Evaluation of standard and enhanced quality improvement methods to increase the uptake of magnesium sulphate in pre-term deliveries for the prevention of neurodisability (PReCePT Study): a cluster randomized controlled trial

Hannah B Edwards (0000-0002-1885-4771)1,2*, Maria Theresa Redaniel (0000-0002-0668-0874)1,2*, Carlos Sillero-Rejon (0000-0001-5502-9247)1,2*, Christalla Pithara-McKeown (0000-0003-2958-5201)1,2*, Ruta Margelyte (0000-0002-7914-8037)1,2,5*, Tracey Stone (0000-0003-2627-3843)1,2, Tim Peters (0000-0003-2881-4180)2, Hugh McLeod (0000-0002-2266-7303)1,2, William Hollingworth (0000-0002-0840-6254)1,2, Pippa Craggs1,3, Elizabeth M Hill (0000-0002-6588-9539)1,2, Sabi Redwood (0000-0002-2159-1482)1,2, Emma Treloar4, Jenny L Donovan (0000-0002-6488-5472)2, Brent C Opmeer (0000-0002-3877-4090)1, Karen Luyt (0000-0002-9806-1092)4,5
*contributed equally to the paper

1. National Institute for Health Research Applied Research Collaboration West (NIHR ARC West) at University Hospitals Bristol and Weston NHS Foundation Trust. Whitefriars Level 9, Lewins Mead, Bristol, BS12NT, UK
2. Population Health Sciences, Bristol Medical School, University of Bristol. 5 Tyndall Avenue, Bristol, BS8 1UD, UK
3. Research and Innovation, University Hospitals Bristol and Weston NHS Foundation Trust. Level 3, Upper Maudlin Street, Bristol, BS2 8AE, Bristol, UK
4. St. Michael’s Hospital, University Hospitals Bristol and Weston NHS Foundation Trust. Southwell Street, Bristol, BS2 8EG, UK
5. Translational Health Sciences, Bristol Medical School, University of Bristol. 5 Tyndall Avenue, Bristol, BS8 1UD, UK

Corresponding author:
Maria Theresa Redaniel, National Institute for Health Research Applied Research Collaboration West (NIHR ARC West), 9th Floor, Whitefriars, Lewins Mead, Bristol, BS1 2NT, UK. theresa.redaniel@bristol.ac.uk

Word count: 4499

Key words: maternity, neonatal, perinatal, pre-term, cerebral palsy, neurodisability, magnesium sulphate, quality improvement, cluster randomised controlled trial
ABSTRACT

Objective: To investigate the impact of an enhanced QI support programme (ESP) in further improving the magnesium sulphate (MgSO₄) uptake compared to the National PReCePT Programme (NPP) model.

Design: An unblinded cluster randomised controlled trial.

Participants: Maternity units with ≥10 pre-term deliveries annually and MgSO₄ uptake ≤70%. 40 maternity units (27 NPP, 13 ESP) were included. Randomisation was stratified by MgSO₄ uptake.

Interventions: MgSO₄ reduces the risk of cerebral palsy by 30%. NHS England commissioned the AHSN network in 2018 to deliver the NPP to increase MgSO₄ uptake in all maternity units in England. NPP units received PReCePT QI materials, regional support, and midwife backfill funding. ESP units received NPP plus backfill funding, unit-level QI coaching, and tablet computer.

Main outcome measures: MgSO₄ uptake post-implementation was compared between trial groups. Implementation and lifetime costs, and quality-adjusted life-years were estimated. The implementation process, fidelity, and local adaptations were assessed through a qualitative process evaluation.

Results: Using routine data and multivariable linear regression, both ESP and NPP units increased uptake between pre- and post-implementation. Post-implementation uptake increase in ESP units was similar to NPP units (-0.84 percentage points difference, 95% Confidence Interval -5.03 to 3.35 percentage points). Decision tree and probabilistic analyses were used to estimate cost-effectiveness and the probability ESP cost-effective was < 30%. Midwives implementing the NPP allocated more than their funded hours. Implementers of the ESP had better overall understanding of and collective engagement in PReCePT QI and made more use of QI methods. Units varied in amount and kind of support required to successfully implement the intervention.

Conclusion: This trial did not find additional benefit from the ESP compared with the NPP. Units with low uptake of MgSO₄ were found to experience a range of local challenges and targeted enhanced support may improve performance and represent good value.

Trial registration: ISRCTN 40938673 (https://www.isrctn.com/ISRCTN40938673)
WHAT IS ALREADY KNOWN ON THIS TOPIC
Since 2009 there has been strong evidence for the fetal neuroprotective benefits of antenatal MgSO₄ in women at risk of pre-term birth. This took a further 6 years to become a NICE recommended intervention. By 2017, only two-thirds of all eligible women in England were being given MgSO₄, with wide regional variations. The PReCePT pilot study in 2015 demonstrated that uptake could be increased significantly using a Quality Improvement (QI) intervention to increase maternity staff awareness of MgSO₄, and investment in staff time for training. In 2018, NHS England funded the National PReCePT Programme (NPP) in maternity units nationally, which provided a QI toolkit, backfill funding for a unit-level support for a midwife ‘champion’ and regional-level clinical champion.

