1	Annual prevalence of non-communicable diseases and identification of vulnerable
2	populations following the Fukushima disaster and COVID-19 pandemic
3	
4	Michio Murakami ^{a, *} and Shuhei Nomura ^{b,c,d}
5	
6	^a Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan
7	^b Department of Health Policy and Management, School of Medicine, Keio University, Tokyo, Japan
8	^c Department of Global Health Policy, Graduate School of Medicine, The University of Tokyo, Tokyo,
9	Japan
10	^d Tokyo Foundation for Policy Research, Tokyo, Japan
11	
12	* Corresponding author
13	
14	Highlights
15	• We assessed secondary health effects of Fukushima disaster and COVID-19 pandemic
16	• Non-communicable diseases increased after the disaster and COVID-19 pandemic
17	• The increase rates were higher among females aged 40–74 years after the disaster
18	• The increase rates were higher among males aged 0–39 years after COVID-19 pandemic
19	• It is important to provide tailor-made public health support among populations
	NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

20

21 Abstract

22 Disasters, pandemics, and their response measures can have secondary effects on the physical and psychological health of affected populations. Identifying populations vulnerable to these effects is 23 24 beneficial for promoting effective health and prevention strategies. Using health insurance receipt 25 data from 2009 to 2020, we assessed changes in prevalence of major non-communicable diseases (NCDs), including hypertension, hyperlipidemia, diabetes, and mental disorders, among affected 26 27 populations before and after the Fukushima disaster and coronavirus disease (COVID-19) outbreak in Japan. Furthermore, age and sex groups with the largest increases in prevalence after these events 28 29 were identified. The participants of this study were members of the Employees' Health Insurance 30 scheme, including employees of companies and their dependent family members. The dataset was provided by JMDC Inc. The annual age-adjusted prevalence of each disease was used to calculate the 31 ratio of disease prevalence before and after the events. After the Fukushima disaster, hypertension, 32 hyperlipidemia, and diabetes generally increased over a 9-year period in Fukushima Prefecture. The 33 34 increase in the prevalence rate of these three NCDs and mental disorders were the highest among 35 females aged 40-74 years compared to males and the other age groups. The prevalence of all four diseases increased after the COVID-19 outbreak in Japan, with marked increase in males aged 0-39 36 years. Populations that have experienced secondary health effects such as NCDs are unique to each 37 disaster or pandemic, and it is important to provide tailor-made public health support among 38

39 populations in accordance to the type of disasters and pandemic.

- 40
- 41 Keywords

42 COVID-19; Diabetes mellitus; Fukushima nuclear accident; Hyperlipidemias; Hypertension; Mental

43 disorders

44

45 **1. Introduction**

46 Disasters, pandemics, and their countermeasures impact the lives of affected people with secondary 47 effects on their physical and psychological health. Major non-communicable diseases (NCDs), such 48 as hypertension, hyperlipidemia, diabetes, and mental disorders, have been reported to increase 49 among people who have experienced natural or man-made disasters, such as the Chornobyl nuclear power plant accident in 1986 and Hurricane Katrina in 2005 [1, 2]. Several studies have also revealed 50 that the Great East Japan Earthquake and the Fukushima Daiichi Nuclear Power Station accident in 51 March 2011 (hereafter referred to as the "Fukushima disaster") also caused an increase in NCDs 52 among residents who evacuated for short to long periods [3-5]. In addition, long-term deterioration 53 54 of mental health, including increases in psychological distress and suicide rates, has been observed, especially among residents affected by the Fukushima disaster, although there is a trend toward 55 improvement over time [6, 7]. Furthermore, in Minamisoma City, located within 10-40 km of the 56 nuclear power station, a significant increase in the age-adjusted prevalence of diabetes was observed 57

58 among both those who did not evacuate and those who did, during a 7-year period following the 59 disaster [8]. High psychological distress has also been reported among non-evacuees in host 60 communities where evacuees were accommodated [9]. Changes in living conditions due to evacuation after a disaster as well as various socioeconomic changes in the surrounding communities may cause 61 62 secondary physical and psychological health effects to evacuees and non-evacuees. However, the 63 spatial and temporal extent of post-disaster secondary health effects have not been established, as 64 there are only a limited number of long-term studies on both evacuees and non-evacuees over a wide 65 area.

Following the emergence and worldwide spread of coronavirus disease (COVID-19), behavioral 66 67 restrictions such as lockdowns or stay-at-home measures, have been implemented in various countries, 68 including Japan, to curb infection spread. During the pandemic, some studies have shown improvement in lifestyle, dietary, and drinking behaviors [10-12]; however, increases in body weight 69 70and worsening of metabolic biomarkers, such as glycemic values, among specific populations have also been reported [13, 14]. Furthermore, there has been a significant increase in mental disorders 71 72 among the global population, especially in females and younger age groups [15]. Similarities and 73 differences in secondary health effects among multiple disasters and pandemics remain unclear due to limited analyses of data obtained before and after such events. Furthermore, identifying the age 74and sex groups in which NCDs occurred can provide beneficial information to promote effective 75 support for vulnerable populations regarding the secondary health effects following disasters and 76

77 pandemics.

78	We used health insurance receipt data to assess changes in the prevalence of hypertension,
79	hyperlipidemia, diabetes, and mental disorders in the population affected by the Fukushima disaster
80	and COVID-19 in Japan. First, we investigated how the prevalence of these diseases changed over 9
81	years from January 2009 to December 2020 following the Fukushima disaster. The Fukushima,
82	neighboring prefectures of Iwate, and Miyagi prefectures, as well as the whole of Japan, and three
83	major regions within Fukushima Prefecture were considered to assess the wide-area secondary health
84	effects caused by the disaster. We then analyzed the prevalence of these diseases in the Japan and
85	Fukushima Prefecture by age and sex to identify the populations that were the most significantly
86	affected. Next, we examined the annual changes in the prevalence of these diseases across Japan
87	before and after the COVID-19 outbreak and identified the most significantly affected age and sex
88	groups. We then analyzed the associations between population density or COVID-19 infection rates
89	and changes in the prevalence of these diseases by prefecture to determine prefectural characteristics
90	that are susceptible to these secondary health effects.

91

92 **2. Methods**

93 **2.1. Ethics**

94 This study was approved by the Osaka University Research Ethics Committee (approval number
95 Ci21002).

96

97 2.2. Fukushima disaster

98 The reported number of people directly killed or missing due to the Great East Japan Earthquake and Tsunami (GJET) on March 11, 2011 was 18,423 (at the end of February 2022 [16]). The reported 99 100 number of disaster-related deaths caused indirectly by the GJET (i.e., secondary victims) was 3,784 101 (at the end of September 2021) [17]. Of the 18,423 people, 5,785 people in Iwate Prefecture, 10,757 102 in Miyagi Prefecture, and 1,810 in Fukushima Prefecture were killed or missing. There were 470 103 disaster-related deaths in Iwate Prefecture, 929 in Miyagi Prefecture, and 2,329 in Fukushima 104 Prefecture. The number of people living in evacuation shelters immediately after the GJET was 105 estimated to be more than 450,000 nationwide, including more than 400,000 in the Iwate, Miyagi, 106 and Fukushima prefectures [18].

107 Following the Fukushima disaster, mandatory evacuation orders were issued to residents within a 20km radius around the Fukushima Daiichi Nuclear Power Station and a 10-km radius around the Daini 108 Nuclear Power Station on March 12, 2011, followed by evacuation orders on April 22, 2011 for areas 109 110 where an additional exposure level would reach 20 mSv/y. Evacuation orders were issued for Hirono 111 Town, Naraha Town, Tomioka Town, Kawauchi Village, Okuma Town, Futaba Town, Namie Town, 112 Katsurao Village, Iitate Village, Minamisoma City, Tamura City, Kawamata Town, and the hotspot areas in Date City. Of these, Tamura City, Kawamata City, and Date City are in Nakadori (central 113 area), whereas the other municipalities are located in Hamadori (coastal area). It was estimated that 114

115	more than 140,000 people were evacuated from these radius [19]. The affected people were evacuated
116	to municipalities in Fukushima Prefecture outside the evacuation areas, such as Iwaki City
117	(Hamadori), as well as to areas outside Fukushima Prefecture.
118	In 2012, the evacuation order was lifted in Kawauchi Village and Hirono Town, where the evacuation
119	was decided by each municipality soon after the disaster. Furthermore, since 2014, the government
120	has gradually lifted the evacuation order, and by the end of 2019, the evacuation order was lifted for
121	the following municipalities: Tamura City, Kawauchi Village, Naraha Town, Katsurao Village,
122	Minamisoma City, Iitate Village, Kawamata Town, Namie Town, Tomioka Town, and Okuma Town,
123	excluding the difficult-to-return areas where radiation levels remain high located around the
124	Fukushima Daiichi Nuclear Power Station.

125

126 2.3 COVID-19

The World Health Organization (WHO) declared COVID-19 a pandemic on March 11, 2020 [20]. In Japan, a declaration of the state of emergency was issued in seven prefectures on April 7, 2020 and extended to all prefectures on April 16, 2020. The state of emergency included requests to stay at home, instruction for schools to close temporarily, closure of businesses and stores that are not essential to daily life, and cancellation or postponement of events and exhibitions, but they were not mandatory. The state of emergency ended in 39 prefectures on May 14, 2020, in three more prefectures on May 21, 2020, and in all prefectures on May 25, 2020. This was the only emergency

declaration for 2020, and the reported number of COVID-19 positive cases in Japan in 2020 was234,109 [21].

