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Abstract (143 words) 19 

The first step in SARS-CoV-2 genomic surveillance is testing to identify infected people. 20 

However, global testing rates are falling as we emerge from the acute health emergency and 21 

remain low in many low- and middle-income countries (LMICs) (mean = 27 tests/100,000 22 

people/day). We simulated COVID-19 epidemics in a prototypical LMIC to investigate how 23 

testing rates, sampling strategies, and sequencing proportions jointly impact surveillance 24 

outcomes and showed that low testing rates and spatiotemporal biases delay time-to-detection of 25 

new variants by weeks-to-months and can lead to unreliable estimates of variant prevalence even 26 

when the proportion of samples sequenced is increased. Accordingly, investments in wider 27 

access to diagnostics to support testing rates of ~100 tests/100,000 people/day could enable more 28 

timely detection of new variants and reliable estimates of variant prevalence. The performance of 29 

global SARS-CoV-2 genomic surveillance programs is fundamentally limited by access to 30 

diagnostic testing.  31 
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Introduction (3489 words excluding Methods) 32 

Since the start of the COVID-19 pandemic in 2019, unprecedented expansion of genomic 33 

surveillance efforts has led to the generation of more than 10 million SARS-CoV-2 sequences 34 

deposited in the publicly accessible GISAID database (https://www.gisaid.org/) as of May 2022. 35 

These efforts have been integral to understanding the COVID-19 pandemic1, including the 36 

identification of the Alpha variant in the United Kingdom during the fall 20202, the Delta variant 37 

in India in late 20203, and the Omicron variant in Southern Africa in November 20214. Despite 38 

the value of these efforts for monitoring the evolution of SARS-CoV-2, the intensity of genomic 39 

surveillance is highly heterogenous across countries. High-income countries (HICs) on average 40 

produced 16 times more SARS-CoV-2 sequences per reported case than low- and middle-income 41 

countries (LMICs) as a result of longstanding socioeconomic inequalities and consequent 42 

underfunding of laboratory and surveillance infrastructures5. To strengthen global pandemic 43 

preparedness, initiatives such as the Access to COVID-19 Tools Accelerator Global Risk 44 

Monitoring Framework, the Pan American Health Organization COIVD-19 Genomic 45 

Surveillance Regional Network, the Africa Pathogen Genomics Initiative, as well as the Global 46 

Influenza Surveillance and Response System, among others, have supported LMICs in 47 

developing pathogen genomic surveillance programs.     48 

 49 

As resources are finite, it is critical that sequencing sample sizes, and the diagnostic testing 50 

needed to obtain samples for sequencing, are carefully set for genomic surveillance programs to 51 

detect and monitor variants as efficiently as possible. Current recommended sample sizes are 52 
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based on sampling theory5–8 and assume that the volume of diagnostic testing is large enough 53 

such that the diversity of sampled viruses is representative of the diversity of viruses circulating 54 

in the population. However, LMICs test at a mean rate of 27 tests per 100,000 persons per day 55 

(tests/100k/day) as opposed to >800 tests/100k/day across HICs based on observational data 56 

collected between January 2020 and March 20229, with even higher testing rates in some HICs 57 

(Fig. 1). Low testing rates lead to spotty information and smaller virus specimen pools available 58 

for sequencing, resulting in sampling biases. These factors can render efforts to monitor the 59 

emergence of new variants or prevalence of existing variants highly unreliable. 60 

 61 

Here, we studied how different testing rates can impact genomic surveillance outcomes. 62 

Specifically, we developed and used the Propelling Action for Testing And Treating (PATAT) 63 

model, an individual-based modelling framework, to simulate concurrently-circulating wild-type 64 

SARS-CoV-2 (pre-Alpha viruses)/Alpha-like epidemics as well as Delta-/Omicron (BA.1)-like 65 

epidemics in Zambia as a representative LMIC archetype where recent demographic census data 66 

required by the model was available (Online Methods). We assumed that Alpha and Omicron 67 

(BA.1) were more transmissible than the respective extant virus to achieve growth rates of 68 

~0.15/day and ~0.35/day respectively2,10 and simulated SARS-CoV-2 infection waves in a 69 

population of 1,000,000 individuals over a 90-day period that begins with an initial 1% 70 

prevalence of the extant SARS-CoV-2 variant and the mutant variant being introduced at 0.01%. 71 

We assumed that clinic-based professional-use Antigen Rapid Diagnostic Tests (Ag-RDTs) form 72 

the basis of testing given persistent reports that polymerase chain reaction (PCR) tests are poorly 73 
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accessible for detection of symptomatic cases outside of tertiary medical facilities in many 74 

LMICs11. 75 

 76 

We then simulated different genomic surveillance sampling strategies to elucidate how testing, 77 

sequencing volumes and the degree of sampling bias arising from sources of specimens jointly 78 

impact the timeliness of variant detection and the accuracy of variant monitoring (Online 79 