WHAT THIS STUDY ADDS
The study has shown that national quality improvement programmes are effective in increasing MgSO₄ across maternity units in England. While overall uptake increased in both groups between baseline and follow-up, the study did not demonstrate additional benefit of the ESP compared to the NPP. Enhanced support can be delivered to units who are struggling or those with low improvement capability. Instead of delivering enhanced support to all units, a targeted intervention might be valuable for units who have low MgSO₄ implementation rates despite the national QI programme. Assessing individual organisations’ support needs based on factors including their readiness to change may help focus support to local needs.
INTRODUCTION

Neurodisabilities due to preterm birth, including cerebral palsy (CP), represents a significant burden for individuals and families, and costs for healthcare services. Antenatal magnesium sulphate (MgSO₄) reduces the risk of CP in preterm births by around 30%. A dose of MgSO₄ costs approximately £1 and it is estimated that there are lifetime societal savings of approximately £1M per case of CP avoided.

Since 2015, the UK National Institute for Health and Care Excellence (NICE) has recommended administration of MgSO₄ in preterm deliveries and non-compliance is considered sub-optimal care. Yet by 2017, only 64% of eligible women (<30 weeks gestation) were receiving MgSO₄.

The PReCePT (Preventing Cerebral Palsy in Pre-Term labour) Quality Improvement (QI) intervention was developed to improve maternity staff awareness and increase MgSO₄ uptake. The PReCePT pilot in five maternity units indicated that the QI intervention was effective in improving MgSO₄ uptake from 21% in 2012-2013 to 88% in 2015. The National PReCePT Programme (NPP) was implemented by English maternity units and regional Academic Health Science Networks (AHSNs) to increase MgSO₄ use in England to 85% by 2020. Evidence is currently lacking on whether a more intensive, unit-level support programme would be effective and cost-effective compared to NPP level of support.

In this cluster randomised trial we evaluated the effectiveness and cost-effectiveness of an enhanced QI support programme (ESP) to increase MgSO₄ uptake compared with the standard NPP QI intervention, and conducted a qualitative process evaluation to understand the implementation process, and an economic evaluation to assess cost-effectiveness. The trial protocol is published elsewhere.

METHODS

Trial Design

This unblinded cluster randomised controlled trial was set in NHS England maternity units. Control units received standard NPP support which included the PReCePT QI toolkit and materials (pre-term labour proforma, staff training presentations, parent leaflet, posters for the unit, learning log), regional AHSN level support, and up to 90 hours funded backfill for a midwife ‘champion’ to lead implementation. Intervention ESP units received the standard NPP support plus, for the implementation period, individual unit-level coaching by an...
experienced QI coach, additional 90 hours backfill funding for the local midwife champion, approximately 104 hours of funded backfill for the local obstetrician/neonatologist lead, access to learning and celebration events, and a computer tablet for micro-coaching staff (see Supplementary File – Description of the Trial Groups).

The trial was embedded within the NPP and aligned with its timeframe of two waves (Figure 1). After randomisation, implementation ran for nine months (intra-implementation period; December 2018 to August 2019 for first wave; January 2019 to September 2019 for second wave) with a further nine months’ follow-up (post-implementation).

Eligibility criteria

Maternity units in England participating in the NPP with ≥10 pre-term (<30 weeks gestation) deliveries annually and with MgSO4 uptake of ≤70% were eligible for the study. Eligibility was assessed from 2017 UK National Neonatal Research Database (NNRD) data. Units included in the PReCePT pilot were excluded.

Outcomes

The primary outcome was the unit-level proportion of eligible women receiving MgSO4 post-implementation. Secondary outcomes included uptake and MgSO4 data completeness over time, reasons MgSO4 was not given, ESP and NPP costs and the cost-effectiveness (incremental net monetary benefit) from a societal perspective over the lifetime of a pre-term baby. A qualitative process evaluation assessed the implementation process, fidelity, and local adaptations to understand reasons behind any differences in outcomes between the two arms, and any unintended outcomes.

Sample size and randomisation

Based on results from the pilot study\(^\text{10}\) and 2016 National Neonatal Audit Programme (NNAP) data, MgSO4 uptake during follow-up was anticipated as approximately 38% and 80% in the control and intervention arms respectively. To detect an absolute difference of 40 percentage points in MgSO4 uptake at follow-up between groups, with a 2-sided 5% significance level and 80% power, intraclass correlation coefficient=0.67 and coefficient of variation for cluster size=0.48, with a 1:2 randomisation ratio, 11 intervention and 22 control units were needed. Any clustering effects that could impact on precision attained were removed by (weighted) analysis of the data at the cluster (maternity unit) level. The randomisation ratio was pragmatically determined as budget constraints limited the sample size for the ESP arm.
Units were stratified by 2017 MgSO₄ uptake rates (stratification groups: 0-39.9%, 40-49.9%, 50-59.9%, and 60-70.9% uptake). Taking into account four strata and two implementation waves, the sample size was increased to 48 instead of 33. Eight units were allocated to the enhanced support group and 16 to the standard NPP group in wave 1, with five units in reserve, and six units were allocated to the enhanced support and 13 to the NPP group in wave 2. Randomisation was performed with Stata command `stratarand` and carried out by a statistician independent of the trial and the NPP (see Supplementary File – Study Randomisation).