136

137 **2.4. Datasets and target population**

In this study, we used health insurance receipt data provided by JMDC Inc. The target population 138 139 covered in the JMDC data were employees of companies and their dependent family members who belonged to Employees' Health Insurance (EHI) scheme (29 million people nationwide as of 2016), 140 141 of which the JMDC covered 9 million of the population (as of 2022). JMDC Inc. contracts various 142 health insurers under the EHI scheme across Japan to collect insurance claims, containing completely 143 anonymized receipt information. Japan's insurance system is divided into three main schemes, and all persons, regardless of citizenship, who have been recognized as having resided in Japan for more 144 than three months are obliged to join one of them. In addition to the EHI scheme, which is the focus 145 of this study, the insurance system includes National Health Insurance (NHI), which targets 146 individuals who do not belong to the EHI scheme, including farmers, freelancers, non-regular 147 employees, retired company employees, etc., and long-term care insurance (LTCI), which includes 148 149 individuals aged 75 and above.

We used data on the annual number of patients for each targeted disease and other diseases (i.e., all patients visiting the medical institution regardless of their diagnosis) and the estimated prevalence by age and sex groups in each prefecture or municipality from January 2009 to December 2020. The

prefectures and municipalities were based on the location of the medical institution. The target diseases included hypertension, hyperlipidemia, diabetes, and mental disorders, based on the ICD 10 classification: I10-I15, E78, E10-E14, and F00-F99, respectively. The diseases were diagnosed by a physician, with no distinction made between primary and secondary diseases. The total number of patients in the JMDC database for hypertension, hyperlipidemia, diabetes, mental disorders, and other disease in Japan from 2009 to 2020 is provided in Table S1. The prevalence ($P_{d,t,ra,s}$) of the target disease (d) in each prefecture or municipality (r) by age (a:0-

160 19, 20–39, 40–64, and 65–74 years) and sex (s) groups for each year (t) were calculated according to

161 eqs.1 and 2.

162

163
$$P_{d,t,r,a,s} = \frac{A_{d,t,r,a,s}}{B_{t,r,a,s}} \times \frac{C_{d,t,a,s}}{\sum_{r} D_{d,t,r,a,s}}$$
 (eq.1)

164
$$D_{d,t,r,a,s} = \frac{A_{d,t,r,a,s}}{B_{t,r,a,s}} \times E_{t,r,a,s}$$
 (eq.2)

Where $A_{d,t,r,a,s}$ is the actual number of patients with the target disease by each prefecture or municipality among the target age and sex population in the target year, $B_{t,r,a,s}$ is the actual number of patients who visited the medical institution regardless of their diagnosis in each prefecture or municipality among the target age and sex population in the target year, $C_{d,t,a,s}$ is the estimated number of patients nationwide among the target age and sex population in the target year and was estimated by multiplying the prevalence of each disease (the ratio of the number of patients to the number of

171	people in the mother population covered by JMDC Inc.) by age (1-year interval) and sex groups and
172	by the national population, $D_{d,t,r;a,s}$ is the estimated number of patients with the target disease in each
173	prefecture and municipality in the target age and sex population in the target year, and $E_{t,r,a,s}$ is the
174	number of people in each prefecture and municipality in the target age and sex population in the target
175	year.
176	
177	The Basic Resident Register data was used for to determine the number of people in the prefectures
178	for each year [22]. For the municipal population data, the national census performed in 2010, 2015,
179	and 2020 was used for the years 2009–2010, 2011–2015, and 2016–2020, respectively [23]. Selection
180	bias among the target population was corrected by $C_{d,t,a,s}$ and $D_{d,t,r,a,s}$, as described in eq.1.
181	Furthermore, using the commonly used 1985 model population as a reference population (i.e.,
182	distribution of the population by age and sex groups in 1985) [24], age-adjusted prevalence was
183	calculated for the 0–74, 0–39, and 40–74 years of age groups for males, females, and both males and
184	females.
185	Diagnostic guidelines have been revised for various diseases, including the establishment of
186	borderline hyperLDL-cholesterolemia in 2012 and the diagnosis of diabetes using HbA1c in 2010.
187	Although these revisions may have impacted the prevalence, the bias was reduced by standardizing
188	the assessment of the impact before and after the Fukushima disaster by normalizing the prevalence
189	with that for the whole of Japan (see "2.5. Analysis" for details).

190

191 **2.5. Analysis**

192 Two analyses were performed in this study. First, to evaluate changes in prevalence after the Fukushima disaster, we considered the whole of Japan, Iwate, Miyagi, and Fukushima prefectures, as 193 194 well as three regions within Fukushima Prefecture (i.e., Hamadori, Nakadori, and Aizu (mountainous 195 area); Table S2). These three regions, which are closer to the nuclear power station in the order 196 Hamadori, Nakadori, and Aizu, divide Fukushima Prefecture into three parts from east to west. In 197 other words, Hamadori was the region most affected by the disaster, and Aizu was the region least 198 affected among regions in the prefecture. Prevalence of targeted diseases in the Hamadori, Nakadori, 199 and Aizu regions was calculated by weighting data by municipality based on $B_{t,r,a,s}$. The arithmetic 200 means and standard errors of the prevalence for each of the four time periods, such as 2009–2010, 201 2011–2013, 2014–2016, and 2017–2019, was calculated, and the prevalence for each time period was assumed to follow a normal distribution. To ensure that the prevalence was within the range of 0-1, 202 two-tailed censoring was performed so that the arithmetic mean was at the center of the distribution. 203 204 Monte Carlo simulations were performed with 10,000 iterations to determine the ratio or difference 205in prevalence (males and females, 0-74 years) between 2011-2013, 2014-2016, or 2017-2019 and 2009–2010 in the whole of Japan, Iwate, Miyagi, Fukushima prefectures, and Hamadori, Nakadori, 206 and Aizu regions. These prevalence ratios and differences were further normalized to the values for 207 the whole of Japan. Similarly, prevalence ratios and differences by age and sex groups were calculated 208

209 for the whole of Japan and Fukushima Prefecture.

210	Second, to assess changes in the prevalence after the COVID-19 outbreak, data from 2015 to 2020
211	were used (Table S3). For simplicity, we defined 2020 data as the period after the COVID-19 outbreak.
212	We calculated the ratios and differences between the prevalence in 2020 (the period after the outbreak)
213	and the prevalence in 2020 estimated from the 2015–2019 dataset. A linear regression equation was
214	modeled using the dataset as a baseline to estimate the hypothetical 2020 prevalence in the absence
215	of COVID-19. Based on the values and their 95% confidence intervals, calculations of the ratios and
216	differences between the measured and estimated prevalence were performed with Monte Carlo
217	simulations in 10,000 runs, assuming that the prevalence followed a normal distribution; two-tailed
218	censoring was performed so that the prevalence fell within the range of 0–1, and the arithmetic mean
219	was at the center of the distribution. The prevalence ratios and differences were estimated for age and
220	sex groups in the whole of Japan: males and females (0-74 years), males and females (0-39 years),
221	males and females (40–74 years), males (0–74 years), males (0–39 years), males (40–74 years), males
222	(0-19 years), males (20-39 years), males (40-64 years), males (65-74 years), females (0-74 years),
223	females (0-39 years), females (40-74 years), females (0-19 years), females (20-39 years), females
224	(40-64 years), and females (65-74 years). Furthermore, the prevalence ratios and differences in 47
225	prefectures were calculated for males (0-39 years), the vulnerable population group identified in the
226	above analysis, to assess the correlation with population density [22, 25] or the reported number of
227	COVID-19 infection cases per 100,000 people (COVID-19 infection rate) in 2020 [21] (Table S4).

228 Spearman's rank correlation coefficient was estimated.

Oracle Crystal Ball (Version 11.1.2.4.900) and IBM SPSS Statistics (Version 28) were used for theanalysis.

231

- 232 **3. Results**
- 233 **3.1. Age-adjusted prevalence over time**

Figure 1 shows the annual changes in age-adjusted prevalence (male and female, 0–74 years) of

235 NCDs from 2009 to 2020 in the whole of Japan; Iwate, Miyagi, and Fukushima prefectures; and

236 Hamadori, Nakadori, and Aizu regions. The age-adjusted prevalence of hypertension, hyperlipidemia,

diabetes, and mental disorders in the whole of Japan was 0.102, 0.107, 0.061, and 0.075 in 2009 and

0.113, 0.121, 0.068, and 0.098 in 2020, respectively. The age-adjusted prevalence of hypertension,

hyperlipidemia, diabetes, and mental disorders in Fukushima Prefecture was 0.106, 0.098, 0.044, and

240 0.072 in 2009 and 0.117, 0.119, 0.056, and 0.082 in 2020, respectively.

Age-adjusted prevalence by age and sex groups for each disease in the whole of Japan and Fukushima Prefecture from 2009 to 2020 is shown in Figures 2 and 3. Age-adjusted prevalence of hypertension, hyperlipidemia, and diabetes were generally higher in males than in females in the 40–74 years age group, and the differences tended to increase over time in the whole of Japan. In contrast, mental disorders were higher in females than in males in the 40–74 years age group, and the prevalence in the 0–39 years age group has been increasing in recent years. In Fukushima Prefecture, mental

disorders showed an increasing trend in 2011–2012 for both age and sex groups, followed by a
decreasing trend.