Methods). These strategies include: (i) sending all samples from community clinics and tertiary 80 

hospitals to a centralized facility for possible sequencing (i.e. population-wide strategy); (ii) 81 

sampling and sequencing a portion of positive specimens collected at one tertiary sentinel facility 82 

for the population of 1,000,000 simulated people (including mild individuals seeking 83 

symptomatic testing and severe patients who sought tertiary care at the facility); or sampling and 84 

sequencing a portion of positive specimens collected at (iii) 10%, (iv) 25%, (v) 50%, and (vi) 85 

100% of all tertiary sentinel facilities.   86 

 87 

Results 88 

Performance of current guidance 89 

We first assessed various suggested sample sizes of positive specimens to sequence to detect 90 

SARS-CoV-2 variants at low prevalence for simulated wild-type/Alpha and Delta/Omicron 91 

epidemics in Zambia with a mean testing rate of 27 tests/100k/day (based on the observed mean 92 

rate of testing in LMICs) (Fig. 2). We used recommended sample sizes from three prominent 93 
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guidances: (1) The World Health Organization and European Centre for Disease Prevention and 94 

Control computed sample size using the binomial method7,8; (2) By subsampling genomic 95 

surveillance data generated in Denmark in 2020-2021 when the country was testing at >2,000 96 

tests/100k/day on average, Brito et al. suggested that sequencing 0.5% of all detected cases with 97 

a turnaround time of 21 days would result in a 20% of variant detection before reaching 100 98 

cases5; (3) Wohl et al. formulated a novel framework computing sequencing sample size by 99 

modeling the biological and logistical processes that impact sampled variant proportions6. 100 

Critically, all three methods did not consider how low testing rates and spatial nonuniformity in 101 

sampling coverage impact sampled variant proportions, and in turn, speed of variant detection. 102 

The assumptions, mathematical background, and lack of accounting for spatiotemporal bias in 103 

sample size estimation of each guidance are detailed in Table 1 and Supplementary Notes. 104 

 105 

As such, even when assuming negligible turnaround time (i.e. time from specimen collection to 106 

acquisition of sequencing data), the recommended approaches were insufficient to detect the 107 

variant on their respective target detection day when testing rates were low, due to poor 108 

representativeness, regardless of the genomic surveillance sampling strategy. The first strategy of 109 

sampling specimens collected from the whole population that were sent to one sequencing 110 

facility (i.e. population-wide strategy) led to the best performance (closest to target detection 111 

day) for all recommendations, as it involves random uniform sampling of all available samples, a 112 

fundamental assumption made by all current guidance. However, if the specimen pools available 113 

for sequencing are restricted to those collected from a subset of sentinel tertiary facilities only, 114 
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the non-uniformity in sampling coverage results in spatiotemporal bias within the sequenced 115 

samples, and leads to delayed detection of variants-of-concern (VOCs), which gets progressively 116 

worse as the proportion of tertiary facilities performing sequencing decreases to one facility.     117 

 118 

Variant detection 119 

To elucidate how SARS-CoV-2 testing rates and the proportion of positive specimens sequenced 120 

impact the speed of variant detection, we simulated wild-type SARS-CoV-2/Alpha and 121 

Delta/Omicron epidemics at different Ag-RDT availability ranging from 27 tests/100k/day to 122 

1,000 tests/100k/day (Fig. 3). We assumed that specimens to be sequenced are sampled on their 123 

collection day, and varied the proportion of positive specimens to sample for sequencing each 124 

day between 1% and 100%. We analyzed the impact of testing rates and sequencing proportions 125 

on the expected day when the first specimen sampled for sequencing containing the variant was 126 

collected as a measure of variant detection speed. In Fig. 3, we did not consider the time between 127 

sample collection and sequencing nor the turnaround time to obtaining sequencing results as they 128 

would only delay the actual day of variant detection by the assumed turnaround time. 129 

 130 

For all testing rates, the relationship between the expected day when the first sample containing 131 

the variant was collected and the proportion of positive specimens sequenced per day can be 132 

described by a convex operating curve, reflecting rapidly diminishing returns in the speed of 133 

variant detection as more specimens are sampled for sequencing. Across all genomic 134 
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surveillance sampling strategies, relatively larger marginal improvements to the speed of variant 135 

detection are generally made when the sequencing proportion is increased up to ~10% of all 136 

samples collected. Further sequencing only minimally shortens the expected time to variant 137 

detection, as the operating curve asymptotically approaches the earliest possible day of detection. 138 

Importantly, increasing SARS-CoV-2 testing allows smaller sequencing proportions to attain 139 

similar detection day targets, and higher testing rates lower the earliest possible detection day. 140 