Due to the nature of the interventions, it was not possible to conceal the allocation from the hospital staff. The unequal randomization ratio also made concealment allocation from the research staff performing the analysis difficult.

Data collection

We used anonymised patient-level data from the UK National Neonatal Research Database (NNRD). Baseline data were collected for the 12 months pre-implementation.

Index of Multiple Deprivation (IMD) data was derived from published data for each Lower Super Output Area. Data on number of beds and staff, amount of staff time spent on PReCePT-related activities, and previous QI experience were collected via questionnaires completed by the unit lead midwife.

For the process evaluation, criterion-based sampling (trial arm, number of births per year, baseline rate of MgSO₄ uptake, recent Care Quality Commission (CQC) ratings on units’ leadership and patient safety performance) was used to select units for qualitative interviews. Implementers (unit lead midwife, obstetrician and neonatologist) in selected units were invited to take part in a semi-structured telephone interview with a researcher (CP or TS), with contact made during the last 3 months of the intra-implementation period (July 2019 for Wave 1 units and September 2019 for Wave 2). Data collection was paused during the first COVID lockdown (March 2020) and resumed in July 2020.

Interviews explored: experiences and observations of activities relating to the QI intervention, staff engagement, perceived support by unit/hospital leadership, and contextual factors including organisational changes, staff shortages; professional/organizational/cultural issues); and the impact of COVID-19 (see Supplementary File – Qualitative Interviews Topic Guide). Written informed unit and individual consent was obtained and interviews were audio-recorded and transcribed.
Data analyses

Primary outcome

MgSO₄ uptake was defined as the number of mothers having been given MgSO₄ divided by the total number of eligible mothers, excluding missing values from the denominator, expressed as a percentage. Baby-level demographic descriptions included all babies. In all other analyses, we only included data for singletons and the first born baby in case of multiples. Where only one baby had a record for MgSO₄, we recoded the missing MgSO₄ status of the other multiples to match that for their twin/triplet who did have a record. For babies with conflicting records, we recorded MgSO₄ uptake as having been given.

Weighted linear regression was used to assess differences in MgSO₄ uptake between trial arms post-implementation, adjusted for pre-implementation uptake. The model was weighted on the number of births in each unit and used robust standard errors. In sensitivity analyses, we also adjusted for factors by which the trial arms differed appreciably pre-implementation.

Secondary outcomes

Controlled interrupted time series (ITS) analysis using segmented linear regression was used to model differences in trends in uptake and missing MgSO₄ data, over three time periods: pre-, intra- and post-implementation. Newey-West standard errors (with one lag) were estimated by ordinary least-squares regression and used to handle autocorrelation in the model. Differences in slope (indicating trend) and intercept (value of MgSO₄ uptake) between trial arms, as well as differences across the time periods, were determined in the model.

Cost-effectiveness

The mean NPP support was estimated from data supplied by the national programme team. NPP costs incurred in both trial arms included NPP management, AHSN support, and clinical backfill for midwives. Additional enhanced support costs included backfill of clinical champions’ time and additional midwife time, QI coaching, project management and learning events. Participants’ time for attending learning events were costed using national salary data. Mean implementation cost per baby was calculated as the mean implementation cost per unit divided by the total number of babies eligible for MgSO₄ per unit delivered during the 18-month implementation and follow-up period. The mean time per week spent on MgSO₄ activities by midwives and consultants was estimated from questionnaires completed for the month before starting the QI and each intra-implementation month.
In a decision tree analysis, we estimated ESP net monetary benefit using a lifetime horizon and societal perspective. Model parameters were based on trial data for implementation costs and MgSO₄ uptake, literature estimates for lifetime gains in quality-adjusted life-years (QALYs), and societal cost savings from MgSO₄ treatment for imminent and threatened preterm births reported by Bickford et al (see Supplementary File – Economic Evaluation).¹⁶ Babies delivered by caesarean section were defined as imminent births (those certain to occur within 24 hours) and all other babies as threatened. Our analysis used a £20,000 per QALY gained willingness-to-pay threshold.¹⁷

The probability of MgSO₄ treatment in the ESP compared with NPP was estimated using a multilevel mixed model logistic regression clustered at unit-level to determine the odds ratio of imminent and threatened babies having received MgSO₄ during the 18-month implementation and follow-up period adjusted for baseline uptake. For this analysis, babies with missing MgSO₄ treatment records were assumed to have not received treatment.

We conducted a probabilistic analysis using Monte Carlo simulation with 10,000 samples drawn from the parameter distributions (see Supplementary File – Economic Evaluation). Incremental costs and effects were plotted on the cost-effectiveness plane and a cost-effectiveness acceptability curve plotted for willingness-to-pay thresholds from £0 to £100,000 per QALY gained.