249

250 **3.2. Age-adjusted prevalence before and after the Fukushima disaster**

Table 1 shows the ratios of age-adjusted prevalence of NCDs in the 0–74 years group in the whole of 251 252 Japan; Iwate, Miyagi, and Fukushima prefectures; and Hamadori, Nakadori, and Aizu regions before and after the Fukushima disaster. These differences are listed in Table S5. The table also shows the 253 254 values normalized to those for the whole of Japan. After the Fukushima disaster, the increases in the prevalence of hypertension, hyperlipidemia, and diabetes were significantly higher among the 255256Fukushima Prefecture than among the whole of Japan in all the three time periods including 2011-2013, 2014–2016, and 2017–2019 (excluding hyperlipidemia in 2011–2013). The prevalence ratios 257 in 2011-2013 were 1.133 (95% uncertainty interval (UI): 1.081-1.188) for hypertension, 1.053 258(0.980-1.132) for hyperlipidemia, 1.212 (1.082-1.344) for diabetes, and 1.084 (0.961-1.212) for 259 mental disorders. Furthermore, in Hamadori, the prevalence of hypertension, diabetes, and mental 260 disorders generally increased over the 9-year period while in Nakadori, significant increases in the 261 262 prevalence of hyperlipidemia and diabetes were observed in 2014–2016 and 2017–2019. In Aizu, there were also significant increases in the prevalence of hypertension in 2011–2013 and 2014–2016 263 and of diabetes in 2014–2016 and 2017–2019. In contrast, a slight downward trend was observed for 264hyperlipidemia in 2011-2013. No significant increases or decreases were observed for these four 265

Regarding age and sex groups, there was a significant increase in the prevalence of these four diseases

266	diseases in Iwate and Miyagi prefectures (excluding hypertension in 2014-2016 and diabetes in
267	2011–2013 in Iwate Prefecture).

in Fukushima Prefecture during all the three time periods in females aged 40–74 years: ratios in 2011–

270 2013 were 1.280 (95%UI:1.214–1.350) for hypertension, 1.149 (1.055–1.257) for hyperlipidemia,

- 271 1.441 (1.139–1.806) for diabetes, and 1.283 (1.199–1.371) for mental disorders (Table 2, ratios and
- Table S6, difference). An increase in the prevalence of hypertension and diabetes was observed in
- females aged 0–39 years. In contrast, among males aged 40–74 years, the prevalence of hyperlipidemia and diabetes increased significantly in 2014–2016 and 2017–2019, whereas the
- prevalence of mental disorders decreased in 2014–2016 and 2017–2019. Among males aged 0–39
- 276 years, there was an increase in the prevalence of hyperlipidemia in 2014–2016 and 2017–2019,
- 277 whereas there was no significant change in the prevalence of other diseases (except hypertension in
- 278 2014–2016).

279

268

280 **3.3. Age-adjusted prevalence before and after the COVID-19 outbreak**

Tables 3 and S7 show the ratios and differences in age-adjusted prevalence of each disease by sex and age group among the whole of Japan before and after the COVID-19 outbreak. The prevalence of all four diseases generally increased, with the ratios among males and females aged 0–74 years being 1.058 (95% UI: 1.032–1.087) for hypertension, 1.075 (1.013–1.143) for hyperlipidemia, 1.038

285 (1.012–1.066) for diabetes, and 1.033 (1.027–1.039) for mental disorders. Among the age and sex groups, the ratios of actual to estimated values for these four diseases were particularly high among 286 287males aged 20-39 years and 0-39 years (ratio among males aged 0-39 years: 1.098 (1.072-1.126) for hypertension, 1.143 (1.009-1.309) for hyperlipidemia, 1.060 (1.040-1.080) for diabetes, and 288 289 1.041 (1.032–1.050) for mental disorders). In contrast, the differences in prevalence were large for 290 males and females aged 40-64, 64-74, and 40-74 years. The ratios and differences in the prevalence of mental disorders before and after the COVID-19 291 292 outbreak by prefecture in males aged 0-39 years were significantly negatively correlated with the 293 population density and COVID-19 infection rate in 2020 (Figure 4 and Tables S8 and 9). In contrast, 294the population density and COVID-19 infection rates were not significantly associated with the prevalence ratios and differences in other diseases. 295

296

297 4. Discussion

In this study, we evaluated the annual changes in the prevalence of hypertension, hyperlipidemia, diabetes, and mental disorders among employees of companies and their dependent family members belonging to the EHI scheme before and after the Fukushima disaster and the COVID-19 outbreak in Japan. Furthermore, we identified the vulnerable age and sex groups of people who experienced significant secondary health effects after the disaster and pandemic.

303 The analysis of the prevalence of these diseases after the Fukushima disaster by age and sex groups

304 revealed that hypertension, hyperlipidemia, and diabetes generally increased in Fukushima Prefecture over the 9-year period following the disaster. Significant increases in hypertension, diabetes, and 305 306 mental disorders were observed in Hamadori, hyperlipidemia and diabetes in Nakadori, and hypertension and diabetes in Aizu. Among the four diseases, the increase prevalence of diabetes was 307 308 higher than that of the other diseases. Diabetes increased consistently in all the regions. 309 After the Fukushima disaster, a significant increase in the prevalence of diabetes was consistently reported in multiple previous studies targeting various municipalities where evacuation orders were 310 311 issued [3-5, 8]. The findings of our study are consistent with those of previous studies. For 312 hyperlipidemia, previous studies reported an increase among evacuees within 4 years after the disaster, 313 but no significant increase in the 7-year data [3, 8]. For hypertension, some studies that used a 314 definition based on blood pressure alone have reported a risk decrease [3, 8], whereas a study that used a definition based on blood pressure as well as the use of antihypertensive medication reported 315 an increased risk [5]. Regarding psychological distress, a 5-fold risk increase was reported in the first 316 year after the disaster, followed by an improvement trend [26]. Notably, this study highlighted that 317 318 the worsening prevalence of these NCDs was not observed in only Hamadori, which was significantly 319 affected by the Fukushima disaster, but also in Nakadori and Aizu. This is consistent with previous findings on non-evacuees [3, 8]. The results suggest that the Fukushima disaster may have secondary 320 physical health effects not only on evacuees but also on the wider population. The reasons for this are 321 322 not clear; however, social support for non-evacuees is more likely to be overlooked in the aftermath

323 of a disaster than that for evacuees. Considering that these diseases generally did not change in the 324 Iwate and Miyagi prefectures that were affected by the GJET, but not largely by the Fukushima 325 disaster, it is possible that the increase in the prevalence of these diseases observed over a wide area in Fukushima Prefecture was related to the long-term evacuation, hosting of evacuees, and 326 socioeconomic changes in the residents of Fukushima Prefecture following the disaster, possibly 327 328 resulting in lifestyle changes among residents. Hamadori, where a significant increase in the prevalence of mental disorders was observed, includes not only municipalities whose residents were 329 330 ordered to evacuate, but also those that accepted majority of evacuees. It has also been suggested that psychological distress among residents of host communities may be caused by the perception that 331 332 evacuees are a threat to their social identity [9].

333 The increase in the prevalence of these four diseases in the post-disaster period was most pronounced among females and those aged 40-74 years. Psychological distress risk has been reported to be higher 334 among elderly females [27]. Most of the previous studies after the Fukushima disaster have assessed 335 the impact of evacuation on NCDs [3-5, 8], and there are limited studies that specifically discuss 336 337 which age and sex groups experienced significant changes in prevalence after the disaster based on 338 the same dataset. The strength of this study is that, based on the same dataset, changes in the prevalence after the disaster were assessed by age and sex groups to identify populations vulnerable 339 to secondary health effects. 340

341 In contrast, after the COVID-19 outbreak, the prevalence of all four diseases increased nationwide,

342 especially in males aged 20-39 and 0-39 years. Among the four diseases, the prevalence increase 343 post-disaster in hyperlipidemia was particularly higher than that in the other diseases. To date, 344previous findings on NCDs risks after COVID-19 have not been coherent. While some population have improved their lifestyle habits [11, 12], others have decreased their physical activity levels due 345 to lockdown and other behavioral restrictions [28]. Molarius et al. [29] reported no statistically 346 347 significant changes in the prevalence of high blood pressure before and after the COVID-19 outbreak in Sweden. A systematic review regarding the impact of the COVID-19-related lockdown on 348 349 glycemic control among patients with type 1 and type 2 diabetes reported that glycemic values in patients with type 1 diabetes improved, but those in patients with type 2 diabetes worsened during 350 351 the COVID-19 lockdown [14]. An increasing burden of mental disorders due to the COVID-19 pandemic has been reported among the public worldwide [15]. In Japan, since the early days of the 352 COVID-19 pandemic, active efforts have been made to raise awareness of exercise to promote 353 physical and psychological health [30, 31]. Despite these social awareness efforts, our study showed 354 that the prevalence of NCDs were increasing in Japan, especially among young males. 355 356 Interestingly, the age and sex groups that showed large increases in the prevalence of these diseases

differed between the Fukushima disaster and COVID-19 outbreak. After the COVID-19 outbreak, not only were there risk factors such as lack of exercise and worsening of dietary and drinking habits associated with measures such as stay-at-home requests, but also preventive factors such as reduced drinking opportunities and lifestyle modification. The pandemic may have resulted in polarization,

361 with some individuals experiencing improved health and others experiencing worsened health. The young Japanese male population tends to have lower health practices than those of other age and sex 362 363 groups [32], possibly resulting in significant secondary health effects due to the pandemic. In addition, the prevalence ratios of mental disorders before and after the outbreak was significantly negatively 364 correlated with population density and COVID-19 infection rates. This suggests that the increased 365 366 prevalence in mental disorders was not mainly attributed to the burden among patients with COVID-19, but also attributed to other social factors. Interestingly, the results of this study were in contrast 367 368 to that of a previous study reporting that increases in major depressive and anxiety disorders in each country were significantly positively correlated with the rate of COVID-19 infection [15]. Although 369 370 there were some differences in the timing of declaration of the state of emergency, it was issued in all prefectures in 2020 in Japan. Therefore, the differences in the impact of social activity restrictions 371 associated with these regulations were probably small among the prefectures. There are two possible 372 reasons for the negative association between population density and increased rate of mental disorders 373 found in this study. First, the availability of mental health-promotion services and social infrastructure 374 375 may differ among prefectures; urban areas may have had better access to mental health-promotion 376 services and social infrastructure, even under restricted social activities during the COVID-19 pandemic. Second, there may be differences in the cultural worldviews of infection and related 377 preventive behaviors among prefectures. The Japanese people are more likely to consider that infected 378 individuals deserve COVID-19 infections than the people in other countries [33], which is consistent 379