For both the Alpha and Omicron variants, increasing testing rates from 27 tests/100k/day to 100 141 

tests/100k/day brings forward the expected day of sampling the first variant sequence by at least 142 

one week (Fig. 3). 143 

 144 

For the same level of testing and sequencing proportion, the population-wide strategy led to the 145 

earliest initial detection of a variant sequence. If sequencing were restricted to samples collected 146 

at a subset of tertiary sentinel facilities only, increasing the number of facilities sending samples 147 

for sequencing reduced the spatiotemporal bias in the specimen pool, thereby shaping the 148 

operating curves closer to the ones observed for the population-wide strategy. Interestingly, 149 

results similar to the population-wide strategy could be attained if all tertiary facilities acted as 150 

sentinel sites and sent the samples they collected for sequencing to increase the 151 

representativeness of sampling.  152 

 153 

Observed variant proportion 154 
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Test availability and sampling coverage also affect the accuracy of the observed variant 155 

proportion (Figs. 4 and Extended Data S1). At a testing rate of 27 tests/100k/day, the observed 156 

variant proportion maximally differs from the true circulating proportion by >30% for both the 157 

Alpha and Omicron variants and for more than 15% of the time, the proportional difference 158 

between the observed and true variation was greater than 20%. Both the maximum absolute 159 

difference and percentage of timepoints where the difference is >20% can be lowered to <20% 160 

and <5% respectively if testing rate is increased to 100 or more tests/100k/day.  161 

 162 

Critically, when the representativeness of the specimen pool is spatiotemporally biased by 163 

sequencing samples collected at tertiary sentinel facilities only, increasing the proportion of 164 

specimens to be sequenced only marginally lowers the maximum absolute difference or lessens 165 

the number of times where observed variant proportion deviates less than 20% from true 166 

circulating proportions (Fig. 4, near vertical isoclines at low daily rates of testing). Increasing 167 

testing rates at sentinel surveillance sites provides more accurate detection in changes to 168 

circulating prevalence than sequencing more samples in the context of low testing rates. 169 

 170 

Sensitivity analyses 171 

We repeated our analyses using virus properties (i.e., incubation period, maximum viral load, 172 

protection against infection by the mutant virus after extant virus infection) of the Omicron 173 

variant but varied different relative transmissibility to the Delta variant (1.0 to 4.0) as well as the 174 
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initial proportion of individuals who had been infected by the Delta variant (10% and 40%). The 175 

variant growth rates simulated for these hypothetical Delta/Omicron epidemics ranged from 176 

0.17/day to 0.42/day.  177 

 178 

Under these varied conditions, the expected day when the specimen of the first variant sequence 179 

is collected still follows a convex-shaped operating curve against the daily proportion of positive 180 

specimens to sequence. For all curves, the larger marginal improvements in shortening variant 181 

detection are still in sequencing proportions of up to ~10% (Extended Data Fig. S2). In terms of 182 

the accuracy of observed variant to true circulating proportions, the maximum absolute 183 

difference and percentage of timepoints where difference is >20% are both substantially lowered 184 

if testing rate is increased to at least 100 tests/100k/day (Extended Data Fig. S3-4).  185 

 186 

We also varied the prevalence of extant Delta infections when the Omicron variant was 187 

introduced (Extended Data Fig. S5). We found that lower test availability causes a delay in 188 

sampling the first variant specimen if the variant is introduced when pre-existing extant variant 189 

circulation is high. At 27 tests/100k/day, regardless of specimen proportions sequenced, 190 

detection could be delayed by ~1 week if Omicron was introduced when Delta was circulating at 191 

10% prevalence as opposed to 1%. This is because a greater share of tests would be used to 192 

diagnose the more prevalent extant virus infections which in turn decreases the likelihood of 193 

detecting the newly introduced variant at low proportions. 194 
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 195 

Discussion 196 

Our findings show that the emphasis on the proportion of samples referred for genomic 197 

surveillance is misplaced if testing capacity is insufficient and sample sources are highly 198 

spatiotemporally biased. As such, at the current mean rate of testing in LMICs (27 199 

tests/100k/day), current guidance5–8 on sequencing sample size estimation could likely lead to 200 

later-than-predicted detection of novel variants at best or, at worst, leave new variants undetected 201 

until they have infected a majority of a population.  202 

 203 

Based on our work, we identified three major areas of improvement that could be prioritized to 204 

enhance the robustness of genomic surveillance programs (Fig. 5). First, the most substantial 205 

improvements are likely to come from increasing the mean testing rate in LMICs from 27 206 

tests/100k/day (Fig. 5A) to at least 100 tests/100k/day (Fig. 5B). Even if one were to conduct 207 

sentinel surveillance only at one tertiary facility, this increase in testing rate for the catchment 208 

area of the facility would speed up variant detection by 1-2 weeks. 209 

 210 

Second, the representativeness of a specimen pool for sequencing can be further improved by 211 

expanding sampling coverage. In our model, variant detection was further sped up by 1-3 weeks 212 

by increasing the percentage of tertiary sentinel facilities sending the samples they had collected 213 

for sequencing to 25% of facilities (Fig. 5C). Additionally, in terms of prevalence monitoring, if 214 
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25% of tertiary facilities sequenced 5% of all positive specimens they had collected to detect and 215 

monitor an Alpha-like variant, the maximum absolute difference to true circulating proportion is 216 

expected to decrease from >50% (assuming a single sentinel facility) to no more than 20%.  217 