Process evaluation

Semi-structured interviews were analysed using the framework method.¹⁸ The matrix output, using rows, columns and ‘cells’ of summarised data, facilitated analysis by case (for example, site, professional group, or individual) and by code (summarised data in relation to a particular theme such as intervention fidelity). This allowed comparison of data across, as well as within cases to inform an understanding of the processes of implementation by which this complex intervention is routinely operationalised and embedded in everyday work and sustained in practice. The analysis focused on aspects of individual and collective behaviour shown to be important in implementation processes.¹⁹

RESULTS

Of the 48 units invited to participate in the study, four control units in wave 1 and one unit in wave 2 withdrew due to change in unit readiness for NPP implementation (see Supplementary File – Study Randomisation). Two units in wave 1 were replaced but the other three units could not be replaced. A total 40 units participated (13 enhanced support
and 27 standard NPP support units, Figure 1), covering 2,962 babies born to 2,597 mothers in the pre- and post-implementation periods (Table 1).

Enhanced and standard support groups were largely comparable at baseline. Enhanced support units saw more white British mothers and more mothers from socio-economically deprived areas. Standard support units had more experience with QI (Table 1).

Primary outcome

Overall MgSO₄ uptake pre-implementation was 68.1% in NPP units, and 64.3% in ESP units, increasing to 83.7% and 84.8%, respectively, in the post-implementation period (Table 2). Adjusting for pre-implementation uptake, we found no difference in MgSO₄ uptake during post-implementation between the control and intervention units (0.84 percentage points lower uptake in the ESP versus NPP arms, 95% CI -5.03 to 3.35 percentage points, p=0.687).

Sensitivity analyses adjusting for factors imbalanced pre-implementation (maternal ethnicity, socio-economic deprivation, and previous QI experience) yielded similar results (0.47 percentage points higher uptake in the enhanced support group, 95% CI -4.18 to 5.12 percentage points, p=0.840).

Secondary outcomes

The uptake and trends in MgSO₄ uptake were similar between ESP and NPP units in the pre- and post-implementation periods (Figure 2). The proportion missing data for the ESP group decreased in the pre-implementation period compared to NPP units and increased post-implementation, but these trends represent very small differences.

Costs and cost-effectiveness analyses

The incremental funded implementation cost was £16,869 per intervention unit and £276 per preterm baby delivered (see Supplementary File – Economic evaluation). The incremental impact of ESP on uptake of MgSO₄ applied to the 18 months covering both implementation and follow-up was -0.79 percentage points (95% CI -6.00 to 4.41).

From a societal lifetime perspective, the probabilistic analysis shows a decrease of -0.001 QALYs and cost increase of £315 per preterm baby delivered. This generates a net monetary loss of -£340 for a willingness to pay threshold of £20,000, indicating that ESP was not cost-effective compared to standard NPP (Table 3). The probability of ESP being cost-
effective is less than 30% across the range of plausible willingness-to-pay thresholds (see Supplementary File – Economic evaluation).

Backfill funding for midwives and clinical champions allowed for 5.5 and 1.7 hours per week dedicated time for PReCePT QI activities per unit during 12 months for ESP and NPP, respectively (Figure 3). The self-reported amount of time spent on average per week on the QI intervention over the first nine months of the intervention was 5.6 and 3.4 for ESP and NPP per unit, respectively, making the groups more similar than intended per protocol (Figure 3).

Process Evaluation

Fifty-one participants were recruited from 29 units representing ten out of 12 AHSNs participating in the PReCePT QI study (see Supplementary File – A Description of Participating Units). Twenty-two were lead midwives (two midwives were from the same unit), 14 lead obstetricians, and 15 lead neonatologists. Eighteen were from intervention arm units.

The findings indicate that both the NPP and ESP packages enabled units to implement core components of the intervention. There are several reasons explaining the similarities between the two arms:

The administration of MgSO₄ was a well-evidenced treatment already incorporated into national guidance since 2015 and the NNAP had increased awareness among clinicians about premature infant safety, while national schemes such as the Clinical Negligence Scheme for Trusts (CNST) provided incentives for improvement. In both study arms, efforts had already been made to increase MgSO₄ administration to eligible women in preterm labour. However, uptake was highly variable across maternity units in England. A neonatologist made the following observation about the why the intervention may have been successful:

It [was] the neonatologists and paediatricians trying to tell the obstetricians what to do and how to look after their patients. [...] Whereas PReCePT sort of was potentially winning at an obstetrician level which is where it needed to be. [...] And that was quite frustrating that people weren’t implementing it and then when PReCePT came in they suddenly were. And nothing new really, there wasn’t new data that came on board, it was just someone different telling them they should do it. *(P26, Neonatologist, ESP)*
Implementers in both study arms had access to the core components of the intervention such as the implementation support material (PReCePT QI Toolkit and implementation guide), QI support activities and networks (launch events; learning or support events; access to QI and implementation experts and networks interacting on social media) and carried out activities to support their local implementation. Midwives’ clinical backfill fund was thought to be crucial for implementation. These funds were primarily seen as important leverage for lead midwives to have protected time for the project, although the majority of interviews with NPP units suggest that their time was often not protected. However, the funding also held a symbolic value even when the funds sometimes may not have reached the units.