380 with a previous finding that Japan has a strong strict cultural view (i.e., many strong norms and low 381 tolerance of deviant behavior) compared to that observed world [34]. It is possible that the social 382 environment toward COVID-19 infection, shaped by this cultural worldview, had a negative impact on mental health among the population. Differences in strict cultural worldviews among prefectures 383 in Japan and their relationship with mental disorders remain unclear and require further analysis. 384 385 This study demonstrates the importance of providing support for secondary health effects on NCDs in the aftermath of disasters and pandemics. Since significantly affected age and sex groups are unique 386 387 to each disaster or pandemic, tailor-made public health support is considered important. In particular, while COVID-19 infections have a high fatality rate among the elderly [35], NCDs are more likely 388 389 to affect young people. This means that infection control measures, including stay-at-home requests and other restrictions on socioeconomic activities, may be beneficial in reducing infection among the 390 391 elderly under 75 years of age but may pose greater risks for the young regarding secondary health 392 effects. Comprehensive public health measures in addition to infection control are required based on the characteristics of the population while considering the differences in the balance between risk-393 benefits and non-infectious secondary health effects among the populations. 394 395 This study has some limitations. First, the target population was employees of companies and their dependent family members. The findings of this study cannot be generalized to the entire population 396 397 and other countries. Furthermore, only the population aged 74 years and below were included in this 398 study. Although COVID-19 isolation measures are known to worsen cognitive and mental health

399	among people with dementia [36], this study was unable to assess the secondary health effects among
400	the population aged 75 years and older. Second, we could not fully examine the possibility of changes
401	in accessibility to healthcare facilities after the Fukushima disaster or the COVID-19 outbreak
402	compared to accessibility to health care before the disaster and outbreak. However, it is unlikely that
403	NCDs were overlooked before the disaster or outbreak, since employees of companies, the target
404	population of this study, generally receive regular health checkups. Third, this study was based on an
405	ecological study design and did not identify the causes of changes in the prevalence of various
406	diseases. Long-term cohort studies based on individuals exposed to disasters and pandemics are
407	expected to assess the impact of disasters and pandemics on secondary health and identify the factors
408	that influence this impact.
409	Despite these limitations, this study provided unique insights into the secondary health effects of the
410	Fukushima disaster and COVID-19 outbreak and identified age and sex groups that were significantly
411	affected by this disaster and pandemic.
412	
413	5. Conclusions
414	This study used health insurance receipt data for employees of companies and their dependent family

members from January 2009 to December 2020 to assess changes in the prevalence of NCDs after the Fukushima disaster and COVID-19 outbreak in Japan compared to that before the disaster and outbreak and to identify age and sex groups particularly vulnerable to the resultant secondary health

418 effects. The findings of this study are summarized as follows.

419	•	Age-adjusted prevalence of hypertension, hyperlipidemia, and diabetes increased over a 9-year
420		period in the Fukushima Prefecture following the 2011 Fukushima disaster. An increase in the
421		prevalence in mental disorders was also observed in the Hamadori region in the prefecture, which
422		was most affected by the disaster.
423	•	Increase prevalence in hypertension, hyperlipidemia, and diabetes were also observed in
424		Hamadori and Aizu, which were less affected by the disaster, indicating that the Fukushima
425		disaster had secondary health effects over wider populations.
426	•	In contrast, no significant changes were observed for these four diseases in Iwate and Miyagi
427		prefectures.
428	•	After the Fukushima disaster, the prevalence ratios of these four diseases were particularly high
429		among females aged 40–74 years.
430	•	After the COVID-19 outbreak, the prevalence of these four diseases has increased significantly
431		throughout Japan. In particular, the post-outbreak prevalence ratios of these four diseases were
432		significantly higher among males aged 0-39 years than among females and males of other age
433		groups, which differed from the age and sex groups vulnerable to secondary health effects after
434		the Fukushima disaster.
435	•	Post-outbreak prevalence ratios of mental disorders among males aged 0-39 years by prefecture
436		were negatively and significantly associated with population density and COVID-19 infection

438	• The population groups vulnerable to secondary health effects on NCDs after the Fukushima
439	disaster or the COVID-19 outbreak are not common but are unique to the disaster or pandemic.
440	It is important to provide tailor-made public health support to the population accordance to
441	disasters and pandemics.
442	
443	Acknowledgements
444	This work was supported by JSPS KAKENHI grant number JP20H04354. We would like to thank
445	Editage (www.editage.com) for English language editing and Dr. Kazuki Ide (Osaka University) for
446	his advice.
447	
448	Declaration of competing interest
449	None.
450	
451	Authorship contribution
452	Michio Murakami: Conceptualization; Data curation; Methodology; Formal analysis; Visualization;
453	Project administration; Writing –original draft
454	Shuhei Nomura: Conceptualization; Writing –review & editing
455	

456 **References**

457	[1] E.J. Bromet, Mental health consequences of	of the Chernobyl	disaster, J.	Radiol. Pro	t. 32 (2012)
458	N71-75.				

- 459 [2] J.C. Moscona, M.N. Peters, R. Maini, P. Katigbak, B. Deere, H. Gonzales, C. Westley, H.
- 460 Baydoun, K. Yadav, P. Ters, A. Jabbar, A. Boulad, I. Mahata, T.V. Gadiraju, R. Nelson, S.
- 461 Srivastav, A. Irimpen, The incidence, risk factors, and chronobiology of acute myocardial
- 462 infarction ten years after Hurricane Katrina, Disaster Med Public Health Prep 13 (2018) 217-222.
- 463 [3] S. Nomura, M. Blangiardo, M. Tsubokura, A. Ozaki, T. Morita, S. Hodgson, Postnuclear disaster
- 464 evacuation and chronic health in adults in Fukushima, Japan: A long-term retrospective analysis,
- 465 BMJ Open 6 (2016) e010080.
- 466 [4] D.K. Ebner, M. Ohsawa, K. Igari, K.H. Harada, A. Koizumi, Lifestyle-related diseases following
- the evacuation after the Fukushima Daiichi nuclear power plant accident: A retrospective study
- of Kawauchi Village with long-term follow-up, BMJ Open 6 (2016) e011641.
- 469 [5] T. Ohira, H. Nakano, M. Nagai, Y. Yumiya, W. Zhang, M. Uemura, A. Sakai, S. Hashimoto,
- 470 Changes in cardiovascular risk factors after the Great East Japan Earthquake, Asia-Pac. J. Public
- 471 He. 29 (2017) 47s-55s.
- 472 [6] M. Maeda, M. Murakami, M. Oe. Fukushima nuclear disaster: multidimensional psychosocial
- 473 issues and challenges to overcome them, in: Nriagu J, (Ed.). Encyclopedia of Environmental
- 474 Health (Second Edition) Elsevier; Oxford, 2019. pp. 121-131.

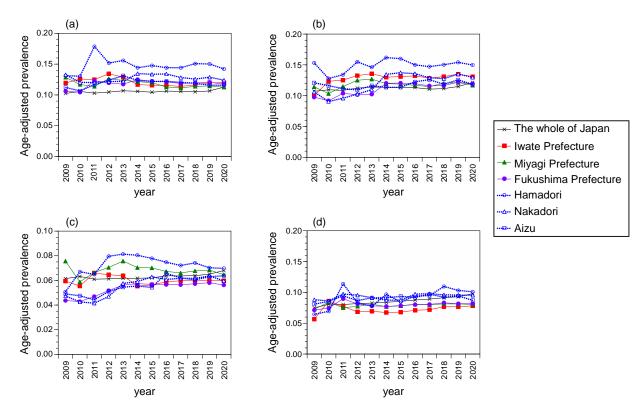
- 475 [7] Y. Kuroda, M. Orui, A. Hori, Trends in suicide mortality in 10 years around the great east japan
- 476 earthquake: Analysis of evacuation and non-evacuation areas in fukushima prefecture, Int. J.
- 477 Environ. Res. Pub. He. 18 (2021).
- 478 [8] S. Nomura, M. Murakami, A. Ozaki, T. Sawano, C. Leppold, Y. Nishikawa, H. Saito, T. Oikawa,
- 479 M. Tsubokura, Comparative risk assessment of non-communicable diseases by evacuation
- 480 scenario- a retrospective study in the 7 years following the Fukushima Daiichi nuclear power
- 481 plant accident, Glob. Health Action 14 (2021) 1918886.
- 482 [9] T. Kobayashi, K. Yoshida, Y. Takebayashi, A. Goto, A. Kumagai, M. Murakami, Social identity
- 483 threats following the Fukushima nuclear accident and its influence on psychological distress, Int.
- 484 J. Disaster Risk Reduction 37 (2019) 101171.
- 485 [10] L. Di Renzo, P. Gualtieri, F. Pivari, L. Soldati, A. Attinà, G. Cinelli, G. Cinelli, C. Leggeri, G.
- 486 Caparello, L. Barrea, F. Scerbo, E. Esposito, A. De Lorenzo, Eating habits and lifestyle changes
 487 during COVID-19 lockdown: An Italian survey, J. Transl. Med. 18 (2020) 229.
- 488 [11] M. Murakami, T. Kobayashi, Y. Oikawa, S. Goto, M. Momoi, Y. Takebayashi, T. Ohira, S.
- 489 Yasumura, M. Maeda, Associations of the COVID-19 pandemic with the economic status and
- 490 mental health of people affected by the Fukushima disaster using the difference-in-differences
- 491 method: The Fukushima Health Management Survey, SSM Popul Health 14 (2021) 100801.
- 492 [12] S. Samanta, J. Banerjee, S.N. Rahaman, K.M. Ali, R. Ahmed, B. Giri, A. Pal, S.K. Dash,
- 493 Alteration of dietary habits and lifestyle pattern during COVID-19 pandemic associated