 218 

Third, reducing turnaround time from samples referred to sequencing output results in a 1:1 219 

decrease in time to new variant detection regardless of the proportion of sequenced samples, test 220 

availability or sampling coverage (Fig. 5). These gains require scale up in sample transport 221 

networks, access to sequencing machinery, trained personnel, and/or increases in numbers of 222 

sequenced samples to make the most efficient use of each sequencing run11. Furthermore, LMICs 223 

also often face high costs and extended delivery delays of laboratory reagents and consumables 224 

that were sometimes further exacerbated by recurring travel bans during the acute phase of the 225 

pandemic5,12,13.  226 

 227 

After reducing spatiotemporal bias in the specimen pool through increased testing and sampling 228 

coverage, sequencing up to 5-10% of the positive specimens collected could return the greatest 229 

information gains while minimizing resource wastage. For an Alpha-like variant, 100 230 

tests/100k/day with sampling from 25% of tertiary sentinel facilities for sequencing amounts to 231 

an estimated 5-10 sequences per week averaged over a 90-day period per 1,000,000 people. If 232 

turnaround time is kept within one week, the variant would likely be detected within one month 233 

at ~4% circulating proportion (Fig. 5D). Similarly, at the same testing rate, sampling coverage 234 
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and turnaround time (i.e. average 5-11 sequences per week per 1,000,000 people), an Omicron-235 

like variant would be detected before the first month since its introduction but at ~23% 236 

circulating proportion owing to its faster transmission (Extended Data Fig. S6).  237 

 238 

Our findings serve to inform expectations of genomic surveillance initiative and should be 239 

interpreted according to the public health objectives of each program. If the objective is to serve 240 

as an early warning system for the de novo emergence of new variants before they are likely to 241 

have spread widely, then all factors above can be considered essential and could require 242 

substantially more than 100 tests/100k/day. Critically, determining that a new variant is a threat 243 

requires not only detection of the variant itself but also the capacity to reliably monitor changes 244 

in its prevalence and potential clinical impact on short timescales. The results presented here also 245 

inform the design of programs for the sensitive and reliable detection of changes in variant 246 

prevalence. Otherwise, if the objective is to detect for introduction of novel variants from 247 

overseas, some of the factors above may be relaxed depending on the public health objectives. 248 

For instance, if the aim is to attempt containment, all factors should still be considered to 249 

promptly detect and monitor the spread of the variant. However, if the aim to ensure sufficient 250 

time for control strategies to be enacted, less samples could be sequenced or turnaround time 251 

could be longer, for example, so long as the mitigation strategies remain useful when 252 

implemented.            253 

 254 
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Despite performing our simulations using demographic parameters from Zambia, the emergence 255 

and detection of each VOC to date represents interesting case studies for the work described here 256 

(Supplementary Notes). For example, at the time of first detection of the Omicron variant, in 257 

South Africa in November 2021, the daily SARS-CoV-2 testing rate was 51 tests/100,000 258 

people/day9, which was among the highest testing rates in Africa. However, the Omicron variant 259 

was only detected 6-8 weeks after its likely emergence4. At that point, Omicron had already 260 

infected a substantial portion of the population in Gauteng, South Africa (i.e., the estimated 261 

circulating variant proportion was >80% by mid-November)4. Not only had the variant already 262 

spread across the rest of South Africa and to neighboring Botswana4, Omicron samples were also 263 

collected in multiple other countries, including Hong Kong14, Denmark15, and the Netherlands16 264 

before the initial reports on the identification of the Omicron variant. This situation is consistent 265 

with our modelling findings, where novel variant detection is possible with <100 tests/100k/day 266 

but only after the new variant has spread widely across the population. 267 

 268 

In another example, Germany randomly sequenced ~60-70 sequences per week (i.e. <1% of 269 

cases sequenced per day) in December 202017. During this time, testing rates in Germany 270 

averaged at ~300 tests/100k/day9. Germany was able to detect the Alpha variant one week before 271 

WHO declared the lineage a variant-of-concern in mid-December 202017. The Alpha variant 272 

likely emerged in the UK in mid-September 202018 and rapidly proliferated across the country 273 

before it was reported in December 202019. Our analyses showed that the expected time before 274 

the first Alpha variant specimen was sampled for sequencing since its introduction is >4 weeks 275 
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(i.e. around November 2020) at Germany’s testing and sequencing rate. This falls in line with the 276 

likely period of Alpha’s introduction into Germany, similar to the period estimated for its 277 