Implementation support was invaluable for understanding the rationale for the PReCePT intervention and being part of a ‘community of practice’ where ideas and experiences could be discussed and freely shared. Practically, these implementation support systems consisted of face-to-face meetings and virtual contacts through social media platforms. Ideas for good practice and problem solving were exchanged within control and intervention arms, but also between the two arms. While it may have been preferable to avoid cross-study arm contacts to test the effectiveness of the enhanced intervention, in reality, implementers were keen to improve care through exchanging ideas and networking as the excerpt below suggest:

"We met up [...] every couple of weeks or every month, and we all kind of compared how each other were doing and what could we do to improve and what we were doing that we were doing well that we could share with others. [...] We had the email thread and then we've also got a WhatsApp thread so occasionally we send information across or we get our stats sent across to us. (P15, Midwife, NPP)"

Overall, the QI toolkit was applied flexibly by all unit implementers, using resources and making adaptations to change their systems and workflows in a way that enabled MgSO4 to be administered to eligible women. Implementers valued this flexibility with which they could employ the toolkit resources as it enabled them to fit these around their units’ context-specific barriers. While some NPP unit implementers having received little QI methodology input, were less confident and therefore less likely to use those components, the accounts suggest that PReCePT QI added value compared to previous efforts to increase MgSO4 uptake. Key components were the data monitoring, missed case analysis, the use of designated champions with backfill funding, peer support and the training components.

While these findings explain the similarities between the two study arms, we also identified some crucial differences, primarily related to perinatal team working. Perinatal team working
and excellent communication between maternity and neonatal unit staff were acknowledged by participants to be cornerstones of safe care for mothers and preterm infants. However, as participants’ accounts suggested, ‘silo’ working was common and especially risky because information may not have been shared and communication may have been suboptimal. The care of women in preterm labour and the timely administration of MgSO₄ required new routines that needed to be aligned with established responsibilities and a vision for joint working across perinatal teams across maternity and neonatal unit staff. As a result of how the enhanced intervention was organised, perinatal team working improved much more comprehensively in the intervention units as the excerpt below highlights:

I think there’s been definitely closer working because of the PReCePT … so when there’s a pre-term lady comes in then we’d routinely ring the neonatal team and let them know that this lady’s come in, she’s a pre-term labour and she’s likely to deliver and so on and we’ve given her steroids. But now the question is ‘Have you given Mag Sulph?’ and that wasn’t asked before. *(P006, Midwife, ESP)*

Our data suggest that midwives in NPP units carried the weight of responsibility for implementation in their unit mostly on their own with various levels of involvement from the obstetric and neonatal leads, as illustrated in the excerpt below:

The support from the AHSN and the other PReCePT midwives was brilliant but within my unit there wasn’t any support. Apart from the initial funding, it was “right, you’re the PReCePT midwife - off you go”. *(P016, Midwife, NPP)*

In contrast, perinatal team working was far more developed in the ESP units were all three implementers (lead midwife, obstetrician and neonatologist) were involved in the efforts to increase the uptake of MgSO₄ in their units. Enhanced QI support to all members of the perinatal team in ESP arm encouraged perinatal collaboration and was seen as a facilitator to implementation. Perinatal team learning events were highly valued as the following excerpt illustrates:

It was good that you are there with your team, you have time to talk about things which you normally just don’t have. […] it definitely improved our communication within the team and the collaboration with the neonatal unit […] it’s the social aspect as well that helped us in becoming a stronger team and I think that is one of the things which is underestimated within the hospital. *(P039, obstetrician, ESP)*
Perinatal team collaboration and involvement in implementation varied between control units. Several control arm midwives reported poor involvement from lead clinicians and being unsupported. This lack of perinatal collaboration and team working posed challenges especially in relation to the recording and measurement of MgSO₄ administration, a key component of the intervention.

Perinatal collaboration was also found to be important for the successful embedding of MgSO₄ administration in the routine care of women in preterm labour and was demonstrated practically through support for the lead midwife, the sharing of responsibilities and ensuring accurate data reporting. Where this was lacking, routine integration of MgSO₄ administration was less likely. NPP unit lead midwives were more likely to be left to manage the implementation on their own, spending many hours above their funded backfill time to carry out their role because they could not be released from their clinical duties.

Impact of the COVID-19 pandemic

Implementers interviewed during the COVID-19 pandemic reported a decrease in MgSO₄ administration rates as training and awareness raising activities were put on hold. This was attributed to the cessation of PReCePT QI activities such as meetings and training activities, increased clinical pressures, staff shortages and reliance on untrained and agency staff.

DISCUSSION

Summary of results

Our results have shown that large scale standard NPP implementation of the PReCePT QI intervention (including QI materials, regional support and funded backfill for lead midwife) was associated with an increase the proportion of women given MgSO₄ for pre-term births over the study period. We found no evidence that enhanced support further improved MgSO₄ uptake. The more pronounced reduction in the amount of missing MgSO₄ data indicates an improvement in MgSO₄ record-keeping.