494 lockdown: An online survey study, Clin. Nutr. ESPEN 48 (2022) 234-24	494	lockdown: A	n online survey	study, Cl	lin. Nutr.	ESPEN 48	(2022)) 234-246
--	-----	-------------	-----------------	-----------	------------	----------	--------	-----------

- 495 [13] M. Pellegrini, V. Ponzo, R. Rosato, E. Scumaci, I. Goitre, A. Benso, S. Belcastro, C. Crespi, F.
- 496 De Michieli, E. Ghigo, F. Broglio, S. Bo, Changes in weight and nutritional habits in adults with
- 497 obesity during the "lockdown" period caused by the COVID-19 virus emergency, Nutrients 12
- 498 (2020) 1-11.
- 499 [14]C. Eberle, S. Stichling, Impact of COVID-19 lockdown on glycemic control in patients with type
- 1 and type 2 diabetes mellitus: a systematic review, Diabetology & Metabolic Syndrome 13
 (2021) 95.
- 502 [15] D.F. Santomauro, A.M. Mantilla Herrera, J. Shadid, P. Zheng, C. Ashbaugh, D.M. Pigott, C.
- 503 Abbafati, C. Adolph, J.O. Amlag, A.Y. Aravkin, B.L. Bang-Jensen, G.J. Bertolacci, S.S. Bloom,
- 504 R. Castellano, E. Castro, S. Chakrabarti, J. Chattopadhyay, R.M. Cogen, J.K. Collins, X. Dai,
- 505 W.J. Dangel, C. Dapper, A. Deen, M. Erickson, S.B. Ewald, A.D. Flaxman, J.J. Frostad, N.
- 506 Fullman, J.R. Giles, A.Z. Giref, G. Guo, J. He, M. Helak, E.N. Hulland, B. Idrisov, A. Lindstrom,
- 507 E. Linebarger, P.A. Lotufo, R. Lozano, B. Magistro, D.C. Malta, J.C. Månsson, F. Marinho, A.H.
- 508 Mokdad, L. Monasta, P. Naik, S. Nomura, J.K. O'Halloran, S.M. Ostroff, M. Pasovic, L.
- 509 Penberthy, R.C. Reiner Jr, G. Reinke, A.L.P. Ribeiro, A. Sholokhov, R.J.D. Sorensen, E.
- 510 Varavikova, A.T. Vo, R. Walcott, S. Watson, C.S. Wiysonge, B. Zigler, S.I. Hay, T. Vos, C.J.L.
- 511 Murray, H.A. Whiteford, A.J. Ferrari, Global prevalence and burden of depressive and anxiety
- 512 disorders in 204 countries and territories in 2020 due to the COVID-19 pandemic, Lancet 398

513 (2021) 1700-1712.

514	[16]National Police Agency, Police measures and damage from the Tohoku-Pacific Ocean										
515	Earthquake in 2011. https://www.npa.go.jp/news/other/earthquake2011/pdf/higaijyoukyou.pdf,										
516	2022 (accessed 27 April, 2022). (in Japanese)										
517	[17]Reconstruction Agency, Number of disaster-related deaths.										
518	https://www.reconstruction.go.jp/topics/main-cat2/sub-cat2-6/20140526131634.html, 2021										
519	(accessed 27 April, 2022). (in Japanese)										
520	[18]Reconstruction Agency, Changes in the number of people living in evacuation shelters.										
521	https://www.reconstruction.go.jp/topics/hikaku2.pdf, 2022 (accessed 27 April, 2022). (in										
522	Japanese)										
523	[19] The National Diet of Japan, The official report of the Fukushima Nuclear Accident Independent										
524	Investigation Commission. https://www.nirs.org/wp-										
525	content/uploads/fukushima/naiic_report.pdf, 2012 (accessed 3 May, 2020).										
526	[20]D. Cucinotta, M. Vanelli, WHO Declares COVID-19 a Pandemic, Acta Biomed. 91 (2020) 157-										
527	160.										
528	[21] Ministry of Health Labour and Welfare, COVID-19 open data.										
529	https://www.mhlw.go.jp/stf/covid-19/open-data.html, 2022 (accessed 27 April, 2022). (in										
530	Japanese)										


532 https://www.e-stat.go.jp/stat-search/files?page=1&toukei=00200241&tstat=000001039591,

- 533 2021 (accessed 27 April, 2022). (in Japanese)
- 534 [23] Statistics Bureau of Japan, National Census.
 535 https://www.stat.go.jp/data/kokusei/2020/kekka.html, 2021 (accessed 27 April, 2022). (in
 536 Japanese)
- 537 [24] Ministry of Health Labour and Welfare, Deaths by Prefecture Age-adjusted mortality rates by
- 538 Prefecture in 2000. https://www.mhlw.go.jp/toukei/saikin/hw/jinkou/other/00sibou/1.html, 2002
- 539 (accessed 9 May, 2022). (in Japanese)
- 540 [25] Geospatial Information Authority of Japan, National area survey by prefecture and municipality.
- 541 https://www.gsi.go.jp/KOKUJYOHO/OLD-MENCHO-title.htm, 2020 (accessed 27 April, 2022).
 542 (in Jananasa)
- 542 (in Japanese)
- 543 [26] M. Maeda, M. Oe, Mental health consequences and social issues after the Fukushima disaster,
 544 Asia Pac J Public Health 29 (2017) 36s-46s.
- 545 [27] M. Oe, S. Fujii, M. Maeda, M. Nagai, M. Harigane, I. Miura, H. Yabe, T. Ohira, H. Takahashi, Y.
- 546 Suzuki, S. Yasumura, M. Abe, Three-year trend survey of psychological distress, posttraumatic
- 547 stress, and problem drinking among residents in the evacuation zone after the Fukushima Daiichi
- 548 Nuclear Power Plant accident [The Fukushima Health Management Survey], Psychiatry. Clin.
- 549 Neurosci. 70 (2016) 245-252.
- 550 [28] G.H. Tison, R. Avram, P. Kuhar, S. Abreau, G.M. Marcus, M.J. Pletcher, J.E. Olgin, Worldwide

- effect of COVID-19 on physical activity: A descriptive study, Ann. Intern. Med. 173 (2020) 767-
- 552 770.
- 553 [29] A. Molarius, C. Persson, Living conditions, lifestyle habits and health among adults before and
- after the COVID-19 pandemic outbreak in Sweden results from a cross-sectional population-
- 555 based study, BMC Pub. He. 22 (2022) 171.
- 556 [30]K. Yamaguchi, Y. Takebayashi, M. Miyamae, A. Komazawa, C. Yokoyama, M. Ito, Role of
- 557 focusing on the positive side during COVID-19 outbreak: Mental health perspective from
- positive psychology, Psychol. Trauma: Theory Res. Pract. Policy 12 (2020) S49-S50.
- 559 [31] M.N. Aung, M. Yuasa, Y. Koyanagi, T.N.N. Aung, S. Moolphate, H. Matsumoto, T. Yoshioka,
- 560 Sustainable health promotion for the seniors during COVID-19 outbreak: A lesson from Tokyo,
- 561 J. Infect. Dev. Ctries. 14 (2020) 328-331.
- 562 [32] Y. Noguchi, K. Ueda, K. Fukumoto, K. Harada, A. Ueda, C.-N. Wei, Relationship between
- perceived health status and health practices in the general adult population in Japan, Open J. Prev.
 Med. 5 (2015) 11.
- 565 [33] A. Miura, K. Hiraishi, D. Nakanishi, Do they get what they deserved? : Exploring "situational
- power" with social psychology, Kagaku 90 (2020) 906-908. (in Japanese)
- 567 [34] M.J. Gelfand, J.L. Raver, L. Nishii, L.M. Leslie, J. Lun, B.C. Lim, L. Duan, A. Almaliach, S.
- 568 Ang, J. Arnadottir, Z. Aycan, K. Boehnke, P. Boski, R. Cabecinhas, D. Chan, J. Chhokar, A.
- 569 D'Amato, M. Ferrer, I.C. Fischlmayr, R. Fischer, M. Fülöp, J. Georgas, E.S. Kashima, Y.

570	Kashima, K. Kim, A. Lempereur, P. Marquez, R. Othman, B. Overlaet, P. Panagiotopoulou, K.
571	Peltzer, L.R. Perez-Florizno, L. Ponomarenko, A. Realo, V. Schei, M. Schmitt, P.B. Smith, N.
572	Soomro, E. Szabo, N. Taveesin, M. Toyama, E.V.d. Vliert, N. Vohra, C. Ward, S. Yamaguchi,
573	Differences between tight and loose cultures: A 33-nation study, Science 332 (2011) 1100-1104.
574	[35]COVID-19 Forecasting Team, Variation in the COVID-19 infection-fatality ratio by age, time,
575	and geography during the pre-vaccine era: a systematic analysis, Lancet 399 (2022) 1469-1488.
576	[36] A. Suárez-González, J. Rajagopalan, G. Livingston, S. Alladi, The effect of COVID-19 isolation
577	measures on the cognition and mental health of people living with dementia: A rapid systematic
578	review of one year of quantitative evidence, eClinicalMedicine 39 (2021).
579	

medRxiv preprint doi: https://doi.org/10.1101/2022.05.18.22275293; this version posted May 20, 2022. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission.

581 Figure 1. Annual age-adjusted prevalence of hypertension, hyperlipidemia, diabetes, and mental 582 disorders by areas (males and females, 0–74 years). (a) Hypertension, (b) hyperlipidemia, (c) diabetes,

583 (d) mental disorders.

medRxiv preprint doi: https://doi.org/10.1101/2022.05.18.22275293; this version posted May 20, 2022. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission.