European neighbors such as the Netherlands20.        278 

 279 

While we find that routine representative sampling is vital for monitoring SARS-CoV-2 280 

evolution, additional surveillance systems, including targeted surveillance of particular 281 

populations and settings (such as immunocompromised individuals or unusual events), and 282 

wastewater sampling, could enable increased variant detection sensitivity21. In particular, recent 283 

advances in wastewater sequencing and deconvolution methods to resolve multiple viral lineages 284 

in mixed wastewater samples enabled detection of emerging variants before they were captured 285 

by clinical genomic surveillance22–24. However, sequence quality is often poor in wastewater 286 

samples and in turn, these methods depend on a priori knowledge of the lineage-defining 287 

mutations of VOCs and variants-of-interest, which are currently still identified based on 288 

significant upsurges in clinically diagnosed cases. Furthermore, centralized wastewater 289 

management systems, which these methods rely on for accurate determination of relative lineage 290 

prevalence, are currently non-existent in many LMICs. Substantial investments, coordination and 291 

time are needed to enable local sanitation infrastructures suitable for wastewater surveillance25. 292 

Detection of genetic markers such as S-gene target failure in PCR assays may also provide faster 293 

notification of viral lineages with these specific mutations. However, whole genome sequencing 294 

is still needed for unambiguous genotyping of SARS-CoV-2 samples. Ultimately, clinical 295 
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diagnostic testing and surveillance will remain the core mode of SARS-CoV-2 surveillance in 296 

most countries.  297 

 298 

During the initial phase of the pandemic in 2020, due to limited testing and sequencing 299 

capacities, many LMICs were initially focused on genomic surveillance efforts at points of entry 300 

at country borders to deter introductions26–28. Over time, especially after the emergence of VOCs, 301 

SARS-CoV-2 genomic surveillance gradually expanded to include community surveillance as 302 

many LMICs enhanced their sequencing capacities4,28–30. This was done either by establishing 303 

regional sequencing networks to maximize available resources, investing in local sequencing 304 

capacities or partnering with global collaborators30–32. Sequencing turnaround time has also 305 

improved from an average of ~170 days in 2020 to ~30 days in 2021 across the African 306 

continent, albeit with substantial variation among countries30. While sequencing capabilities have 307 

expanded in LMICs, obtaining spatiotemporally representative samples remains a key 308 

challenge30. Our work shows that the sensitivity of genomic surveillance programs is highly 309 

dependent on diagnostic testing rate and that a mean testing rate of 100 tests/100k/day at sentinel 310 

sites that are geographically spread out across the community is a good basis for monitoring 311 

virus variants. While a reflexive PCR test after a positive Ag-RDT diagnosis is currently 312 

performed to obtain samples suitable for sequencing (and is possible in many tertiary facilities in 313 

LMICs), this presents additional cost and logistical barriers. Recent studies showed that SARS-314 

CoV-2 sequencing can be performed using materials obtained from Ag-RDTs performed at 315 

point-of-care33–35. Importantly, whole genomes can be recovered up to eight days after testing, 316 
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providing opportunities for sequencing to be performed on samples performed through self-317 

testing as well33.   318 

 319 

Expanding genomic sequencing capabilities, especially in LMICs, is a global priority36 and 320 

current investments in sequencing must continue30,31. Simultaneously, sustained investments in 321 

public health systems are required to expand access to, and availability of, diagnostic testing to 322 

underpin SARS-CoV-2 surveillance programs. Here, we primarily focused on LMICs but our 323 

findings on the impact of testing rates and representativeness on genomic surveillance programs 324 

are equally important for HICs as parts of their testing and surveillance infrastructures are 325 

dismantled following the acute health emergency of the COVID-19 pandemic. Ultimately, 326 

detecting the next SARS-CoV-2 variant or pathogen that causes the next pandemic requires 327 

fundamental clinical diagnostic capacity to monitor existing and emerging pathogens. 328 

  329 
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Online Methods 330 

Simulating SARS-CoV-2 epidemics with the Propelling Action for Testing And Treating 331 

(PATAT) model 332 

We used PATAT, a stochastic individual-based model to simulate SARS-CoV-2 epidemics in a 333 

community with demographic profiles, contact mixing patterns, and level of public health 334 

resources mirroring those typically observed in LMICs. Here, the model was based on Zambia. 335 

PATAT creates an age-structured population, linking individuals within contact networks of 336 

multi-generational households, schools, workplaces, and churches (i.e., regular mass gatherings) 337 

(Extended Data Table S1). The simulated number of healthcare facilities (i.e., community clinics 338 

and tertiary hospitals) where individuals with mild symptoms seek symptomatic testing and have 339 

their virus specimens collected was based on an empirical clinic-to-population ratio (i.e. one 340 

healthcare facility for every 7,000 individuals on average)37,38. Although PATAT does not 341 

explicitly simulate the spatial location of individuals, contact networks and healthcare facilities 342 

are ordered to approximate localized community structures (i.e. the closer the number order of a 343 

facility, the closer they are in the same neighborhood) that is most illustrative of urban centers. 344 