The additional implementation costs in the ESP are not justified by better MgSO₄ uptake. Even a small scale improvement in uptake would have been likely to be cost-effective, given the substantial lifetime benefits of avoiding CP. Self-reported data indicated that NPP units spent around double the time on PReCePT activities than was funded by the NPP. This could be why we did not observe additional MgSO₄ uptake after enhanced support.
The NPP was successful where implementers were well-briefed and trained, had access to implementation support and help, got commitment from all stakeholders, promoted individual and collective action, and carried out evaluation and review activities. The ESP was valued in units with limited experience and expertise in QI work, limited senior clinical and management support, and sustained workforce problems (e.g. staff shortages, high staff turnover).

Factors that facilitated engagement with and commitment to implementation efforts included: a good fit between implementers’ role description and their clinical roles; creation of local, regional, and national communities of practice; and access to implementation support resources and activities. More silo working and less support of champion midwives by obstetric and neonatal leads was found in NPP units, suggesting integrated perinatal team working in planning and designing activities may improve the implementation process. Emphasis on having a perinatal team of implementers in ESP units was effective in securing commitment from and involvement of stakeholders and inciting collective action. Access to training and to peer-to-peer learning and support networks (communities of practice) locally, regionally and nationally by units in both arms were also crucial to implementation. Data monitoring, missed case audits, and training activities alongside use of the QI toolkit facilitated increased MgSO₄ uptake in both arms.

Impact of COVID-19

A slight decrease in MgSO₄ uptake between March to June 2020 was observed, which might correspond to the first peak of COVID-19 and the first UK lockdown. Women may have delayed presentation at hospital due to infection contact concerns, resulting in missed opportunities to give MgSO₄. The process evaluation indicated that the COVID-19 pandemic resulted in increased clinical pressures, staff shortages, reduced training opportunities, and more reliance on untrained and agency staff, which may have all contributed to decreased MgSO₄ uptake. Further analysis of data beyond June 2020 would be valuable to identify uptake trends throughout the pandemic.

Strengths and limitations

This is the first national scale QI randomised controlled trial in perinatal medicine, comparing a standard and an enhanced support model for implementation of a QI intervention. This trial benefitted from use of robust, high-quality, routinely collected data, and a cluster design minimising the risks of contamination between the ESP and NPP groups. Results are reasonably generalisable, representing 40 hospitals across wide geographical areas of
England. Each hospital perinatal team was able to tailor methods of implementing the toolkit to fit their local context, indicating that this sort of improvement programme can be highly successful while allowing flexibility, adaptability, and personalisation.20

This was a pragmatic trial embedded within a national scaling-up programme, which was influenced by timelines of local NPP implementation and local variations in implementation (a key element of QI). Uptake of MgSO\textsubscript{4} at baseline was much higher than anticipated, possibly diminishing the potential for ESP to have additional benefit on MgSO\textsubscript{4} uptake over and above standard NPP support. The process evaluation suggested that the NPP provided similar support i.e. initial training workshops, access to a QI expert as and when needed, and access to support networks, albeit only available to midwives rather than all three implementers. Within the ‘rising tide’ context of improving MgSO\textsubscript{4} uptake, the ESP did not deliver additional gains, which suggests that in future a targeted approach focusing on units with comparatively low uptake rates may be more appropriate.21

Data recording of multiple births in the NNRD dataset also mean that overall uptake could differ slightly from that observed. Often only one of the multiples will be recorded as having been given MgSO\textsubscript{4} and only live babies admitted to a neonatal unit have a record in the NNRD dataset, leading to an underestimation of the actual number of preterm babies if the baby with the MgSO\textsubscript{4} record did not survive.

Comparison with the literature

Uptake varies across countries, with estimates in 2011-2015 varying between 0%-12.3% in Europe22 and 43.0% in Canada (2011-2015).23 We found only a handful of similar quality improvement strategies that have been implemented and evaluated. A clinician-led QI programme in a single children’s hospital centre in Adelaide, Australia, increased uptake from 63% to 86% (2018-2021).24 The programme included the establishment of a QI team, provision of QI training and use of plan-do-study-act cycles. In Canada, MAG-CP was implemented in 11 tertiary perinatal centres and resulted in an absolute increase in uptake from 2.0% (2005-2010) to 46.3% (2011-2015).25 MAG-CP included educational rounds, focus group discussions and surveys of barriers and facilitators, on top of a national guideline and an online e-learning module.25

Studies have also evidenced the feasibility of implementing clinical protocols in maternity units for use of MgSO\textsubscript{4} for prevention of cerebral palsy.23,24,26 The introduction of clinical protocols in a large tertiary hospital in the US resulted to a 73.9% absolute increase in
uptake, from 20% in 2007-2008 to 93.9% in 2011. A smaller increase has been seen in a French tertiary hospital, from 76% in 2011 to 87.5% in 2012.

In conclusion, the proportion of women given MgSO₄ for pre-term births increased over the study period. Investing additional resources and delivering the enhanced support model universally did not have additional value. Assessing individual organisations’ support needs before initiating further enhanced implementation efforts may help to achieve greater MgSO₄ uptake, particularly in units already facing numerous challenges.