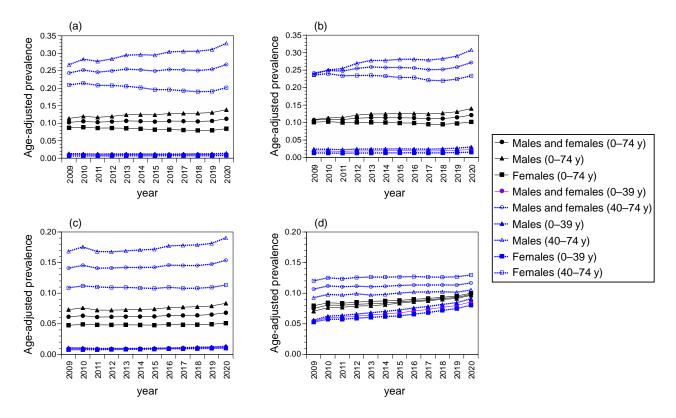


Figure 2. Annual age-adjusted prevalence of hypertension, hyperlipidemia, diabetes, and mental
disorders by age group and sexes (the whole of Japan). (a) Hypertension, (b) hyperlipidemia, (c)
diabetes, (d) mental disorders.

588

medRxiv preprint doi: https://doi.org/10.1101/2022.05.18.22275293; this version posted May 20, 2022. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission.

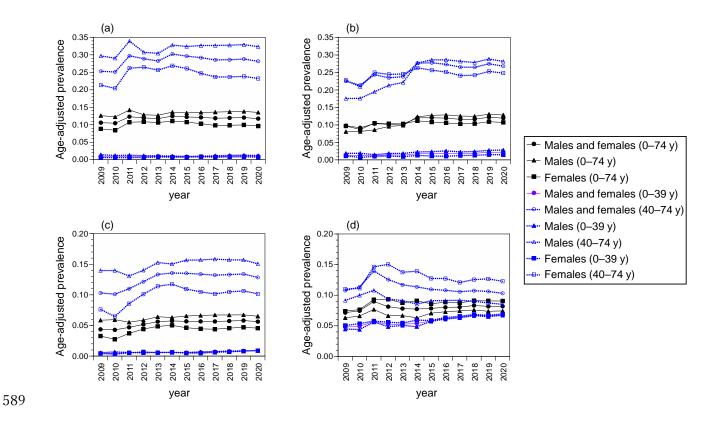
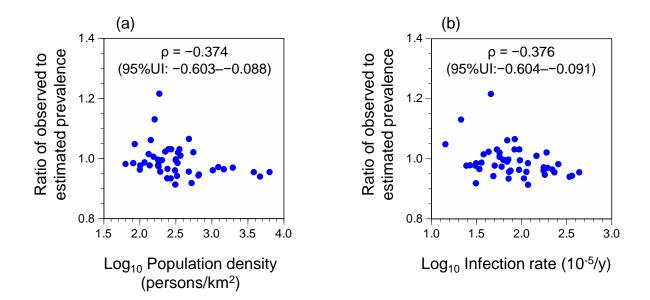



Figure 3. Annual age-adjusted prevalence of hypertension, hyperlipidemia, diabetes, and mental
disorders by age groups and sexes (Fukushima Prefecture). (a) Hypertension, (b) hyperlipidemia, (c)
diabetes, (d) mental disorders.

595

596 Figure 4. Correlations between population density or infection rate and ratio of observed to estimated

age-adjusted prevalence of mental disorders in 2020 among 47 prefectures (males, 0–39 years). (a)
Population density, (b) infection rate. ρ: Spearman's rank correlation coefficient. UI: uncertainty
interval.

- 600
- 601

Table 1. Ratio of age-adjusted prevalence in three time periods to that in 2009–2010 (males and females, 0–74 years). Arithmetic mean (95% uncertainty interval).

	Hypertension			Hyperlipidemia			Diabetes			Mental disorders		
Ages and sexes	2011–2013 <i>vs</i>	2014–2016 <i>vs</i>	2017–2019 <i>vs</i>	2011–2013 <i>vs</i>	2014–2016 <i>vs</i>	2017–2019 <i>vs</i>	2011–2013 <i>vs</i>	2014–2016 <i>vs</i>	2017–2019 <i>vs</i>	2011–2013 <i>vs</i>	2014–2016 <i>vs</i>	2017–2019 <i>vs</i>
	2009–2010	2009–2010	2009–2010	2009–2010	2009–2010	2009–2010	2009–2010	2009–2010	2009–2010	2009–2010	2009–2010	2009–2010
The whole of	1.007	1.014	1.017	1.030	1.047	1.037	0.985	1.003	1.030	1.051	1.104	1.174
Japan	(0.971–1.045)	(0.983–1.047)	(0.986–1.049)	(0.994–1.067)	(1.024–1.071)	(1.004–1.070)	(0.957–1.013)	(0.970–1.038)	(0.999–1.062)	(0.979–1.129)	(1.026–1.189)	(1.092–1.263)
Iwate Prefecture	1.056	0.946	0.952	1.187	1.187	1.190	1.129	0.991	1.045	1.057	1.015	1.109
	(0.988–1.127)	(0.899–0.998)	(0.897–1.011)	(0.971–1.480)	(0.973–1.473)	(0.975–1.476)	(1.052–1.214)	(0.917–1.071)	(0.976–1.121)	(0.712–1.705)	(0.688–1.628)	(0.751–1.781)
Miyagi Prefecture	0.991	0.965	0.925	1.126	1.090	1.093	1.071	1.047	1.019	0.997	1.010	1.037
	(0.887–1.107)	(0.872–1.070)	(0.844–1.019)	(1.001–1.266)	(0.986–1.211)	(0.986–1.217)	(0.834–1.413)	(0.825–1.363)	(0.801–1.325)	(0.862–1.160)	(0.876–1.170)	(0.901–1.200)
Fukushima	1.141	1.167	1.137	1.084	1.269	1.247	1.193	1.316	1.324	1.137	1.078	1.121
Prefecture	(1.107–1.175)	(1.141–1.194)	(1.118–1.155)	(1.021–1.155)	(1.194–1.350)	(1.163–1.340)	(1.067–1.319)	(1.289–1.343)	(1.291–1.357)	(1.034–1.244)	(1.031–1.128)	(1.073–1.171)
Hamadori	1.239	1.111	1.134	1.038	1.127	1.078	1.302	1.342	1.249	1.369	1.377	1.535
	(1.113–1.365)	(1.092–1.131)	(1.101–1.168)	(0.855–1.275)	(0.942–1.364)	(0.907–1.302)	(0.963–1.782)	(1.032–1.806)	(0.963–1.679)	(1.031–1.721)	(1.236–1.532)	(1.371–1.714)
Nakadori	0.962	1.063	1.012	1.051	1.389	1.335	1.086	1.360	1.390	1.087	1.041	1.107
	(0.876–1.062)	(0.968–1.175)	(0.920–1.119)	(0.887–1.249)	(1.199–1.632)	(1.147–1.576)	(0.859–1.333)	(1.221–1.521)	(1.254–1.551)	(1.041–1.135)	(0.963–1.121)	(1.079–1.136)
Aizu	1.134	1.121	1.084	0.948	0.984	1.042	1.034	1.210	1.280	1.092	1.110	1.136
	(1.040–1.231)	(1.064–1.181)	(1.025–1.146)	(0.899–0.999)	(0.923–1.048)	(0.986–1.099)	(0.907–1.160)	(1.060–1.364)	(1.232–1.331)	(1.018–1.171)	(1.053–1.171)	(1.072–1.204)
Iwate Prefecture vs the whole of Japan	1.049 (0.972–1.130)	0.933 (0.878–0.992)	0.937 (0.877–1.002)	1.153 (0.940–1.442)	1.134 (0.929–1.410)	1.148 (0.938–1.431)	1.147 (1.063–1.239)	0.988 (0.907–1.076)	1.014 (0.940–1.094)	1.007 (0.672–1.622)	0.921 (0.617–1.482)	0.946 (0.634–1.518)
Miyagi Prefecture vs the whole of Japan	0.984 (0.876–1.104)	0.951 (0.856–1.060)	0.910 (0.827–1.007)	1.094 (0.966–1.237)	1.041 (0.939–1.159)	1.055 (0.946–1.178)	1.088 (0.845–1.434)	1.044 (0.820–1.364)	0.989 (0.778–1.293)	0.950 (0.806–1.122)	0.916 (0.777–1.079)	0.885 (0.753–1.040)
Fukushima Prefecture <i>v</i> s the whole of Japan	1.133 (1.081–1.188)	1.151 (1.107–1.197)	1.118 (1.080–1.158)	1.053 (0.980–1.132)	1.212 (1.136–1.295)	1.203 (1.113–1.298)	1.212 (1.082–1.344)	1.312 (1.260–1.364)	1.286 (1.236–1.338)	1.084 (0.961–1.212)	0.978 (0.897–1.064)	0.956 (0.876–1.040)
Hamadori vs the whole of Japan	1.230	1.096	1.116	1.008	1.076	1.040	1.322	1.338	1.212	1.304	1.249	1.309
	(1.099–1.365)	(1.056–1.136)	(1.069–1.164)	(0.827–1.238)	(0.898–1.305)	(0.870–1.258)	(0.975–1.813)	(1.026–1.805)	(0.932–1.637)	(0.980–1.663)	(1.095–1.420)	(1.143–1.494)
Nakadori <i>vs</i> the whole of Japan	0.955	1.048	0.995	1.021	1.327	1.288	1.104	1.356	1.350	1.036	0.945	0.944
	(0.863–1.062)	(0.948–1.163)	(0.900–1.105)	(0.856–1.217)	(1.142–1.561)	(1.100–1.522)	(0.870–1.355)	(1.211–1.523)	(1.213–1.511)	(0.951–1.123)	(0.847–1.048)	(0.872–1.017)
Aizu <i>vs</i> the whole of Japan	1.126	1.106	1.066	0.921	0.939	1.005	1.050	1.207	1.243	1.040	1.007	0.969
	(1.025–1.231)	(1.041–1.175)	(0.999–1.136)	(0.863–0.981)	(0.877–1.004)	(0.944–1.069)	(0.919–1.183)	(1.053–1.364)	(1.181–1.306)	(0.939–1.147)	(0.919–1.100)	(0.881–1.063)

Table 2. Ratio of age-adjusted prevalence in three time periods to that in 2009–2010 by age groups and sex (Fukushima Prefecture vs the whole of Japan). Arithmetic mean (95% uncertainty interval).