Households are proximally ordered and distributed around these facilities based on an empirical 345 

distance-structured distribution that correlates with probabilities of symptomatic individuals 346 

seeking testing at clinics (Extended Data Table S1).   347 

 348 

We then simulated SARS-CoV-2 infection waves in a population of 1,000,000 individuals over a 349 

90-day period that begins with an initial 1% prevalence of an extant SARS-CoV-2 variant and 350 
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the introduction of a mutant variant at 0.01%. We assumed that clinic-based professional-use 351 

Antigen Rapid Diagnostic Tests (Ag-RDTs) are the predominant SARS-CoV-2 diagnostic used 352 

for SARS-CoV-2 testing. 39As Ag-RDT sensitivity depends on within-host viral loads40, PATAT 353 

generates viral load trajectories, measured in cycle threshold (Ct) values, for infected individuals 354 

by randomly sampling from known viral load distributions of different SARS-CoV-2 355 

variants41,42. We performed simulations for two variant replacement scenarios – Alpha variant 356 

introduction while the wild-type virus was circulating (wild-type/Alpha) and Omicron (BA.1) 357 

variant introduction while Delta was circulating (Delta/Omicron), applying known distributions 358 

of their peak viral load, incubation, and virus clearance periods41,43 (Extended Data Table S1). 359 

Before simulating the two-variant epidemic, we first calibrated the transmission probability 360 

parameter for the extant variant such that it would spread in a completely susceptible population 361 

at �� = 2.5-3.0. We then assumed Alpha and Omicron (BA.1) were more transmissible than the 362 

respective extant virus to achieve growth rates of ~0.15/day and ~0.35/day respectively2,10. 363 

 364 

For both sets of simulations, we assumed that 10% of the population had infection-acquired 365 

immunity against the extant strain initially with some level of protection against infection by the 366 

mutant virus (wild-type SARS-CoV-2: 80% protection against Alpha44; Delta: 20% protection 367 

against Omicron10). We also investigated the scenario where 40% of the population had 368 

infection-acquired immunity as part of sensitivity analyses (see below). We did not investigate 369 

scenarios involving vaccine-acquired immunity due to low vaccine uptake in most LMICs45. 370 

 371 
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PATAT uses the SEIRD (Susceptible-Exposed-Infected-Recovered/Death) epidemic model for 372 

disease progression and stratifies infected individuals based on their symptom presentation 373 

(asymptomatic, mild, or severe). After an assumed random delay post-symptom onset (mean = 1 374 

day; s.d. = 0.5 day), symptomatic individuals who seek testing would do so at their nearest 375 

healthcare facility, where test-positive samples may be reflexively collected for sequencing. We 376 

assumed that symptomatic individuals sought testing based on a probability distribution of health 377 

services-seeking behaviour that inversely correlates with the distance between the individual’s 378 

household and the nearest healthcare facility (Extended Data Table S1)46.  379 

 380 

We varied levels of Ag-RDT stocks per day (i.e., 27, 100, and 200-1,000 (in increments of 200) 381 

tests/100k/day), running 10 independent epidemic simulations for each testing rate. Given the 382 

start of a week on Monday, we assumed that a week’s worth of tests are delivered to healthcare 383 

facilities every Monday and unused Ag-RDTs in the previous week are carried forward into the 384 

next week. If test stocks for a particular week were exhausted before the end of the week, testing 385 

for the rest of that week ceased. Due to overlapping symptoms between COVID-19 and other 386 

respiratory diseases, a proportion of available Ag-RDTs would be used by individuals who are 387 

not infected with SARS-CoV-2. Based on test positivity rates reported by various countries in 388 

the second half of 202147, we assumed 10% test positivity rate at the start and end of the 389 

simulated epidemic, and 20% test positivity at its peak, linearly interpolating the rates between 390 

these timepoints. We also assumed that false positive specimens could be sampled based on 391 

reported Ag-RDT specificity of 98.9%40. 392 
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 393 

We assumed that any specimens collected for genomic surveillance after positive detection 394 

through Ag-RDT would be reflexively confirmed with PCR. We also assumed that all 395 

symptomatic individuals who have severe symptoms require hospitalization, and are tested 396 

separately from mild symptomatic persons who sought testing. Given that likely only ~10-20% 397 

of COVID-19 deaths in Zambia were tested for the disease in life48,49, we assumed that only 20% 398 

of individuals with severe disease would be tested by Ag-RDT or PCR upon presenting severe 399 

symptoms and have specimens collected for sequencing. 400 

 401 

Full technical details of PATAT is described in the Supplementary Notes. The full model source 402 

code is available at https://github.com/AMC-LAEB/PATAT-sim.  403 

 404 

Genomic surveillance strategies 405 

Twenty percent of healthcare facilities were assumed to be tertiary facilities based on empirical 406 