Other trial information

IRAS number 242419, ISRCTN 40938673, Trial Sponsor’s reference CH/2017/6417.

Funding

The Health Foundation funded this trial (Funder’s reference 557668). The funders were not involved in study design, conduct, data collection, analysis, interpretation, or writing of this manuscript.

This research was supported by the National Institute for Health Research (NIHR) Applied Research Collaboration West (NIHR ARC West, core NIHR infrastructure funded: NIHR200181). The views expressed in this article are those of the author(s) and not necessarily those of the NIHR or the Department of Health and Social Care.

Contributors

KL, BO, and JD conceptualized the trial; KL and BO led the funding application to the Health Foundation supported by JD; KL is Chief Investigator and BO is Co-Chief Investigator and overall evaluation lead; TP and MTR are quantitative evaluation leads; SR is qualitative evaluation lead; WH and HM are health economic evaluation leads; PC and EMH are trial managers; ET advised on the study methodology and implementation; HE, MTR, RM, CSR and PC acquired NNRD and questionnaire data; HE, MTR and RM conducted the effectiveness analysis; CSR, HM and WH conducted the cost-effectiveness analysis; CPM, TS and SR conducted qualitative data collection and analysis; HE, MTR, CSR, CPM and RM wrote the original manuscript and contributed equally to the paper; all authors reviewed and edited the manuscript for content and approved the submission.

All authors accept responsibility to submit for publication.
Ethics and regulatory considerations

The UK National Health Service Health Research Authority (NHS HRA) approved the conduct of the trial (HRA ID 242419) and gave authorisation that it did not require Research Ethics Committee approval as a low-risk study involving NHS staff who had given consent as participants and used anonymised patient data.

Conflicts of interest

All authors in this manuscript have no conflict of interest to declare aside from funding from NIHR ARC West, AHSN, NHS England and The Health Foundation as detailed above. We declare that the study management group have no competing financial, professional, or personal interests that might have influenced the study design or conduct.

Acknowledgements

Public and Patient Involvement for this trial built on the involvement work in the PReCePT pilot study.¹⁰ This used a co-design and co-production approach including a partnership with BLISS, a support organisation for mothers experiencing pre-term births, and two mothers who had experienced pre-term births, Elly Salisbury and Monica Bridge who were involved in trial design and delivery (at the learning events) and were part of the Trial Steering Committee.

We also acknowledge The Health Foundation and the West of England Academic Health Science Network (in particular Natasha Swinson and Ellie Wetz) for their support and guidance, the AHSN Network (in particular Gary Ford for leadership and guidance), Anna Burhouse for her continued input and inspiration, QI Coaches Noshin Menzies, Vardeep Deogan and Hannah Bailey, Jo Bangoura for producing the PReCePT QI toolkit, and all local champions who were instrumental in applying the QI training from learning events to their local perinatal teams.

Data sharing

Anonymised individual-level data for this study comes from the NNRD. Our data sharing agreement with the NNRD prohibits sharing data extracts outside of the University of Bristol research team. Copies of the NNRD data dictionary and the full study protocol are available online¹² and copies of the Statistical Analysis Plan are available on the University of Bristol Research Information System (https://research-information.bris.ac.uk/en/projects/precept-study-a-cluster-randomised-trial-evaluating-the-impact-of).
REFERENCES