		Hypertension			Hyperlipidemia			Diabetes			Mental disorders	
Ages and sexes	2011–2013 <i>vs</i>	2014–2016 <i>vs</i>	2017–2019 <i>vs</i>	2011–2013 <i>vs</i>	2014–2016 <i>vs</i>	2017–2019 <i>vs</i>	2011–2013 <i>vs</i>	2014–2016 <i>vs</i>	2017–2019 <i>vs</i>	2011–2013 <i>v</i> s	2014–2016 <i>vs</i>	2017–2019 <i>vs</i>
	2009–2010	2009–2010	2009–2010	2009–2010	2009–2010	2009–2010	2009–2010	2009–2010	2009–2010	2009–2010	2009–2010	2009–2010
Males and females	1.133	1.151	1.118	1.053	1.212	1.203	1.212	1.312	1.286	1.084	0.978	0.956
(0–74 y)	(1.081–1.188)	(1.107–1.197)	(1.080–1.158)	(0.980–1.132)	(1.136–1.295)	(1.113–1.298)	(1.082–1.344)	(1.260–1.364)	(1.236–1.338)	(0.961–1.212)	(0.897–1.064)	(0.876–1.040)
Males (0–74 y)	1.037	1.013	0.997	1.067	1.380	1.363	1.035	1.099	1.088	1.015	0.937	0.948
	(0.937–1.143)	(0.950–1.076)	(0.938–1.057)	(0.959–1.180)	(1.311–1.449)	(1.284–1.445)	(0.939–1.131)	(1.039–1.160)	(1.043–1.133)	(0.886–1.155)	(0.820–1.062)	(0.860–1.040)
Females (0–74 y)	1.272	1.324	1.259	1.151	1.219	1.221	1.453	1.577	1.514	1.165	1.089	1.046
	(1.210–1.337)	(1.237–1.415)	(1.197–1.324)	(1.036–1.283)	(1.094–1.368)	(1.091–1.372)	(1.149–1.823)	(1.311–1.919)	(1.272–1.824)	(1.074–1.260)	(1.010–1.171)	(0.970–1.123)
Males and females (0–39 y)	1.023	0.990	1.137	1.037	1.334	1.439	1.285	1.209	1.416	1.019	1.000	1.010
	(0.888–1.182)	(0.862–1.142)	(0.978–1.320)	(0.846–1.270)	(1.129–1.587)	(1.165–1.771)	(1.217–1.357)	(1.107–1.313)	(1.256–1.582)	(0.899–1.143)	(0.872–1.137)	(0.899–1.126)
Males and females (40–74 y)	1.139	1.160	1.117	1.053	1.201	1.182	1.206	1.320	1.280	1.137	0.972	0.928
	(1.084–1.196)	(1.112–1.207)	(1.078–1.157)	(0.985–1.125)	(1.133–1.273)	(1.108–1.261)	(1.068–1.343)	(1.266–1.376)	(1.229–1.330)	(1.003–1.281)	(0.902–1.047)	(0.866–0.994)
Males (0–39 y)	0.945	0.799	0.947	0.924	1.227	1.232	1.044	1.074	1.214	1.050	1.021	1.064
	(0.785–1.139)	(0.677–0.949)	(0.794–1.136)	(0.787–1.064)	(1.136–1.320)	(1.073–1.401)	(0.839–1.321)	(0.850–1.373)	(0.970–1.537)	(0.904–1.208)	(0.851–1.202)	(0.936–1.195)
Males (40–74 y)	1.042	1.026	1.000	1.092	1.404	1.385	1.033	1.099	1.080	0.998	0.890	0.878
	(0.939–1.146)	(0.961–1.091)	(0.939–1.061)	(0.980–1.208)	(1.326–1.482)	(1.303–1.469)	(0.933–1.136)	(1.040–1.160)	(1.035–1.126)	(0.860–1.150)	(0.796–0.997)	(0.791–0.976)
Females (0–39 y)	1.092	1.195	1.216	1.222	1.291	1.505	1.609	1.327	1.605	1.009	1.011	0.994
	(0.858–1.329)	(1.048–1.350)	(1.099–1.337)	(0.777–2.101)	(0.812–2.230)	(0.942–2.594)	(1.131–2.345)	(0.936–1.940)	(1.135–2.340)	(0.900–1.123)	(0.895–1.135)	(0.884–1.112)
Females (40–74 y)	1.280	1.330	1.262	1.149	1.218	1.209	1.441	1.605	1.515	1.283	1.150	1.091
	(1.214–1.350)	(1.237–1.428)	(1.200–1.327)	(1.055–1.257)	(1.112–1.337)	(1.103–1.330)	(1.139–1.806)	(1.347–1.924)	(1.290–1.801)	(1.199–1.371)	(1.069–1.233)	(1.037–1.144)

L		U I	1	
Ages and sexes	Hypertension	Hyperlipidemia	Diabetes	Mental disorders
Males and females (0-74)	1.058 (1.032–1.087)	1.075 (1.013–1.143)	1.038 (1.012–1.066)	1.033 (1.027–1.039)
Males and females (0-39)	1.096 (1.077–1.116)	1.132 (0.997–1.294)	1.042 (1.029–1.055)	1.038 (1.028–1.048)
Males and females (40-74)	1.056 (1.027–1.084)	1.069 (1.017–1.123)	1.038 (1.009–1.069)	1.027 (1.018–1.037)
Males (0-74)	1.050 (1.023–1.077)	1.076 (1.022–1.135)	1.039 (1.015–1.065)	1.035 (1.022–1.048)
Males (0-39)	1.098 (1.072–1.126)	1.143 (1.009–1.309)	1.060 (1.040–1.080)	1.041 (1.032–1.050)
Males (40-74)	1.047 (1.017–1.079)	1.067 (1.024–1.112)	1.037 (1.009–1.066)	1.027 (1.003–1.051)
Males (0–19)	1.044 (1.018–1.070)	1.092 (0.943–1.274)	1.041 (1.011–1.071)	1.002 (0.989–1.016)
Males (20–39)	1.104 (1.074–1.134)	1.146 (1.011–1.310)	1.062 (1.039–1.084)	1.073 (1.054–1.094)
Males (40–64)	1.062 (1.023–1.104)	1.083 (1.029–1.143)	1.053 (1.017–1.090)	1.029 (1.000–1.060)
Males (65–74)	1.013 (1.002–1.025)	1.024 (1.006–1.043)	1.005 (0.979–1.031)	1.013 (0.994–1.034)
Females (0-74)	1.072 (1.047–1.097)	1.071 (1.011–1.139)	1.036 (1.004–1.069)	1.030 (1.022–1.039)
Females (0-39)	1.087 (1.016–1.164)	1.094 (0.984–1.224)	1.020 (0.975–1.069)	1.034 (1.021–1.046)
Females (40–74)	1.071 (1.048–1.094)	1.069 (1.013–1.129)	1.038 (1.008–1.070)	1.027 (1.016–1.038)
Females (0–19)	1.016 (0.935–1.108)	1.016 (0.952–1.086)	0.953 (0.862–1.061)	1.009 (0.997–1.022)
Females (20-39)	1.098 (1.024–1.180)	1.105 (0.984–1.249)	1.031 (0.980–1.084)	1.046 (1.029–1.062)
Females (40–64)	1.088 (1.043–1.135)	1.090 (1.013–1.175)	1.060 (1.007–1.117)	1.027 (1.018–1.036)
Females (65–74)	1.046 (1.013–1.079)	1.035 (1.003–1.067)	1.006 (0.981–1.034)	1.027 (1.004–1.052)

Table 3. Ratio of observed to estimated prevalence in 2020 by age groups and sex (the whole of Japan). Arithmetic mean (95% uncertainty interval).

Supplementary Materials

....

1 0

_

	Table S1.	The nu	umber of disea	ases fron	n 2009 t	o 2020 ((the who	le of Jap	oan, mal	es, and f	emales;	0–74 ye	ears).		
Area	Sex	Ages	Diseases	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020
The whole of Japan	Males and females	0–74	Hypertension	35223	48281	79751	127912	157304	234540	247773	391114	525666	626767	714748	781664
The whole of Japan	Males and females	0–74	Hyperlipidemia	39005	52673	88783	142425	173314	259782	277760	425027	559295	677761	786923	853000
The whole of Japan	Males and females	0–74	Diabetes	21960	29492	48317	75415	91201	137408	147285	233631	314817	379289	434864	468609
The whole of Japan	Males and females	0–74	Mental disorders	32207	44208	75891	112707	133637	203871	220154	334829	456795	564433	643366	677042
The whole of Japan	Males and females	0-74	Any types of diseases	462365	575117	989516	1411998	1641456	2453223	2589088	3791740	5065073	6094545	6815288	6786523

