𝛽 of the infected contact and the 

symptomatic individuals during the pre-symptomatic and infectious stage (45).  Further details on 

model specification are provided in the Supplemental Materials.

Each simulation was initiated by randomly selecting two individuals to be exposed. These 

exposed individuals thus started the simulation on the first day of their latent period. The number of 

susceptible, exposed, pre-symptomatic, infected (asymptomatic and symptomatic), isolated, and 

recovered individuals were recorded at each time step. Epidemics were simulated until no exposed, 

presymptomatic, infected, or isolated individuals remained, which we define as the full duration of the 

epidemic. 

Evaluating Control Strategies

We considered two different testing strategies. One strategy targeted testing based on social network 

connectivity. In this strategy, individuals were tested in order of descending degree centrality (e.g. the 

number of nodes they are connected to); hence, the most well-connected individuals were tested first.

The other strategy tested individuals randomly, without consideration of network topology. We only 

considered passive surveillance, which tests infected, symptomatic individuals. Testing took place at 

the end of each simulated time-step (daily), after individuals had gone through transitions at that time 

step. To account for imperfect surveillance, symptomatic individuals that were identified to be tested 

had a 0.75 probability of being successfully contacted and tested. This parameter was explored 

further in the sensitivity analyses. Infected individuals that were positively identified via testing were 

isolated by moving them immediately to the isolated class. We did not include a delay between testing

and isolation because we assumed diagnostics were limited to rapid antigen tests, which is more 

likely in Madagascar and other low-resource contexts given the limited resources for PCR diagnostics

(29). Isolated individuals remained isolated until seven days post symptom onset, after which they 

moved to the recovered class.

Household transmission can reduce the effect of isolation on epidemic control by leading to 

imperfect isolation (46). Because the social networks did not include information on household 

membership, we approximated household transmission during isolation by allowing exposure events 

between an isolated, infected individual and susceptible contacts with an edge weight greater than 1 

(equivalent to an average 24 hours together over one week). The transmission rate during these 

exposure events was scaled by a factor of 0.4 to account for other behaviors (distancing, mask 

wearing) that an isolated individual would be practicing while under isolation (47). 

In addition to two testing strategies, we considered low and high testing capacities, 

corresponding to monthly testing capacities of 25% and 100% of the total population.  Testing began 

on day four of all simulations, with a range of start dates explored in the sensitivity analyses. All 

strategies, including a control of no testing, were simulated 1000 times.

We evaluated each strategy and testing capacity combination based on how efficiently it 

controlled the epidemic, defined as the time and resources spent until no exposed, pre-symptomatic, 
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infected, or isolated individuals remained. We used three metrics to evaluate the outcomes: the 

duration of the epidemic, the cumulative number of infected individuals per capita, and the number of 

tests used. We assessed each strategy and testing capacity based on its ability to reduce the 

infection burden and the length of the epidemic while minimizing the tests needed.

Sensitivity Analysis

We assessed the robustness of our results by varying three categories of parameters in our 

simulations: intervention parameters (start date and imperfect surveillance rate), biological 

parameters (transmission rate), and network parameters (network size and assortativity). We 

compared the efficiency of the two different control strategies via the same measures used in the main

analysis. Further details on these methods and results are reported in the Supplemental Materials.

Applying Control Strategies to Networks with Unknown Topologies

To examine the applicability of these strategies to real-world scenarios, we compared the 

effectiveness of the two strategies when applied to a population where the true degree distribution is 

unknown and identification of individuals for targeted testing is derived from common socio-

demographic variables. First, we fit a statistical model to predict each individual’s degree percentile in

their respective network using the following socio-demographic variables: age, gender, household 

size, marital status (single vs. cohabiting/married), and schooling level (none, primary, secondary, 

higher). The model was fit exploring all potential main effects of socio-demographic variables and 

interactions with gender. A final model was obtained by model averaging all models within 4 AIC units

of the top model (48). The full details of model fitting are described in the Supplemental Materials. 

Using this model, we predicted an estimated degree percentile for each individual in the two 

networks. These predicted degree percentiles were then used to rank individuals by their estimated 

degree centrality and these rankings were used to prioritize testing in the targeted strategy. All other 

aspects of the simulations (e.g. transmission dynamics, control strategies) remained unchanged. We 

then compared the efficiency of the two control strategies on known and unknown network topologies,

where testing was prioritized based on individuals’ true and statistically-estimated degrees, 

respectively.
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