data collected from Zambia37,38. We assumed that tertiary facilities provide testing for mild 407 

symptomatic individuals as well as hospitalized patients with severe symptoms. Given that 408 

healthcare facilities were proximally ordered, we randomly selected tertiary facilities in each 409 

independent surveillance simulation (see below) but ensured that the selected facilities were not 410 

consecutively ordered. In sum, all tertiary facilities accounted for a median 18.4% (interquartile 411 

range = 17.7-19.1%) of total testing volume across all simulations. We assumed that a proportion 412 

of tertiary facilities serve as sentinel surveillance sites that reflexively collect SARS-CoV-2 413 
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positive samples for sequencing. We then simulated six strategies with varying degrees of 414 

sampling coverage where positive specimens collected from testing sites would be consolidated 415 

and sampled for sequencing: (i) all samples from community clinics and tertiary hospitals are 416 

sent to a centralized facility and further sampled for sequencing (i.e. population-wide strategy); 417 

(ii) only one tertiary sentinel facility for the population of 1,000,000 simulated people would 418 

sequence a portion of positive specimens it has collected, both from mild individuals seeking 419 

symptomatic testing and severe patients who sought tertiary care at the facility; or only (iii) 10%, 420 

(iv) 25%, (v) 50%, and (vi) 100% of all tertiary sentinel facilities would sample and sequence a 421 

proportion of the specimens they have collected.  422 

 423 

For all strategies, we assumed that a proportion (1%-100%; in 2% increments between 1% and 424 

5%, in 5% increments between 5% and 100%) of positive specimens are collected daily for 425 

sequencing. We also assumed that positive specimens sampled within each week for sequencing 426 

are consolidated into a batch before they are referred for sequencing. Turnaround time refers to 427 

the time between collection of each weekly consolidated batch of positive specimens to the 428 

acquisition of its corresponding sequencing data. Since the within-host viral loads of infected 429 

individuals were simulated, we assumed that only high-quality samples where Ct values < 30 430 

could be sequenced and that sequencing success rate is 80% as assumed in other studies6. 431 

 432 

For each strategy and sequencing proportion, we performed 100 independent surveillance 433 

simulations for each epidemic simulation with a given test stock availability, thus totaling to 434 
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1,000 random simulations for each set of variables (i.e., testing rate, sequencing proportion, and 435 

strategy).  436 
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Figures 580 

 581 

Fig. 1. Global disparities in SARS-CoV-2 testing rates. Each country is colored by the average582 
total number of SARS-CoV-2 tests performed per 100,000 persons per day (/100K/day) (A) 583 
between 1 December 2021 and 31 March 2022 when the Omicron variant-of-concern spread 584 
around the world; (B) between 1 April 2022 and 6 May 2022 when most countries were past 585 
peak Omicron wave of infections9.    586 
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 588 

Fig. 2. Performance of current guidance on number of positive specimens to sequence for 589 
variant detection with testing rate at 27 tests per 100,000 persons per day. First day of 590 
detection since variant introduction at 95% confidence and the corresponding circulating variant 591 
proportion using guidance from the World Health Organization (WHO)/European Centre for 592 
Disease Prevention and Control (ECDC) 7,8, Brito et al. 5, and Wohl et al. 6 (Table 1) under 593 
different genomic surveillance strategies with varying sampling coverage (i.e. all collected 594 
specimens from all healthcare facilities are sent to one facility to be sampled for sequencing 595 
(population-wide strategy); only one, 10%, 25%, 50%, or 100% of tertiary sentinel facilities 596 
would sample the specimens they collected for sequencing). Turnaround time (i.e. time from 597 
specimen collection to acquisition of sequencing data) was assumed to be negligible. 1,000 598 
random independent simulations were performed for each guidance/surveillance strategy. We 599 
simulated epidemics for (A) Wild-type SARS-CoV-2/Alpha. (B) Delta/Omicron. Grey regions 600 
denote that we could not reliably detect the variant virus with 95% confidence using the 601 
guidance in question under the assumed genomic surveillance strategy.  602 
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604 

Fig. 3. Impact of SARS-CoV-2 testing rates and proportion of positive specimens to 605 
sequence on variant detection. For each mean daily test availability (line and shading color), 606 
the expected day when the first variant specimen to be sequenced is sampled since its 607 
introduction is plotted against the proportion of positive specimens to be sampled for sequencing 608 
daily. Different genomic surveillance strategies with varying sampling coverage (i.e. all 609 
specimens collected from all healthcare facilities sent to one facility to be sampled for 610 
sequencing (population-wide strategy); only one, 10%, 25%, 50%, or 100% of tertiary sentinel 611 
facilities would sample the specimens they collected for sequencing) were simulated. (A) Wild-612 
type SARS-CoV-2/Alpha. (B) Delta/Omicron. The expected day when the first variant specimen 613 
is sampled was computed from 1,000 random independent simulations for each surveillance 614 
strategy. The shaded region depicts the standard deviation across simulations. 615 