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Enhanced support (n=13 units)</th>
<th>NPP support (n=27 units)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pre-implementation</td>
<td>Post-implementation</td>
</tr>
<tr>
<td>Babies</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of babies</td>
<td>596</td>
<td>374</td>
</tr>
<tr>
<td>Male sex (N, %)</td>
<td>333 (55.9)</td>
<td>207 (55.4)</td>
</tr>
<tr>
<td>Median gestational age (weeks, median, IQR)</td>
<td>28.3 (26.6 – 29.9)</td>
<td>28.6 (26.4 – 30.0)</td>
</tr>
<tr>
<td>Median birthweight (g, median, IQR)</td>
<td>1057.5 (800.5 – 1300)</td>
<td>1089.5 (806 – 1365)</td>
</tr>
<tr>
<td>Number born in multiples (N, %)</td>
<td>136 (22.8)</td>
<td>97 (25.9)</td>
</tr>
<tr>
<td>Mothers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of mothers</td>
<td>530</td>
<td>328</td>
</tr>
<tr>
<td>Median maternal age (years, median, IQR)</td>
<td>30 (25 – 34)</td>
<td>30 (26 – 35)</td>
</tr>
<tr>
<td>White ethnicity (N, %)</td>
<td>312 (72.2)</td>
<td>167 (68.4)</td>
</tr>
<tr>
<td>IMD quintile (N, %)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 – most deprived</td>
<td>199 (38.8)</td>
<td>135 (42.2)</td>
</tr>
<tr>
<td>2</td>
<td>114 (22.2)</td>
<td>71 (22.2)</td>
</tr>
<tr>
<td>3</td>
<td>73 (14.2)</td>
<td>50 (15.6)</td>
</tr>
<tr>
<td>4</td>
<td>66 (12.9)</td>
<td>35 (10.9)</td>
</tr>
<tr>
<td>5 – least deprived</td>
<td>61 (11.9)</td>
<td>29 (9.1)</td>
</tr>
<tr>
<td>Caesarean delivery (N, %)</td>
<td>287 (61.1)</td>
<td>176 (55.2)</td>
</tr>
<tr>
<td>Had pregnancy-induced hypertension (N, %)</td>
<td>26 (5.0)</td>
<td>19 (5.9)</td>
</tr>
<tr>
<td>Antenatal steroids given (N, %)</td>
<td>479 (91.4)</td>
<td>303 (93.2)</td>
</tr>
<tr>
<td>Maternity units</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Level of birth unit (N mothers, %)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Special Care Unit (SCU) / High Dependency Unit (HDU)</td>
<td>191 (36.4)</td>
<td>110 (33.8)</td>
</tr>
<tr>
<td>Neonatal Intensive Care Unit (NICU)</td>
<td>334 (63.6)</td>
<td>215 (66.2)</td>
</tr>
<tr>
<td>Number of staff per unit (median, IQR)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Midwives (bands 5-8c)</td>
<td>83 (60 – 166)</td>
<td></td>
</tr>
<tr>
<td>Consultants</td>
<td>15 (11 – 22)</td>
<td>Only collected pre-implementation</td>
</tr>
<tr>
<td>Delivery suite beds per unit (median, IQR)</td>
<td>10 (8 – 12)</td>
<td></td>
</tr>
<tr>
<td>Have previous QI experience (N, %)</td>
<td>6 (46.15)</td>
<td></td>
</tr>
</tbody>
</table>
Table 2 | MgSO₄ uptake in maternity units, by trial arm and study periods

<table>
<thead>
<tr>
<th>Variable</th>
<th>Enhanced support</th>
<th>Standard NPP support</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pre-implementation</td>
<td>Post-implementation</td>
</tr>
<tr>
<td>Crude proportion uptake and missing:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total number of eligible births</td>
<td>525</td>
<td>325</td>
</tr>
<tr>
<td>Mothers given MgSO₄ (N, %)</td>
<td>357 (68.0%)</td>
<td>270 (83.1%)</td>
</tr>
<tr>
<td>Mothers not given MgSO₄ (N, %)</td>
<td>143 (27.2%)</td>
<td>51 (15.7%)</td>
</tr>
<tr>
<td>With MgSO₄ data missing (N, %)</td>
<td>25 (4.8%)</td>
<td>4 (1.2%)</td>
</tr>
<tr>
<td>Overall proportion uptake:</td>
<td>64.2%</td>
<td>84.8%</td>
</tr>
</tbody>
</table>

° Records on singleton births and the first-born of multiples included in the analysis

¹ Total uptake over the follow up and baseline periods. Uptake proportion excluding missing from denominator and only including singletons and first-born of multiples. Calculated from unit-level proportions per time period.
Table 3 | Probabilistic Analysis results of the enhanced support programme cost-effectiveness

<table>
<thead>
<tr>
<th>ESP vs NPP</th>
<th>Point estimate</th>
<th>Lower 95% limit</th>
<th>Upper 95% limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incremental implementation costs per baby, £</td>
<td>214</td>
<td>10</td>
<td>545</td>
</tr>
<tr>
<td>Incremental lifetime costs, £</td>
<td>102</td>
<td>-496</td>
<td>689</td>
</tr>
<tr>
<td>Incremental total costs, £</td>
<td>315</td>
<td>-335</td>
<td>973</td>
</tr>
<tr>
<td>Incremental QALYs</td>
<td>-0.001</td>
<td>-0.009</td>
<td>0.006</td>
</tr>
<tr>
<td>Net Monetary Benefit*, £</td>
<td>-340</td>
<td>-1,123</td>
<td>445</td>
</tr>
</tbody>
</table>

*Calculated at willingness to pay threshold of £20,000
All NNRD units (n=176)

- Scotland/Wales units (n=23)
- In PReCePT1 (n=5)
- <10 eligible births in 2017 (n=43)
- >70% MgSo4 uptake in 2017 (n=25)

Eligible Units (n=80)

Wave 1
- Pre-implementation (May 2017 – Apr 2018)
- Consented (n=29)
 - Randomisation
 - ESP (n=8)
 - Intra-implementation (Dec 2018 – Aug 2019)
 - NPP (n=16)
 - Intra-implementation (Dec 2018 – Aug 2019)
 - Withdrawn (n=4)
 - Replacements (n=2)
 - Post-implementation (Sept 2019 – May 2020)

Wave 2
- Pre-implementation (July 2017 – Aug 2018)
- Consented (n=19)
 - Randomisation
 - ESP (n=6)
 - Intra-implementation (Jan 2019 – Sept 2019)
 - NPP (n=13)
 - Intra-implementation (Jan 2019 – Sept 2019)
 - Withdrawn (n=1)
 - Post-implementation (Oct 2019 – June 2020)

Declined (n=32)

Reserve