 616 
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 618 

Fig. 4. Impact of SARS-CoV-2 testing rates on the capacity to monitor changes in variant 619 
prevalence based on diagnostic test availability and proportion of test-positive samples 620 
sequenced. Different genomic surveillance strategies (i.e. all specimens collected from all 621 
healthcare facilities sent to one facility to be sampled for sequencing (population-wide strategy); 622 
only one, 10%, 25%, 50%, or 100% of tertiary sentinel facilities would sample the specimens 623 
they collected for sequencing) were simulated. (A) Maximum absolute difference between 624 
observed and circulating variant proportions. (B) Proportion of timepoints when sequencing was 625 
performed that the absolute difference between observed and circulating variant proportions is 626 
greater than 20%. All results were computed from 1,000 random independent simulations for 627 
each surveillance strategy.  628 
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 629 

Fig. 5. Recommended approach to enhance genomic surveillance robustness. In each plot, 630 
the operating curves of the expected day when the first Alpha variant sequence is generated are 631 
plotted for different proportion of specimens to sample for sequencing per day and turnaround 632 
times. We assumed that the Alpha variant was circulating at 1% initially with wild-type SARS-633 
CoV-2 in the background. We also assumed that positive specimens sampled within each week 634 
for sequencing are consolidated into a batch before they are referred for sequencing. Turnaround 635 
time refers to the time between collection of each weekly consolidated batch of positive 636 
specimens to the acquisition of its corresponding sequencing data. The vertical axes denote the 637 
number of days passed since the introduction of the Alpha variant (left) and its corresponding 638 
circulating proportion (right). The horizontal axes denote the proportion of positive specimens to 639 
sample for sequencing per day (bottom) and the corresponding mean number of sequences to be 640 
generated per week per 1,000,000 people over a 90-day epidemic period. (A) Specimen pools for 641 
sequencing from one tertiary sentinel facility with testing rate at 27 tests per 100,000 persons per 642 
day (tests/100k/day). (B) Specimen pools for sequencing from one tertiary sentinel facility with 643 
testing rate at 100 tests/100k/day. (C) Specimen pools for sequencing from 25% of all tertiary 644 
sentinel facilities with testing rate at 100 tests/100k/day. (D) Zoomed-in plot of (C) to highlight 645 
sequencing proportions varying between 1-25%. Sequencing 5-10% of positive specimens (blue 646 
shaded region) would ensure that we would expectedly detect Alpha in 30 days if turnaround 647 
time is kept within one week. All results were computed from 1,000 random independent 648 
simulations for each surveillance strategy. The shaded region depicts the standard deviation 649 
across simulations. 650 
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Tables 652 

Table 1. Current guidance by various stakeholder and academic groups on the number of 653 
specimens to sequence for detection of novel variants at low prevalence. 654 

 Recommendation on number/proportion of 
positive cases to sequence 

Critical considerations 

World Health 
Organization 
(WHO)/European 
Centre for 
Disease 
Prevention and 
Control 
(ECDC)7,8  

 

No. of positive cases No. of sequences to 
detect at 1% with 95% 
confidence 

• Agnostic to variant properties 
• Assumes specimen pool to be 

sampled for sequencing is 
representative of circulating 
diversity but acknowledges that 
unless testing coverage is evenly 
distributed this will be a biased 
sample 

• Notes that in countries with limited 
sequencing capacity monitoring 
relative prevalence of variants 
should be prioritized 

<1000 cases 141 

1001 – 2,500 196 

2,500 – 5,000 243 

5,001 – 10,000 270 

>10,000 285 

Brito et al., 20215 At least 0.5% of all cases with a turnaround time of 
21 days to detect novel lineage before it reaches 
100 cases at 20% probability  

• Based on sequencing data from 
Denmark which is testing at an 
average of >2,000 tests per 100,000 
persons per day9 

Wohl et al., 20226 1-29 sequences per day to detect an Alpha-like 
variant based on 0.03% initial introduction for a 
population of 10,000 (assuming growth rate of 
0.1/day) at 1% with 95% confidence.  

We used the spreadsheet 
(https://github.com/HopkinsIDD/VOCsamplesize) 
provided and input appropriate parameters to 
obtain the recommendation relevant to the 
simulated epidemics. 

• Assumes that the observed variant 
proportion in the positive specimens 
collected is representative of the 
circulating variant proportions 
among the infected population. This 
requires a large number of 
specimens that are randomly 
collected for assumption to hold true 
at low circulating variant 
proportions 

• A correction factor is included to 
correct for biases in the observed 
variant proportion but only 
pertaining to those arising from the 
relative differences in diagnostic 
sensitivity, sample qualities and 
conditional asymptomatic and 
symptomatic testing probabilities 
between the two circulating variants.  

 655 
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