Area	Sex	Ages	Diseases	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020
The whole of Japan	Males and females	0–74	Hypertension	0.102	0.106	0.103	0.105	0.107	0.106	0.104	0.106	0.106	0.105	0.107	0.113
Iwate Prefecture	Males and females	0–74	Hypertension	0.119	0.126	0.125	0.134	0.129	0.117	0.116	0.115	0.114	0.116	0.120	0.120
Miyagi Prefecture	Males and females	0–74	Hypertension	0.128	0.117	0.114	0.126	0.124	0.122	0.120	0.113	0.111	0.114	0.115	0.113
Fukushima Prefecture	Males and females	0–74	Hypertension	0.106	0.104	0.123	0.120	0.117	0.125	0.122	0.121	0.119	0.119	0.121	0.117
Hamadori	Males and females	0–74	Hypertension	0.131	0.130	0.179	0.152	0.156	0.144	0.148	0.144	0.144	0.151	0.150	0.142
Nakadori	Males and females	0–74	Hypertension	0.133	0.120	0.120	0.122	0.122	0.135	0.134	0.134	0.128	0.126	0.129	0.124
Aizu	Males and females	0–74	Hypertension	0.112	0.107	0.117	0.124	0.131	0.124	0.122	0.122	0.121	0.119	0.116	0.116
The whole of Japan	Males and females	0–74	Hyperlipidemia	0.107	0.110	0.109	0.112	0.114	0.114	0.114	0.113	0.111	0.112	0.115	0.121
wate Prefecture	Males and females	0–74	Hyperlipidemia	0.100	0.123	0.125	0.133	0.136	0.130	0.131	0.132	0.128	0.131	0.135	0.131
Miyagi Prefecture	Males and females	0–74	Hyperlipidemia	0.115	0.103	0.115	0.125	0.127	0.120	0.119	0.117	0.115	0.120	0.121	0.117
⁻ ukushima Prefecture	Males and females	0–74	Hyperlipidemia	0.098	0.092	0.104	0.102	0.103	0.120	0.121	0.120	0.116	0.116	0.122	0.119
Hamadori	Males and females	0–74	Hyperlipidemia	0.153	0.128	0.134	0.155	0.146	0.162	0.160	0.150	0.147	0.150	0.154	0.150
Nakadori	Males and females	0–74	Hyperlipidemia	0.106	0.091	0.096	0.103	0.110	0.135	0.137	0.136	0.129	0.128	0.135	0.130
Aizu	Males and females	0–74	Hyperlipidemia	0.121	0.116	0.112	0.109	0.116	0.114	0.114	0.123	0.126	0.119	0.126	0.118
The whole of Japan	Males and females	0–74	Diabetes	0.061	0.063	0.061	0.061	0.062	0.062	0.062	0.064	0.064	0.064	0.065	0.068
Iwate Prefecture	Males and females	0–74	Diabetes	0.059	0.055	0.066	0.065	0.064	0.055	0.056	0.059	0.060	0.060	0.060	0.060
Miyagi Prefecture	Males and females	0–74	Diabetes	0.076	0.059	0.066	0.071	0.076	0.070	0.070	0.067	0.066	0.068	0.068	0.065
Fukushima Prefecture	Males and females	0–74	Diabetes	0.044	0.043	0.047	0.052	0.056	0.057	0.057	0.057	0.057	0.057	0.058	0.056
Hamadori	Males and females	0–74	Diabetes	0.051	0.067	0.065	0.080	0.081	0.080	0.078	0.075	0.072	0.074	0.070	0.070
Nakadori	Males and females	0–74	Diabetes	0.047	0.043	0.042	0.047	0.058	0.059	0.063	0.061	0.062	0.062	0.064	0.060
Aizu	Males and females	0–74	Diabetes	0.049	0.048	0.044	0.051	0.054	0.055	0.054	0.066	0.062	0.060	0.063	0.064
The whole of Japan	Males and females	0–74	Mental disorders	0.075	0.081	0.080	0.082	0.083	0.084	0.086	0.088	0.089	0.091	0.093	0.098

Table S2. Annual age-adjusted prevalence of each disease in Iwate, Miyagi, Fukushima prefectures, Hamadori, Nakadori, Aizu, and the whole of Japan.

Iwate Prefecture	Males and females	0–74	Mental disorders	0.057	0.086	0.077	0.068	0.069	0.067	0.068	0.071	0.072	0.077	0.077	0.078
Miyagi Prefecture	Males and females	0–74	Mental disorders	0.073	0.084	0.075	0.077	0.081	0.077	0.078	0.081	0.080	0.081	0.081	0.081
Fukushima Prefecture	Males and females	0–74	Mental disorders	0.072	0.075	0.090	0.081	0.078	0.077	0.078	0.080	0.081	0.083	0.082	0.082
Hamadori	Males and females	0–74	Mental disorders	0.064	0.069	0.114	0.083	0.078	0.097	0.085	0.094	0.095	0.110	0.103	0.101
Nakadori	Males and females	0–74	Mental disorders	0.088	0.086	0.097	0.096	0.091	0.087	0.087	0.097	0.098	0.096	0.096	0.095
Aizu	Males and females	0–74	Mental disorders	0.081	0.085	0.094	0.087	0.091	0.091	0.094	0.092	0.097	0.092	0.094	0.087
The whole of Japan	Males and females	0–39	Hypertension	0.010	0.010	0.009	0.010	0.010	0.010	0.010	0.010	0.010	0.010	0.010	0.011
Fukushima Prefecture	Males and females	0–39	Hypertension	0.010	0.008	0.009	0.009	0.009	0.009	0.008	0.009	0.009	0.010	0.011	0.010
The whole of Japan	Males and females	0–39	Hyperlipidemia	0.019	0.018	0.018	0.019	0.019	0.019	0.020	0.019	0.019	0.019	0.021	0.023
Fukushima Prefecture	Males and females	0–39	Hyperlipidemia	0.014	0.012	0.012	0.015	0.014	0.018	0.017	0.019	0.018	0.019	0.022	0.022
The whole of Japan	Males and females	0–39	Diabetes	0.009	0.009	0.009	0.009	0.009	0.009	0.009	0.010	0.010	0.011	0.011	0.012
Fukushima Prefecture	Males and females	0–39	Diabetes	0.005	0.005	0.006	0.006	0.006	0.006	0.005	0.006	0.007	0.008	0.008	0.009
The whole of Japan	Males and females	0–39	Mental disorders	0.054	0.060	0.061	0.063	0.064	0.066	0.068	0.071	0.073	0.077	0.080	0.086
Fukushima Prefecture	Males and females	0–39	Mental disorders	0.048	0.049	0.057	0.052	0.053	0.054	0.058	0.062	0.064	0.067	0.066	0.068
The whole of Japan	Males and females	40–74	Hypertension	0.244	0.252	0.246	0.250	0.255	0.253	0.249	0.254	0.252	0.251	0.254	0.268
Fukushima Prefecture	Males and females	40–74	Hypertension	0.253	0.251	0.297	0.289	0.282	0.302	0.296	0.292	0.286	0.286	0.288	0.282
The whole of Japan	Males and females	40–74	Hyperlipidemia	0.242	0.249	0.247	0.255	0.259	0.258	0.258	0.256	0.251	0.252	0.259	0.272
Fukushima Prefecture	Males and females	40–74	Hyperlipidemia	0.225	0.214	0.244	0.235	0.238	0.277	0.278	0.273	0.265	0.265	0.275	0.268
The whole of Japan	Males and females	40–74	Diabetes	0.141	0.145	0.141	0.141	0.142	0.142	0.142	0.146	0.145	0.145	0.147	0.154
Fukushima Prefecture	Males and females	40–74	Diabetes	0.103	0.101	0.110	0.121	0.133	0.136	0.135	0.134	0.132	0.133	0.134	0.129
The whole of Japan	Males and females	40–74	Mental disorders	0.107	0.112	0.110	0.111	0.110	0.111	0.113	0.113	0.113	0.113	0.113	0.117
Fukushima Prefecture	Males and females	40–74	Mental disorders	0.108	0.113	0.140	0.126	0.117	0.114	0.109	0.108	0.106	0.107	0.106	0.103
The whole of Japan	Males	0–74	Hypertension	0.114	0.120	0.117	0.120	0.124	0.125	0.124	0.128	0.128	0.129	0.131	0.139
Fukushima Prefecture	Males	0–74	Hypertension	0.126	0.122	0.142	0.129	0.127	0.136	0.134	0.135	0.136	0.137	0.138	0.135

The whole of Japan	Males	0–74	Hyperlipidemia	0.109	0.113	0.114	0.121	0.125	0.125	0.126	0.126	0.125	0.127	0.131	0.140
Fukushima Prefecture	Males	0–74	Hyperlipidemia	0.081	0.081	0.086	0.096	0.099	0.123	0.127	0.129	0.125	0.125	0.131	0.129
The whole of Japan	Males	0–74	Diabetes	0.073	0.076	0.072	0.072	0.073	0.073	0.074	0.077	0.077	0.078	0.079	0.084
Fukushima Prefecture	Males	0–74	Diabetes	0.059	0.059	0.055	0.059	0.064	0.063	0.066	0.066	0.067	0.067	0.067	0.065
The whole of Japan	Males	0–74	Mental disorders	0.071	0.076	0.077	0.079	0.079	0.081	0.084	0.086	0.088	0.090	0.091	0.097
Fukushima Prefecture	Males	0–74	Mental disorders	0.063	0.066	0.077	0.066	0.067	0.063	0.071	0.073	0.074	0.076	0.074	0.074
The whole of Japan	Males	0–39	Hypertension	0.013	0.013	0.012	0.012	0.012	0.012	0.012	0.012	0.012	0.013	0.013	0.014
Fukushima Prefecture	Males	0–39	Hypertension	0.014	0.012	0.013	0.012	0.011	0.010	0.010	0.010	0.011	0.012	0.013	0.012
The whole of Japan	Males	0–39	Hyperlipidemia	0.024	0.024	0.022	0.024	0.024	0.024	0.025	0.024	0.024	0.025	0.027	0.030
Fukushima Prefecture	Males	0–39	Hyperlipidemia	0.019	0.019	0.015	0.019	0.019	0.023	0.023	0.026	0.023	0.024	0.027	0.028
The whole of Japan	Males	0–39	Diabetes	0.011	0.011	0.010	0.010	0.010	0.010	0.010	0.011	0.011	0.012	0.012	0.013
Fukushima Prefecture	Males	0–39	Diabetes	0.006	0.007	0.006	0.005	0.006	0.006	0.006	0.007	0.007	0.008	0.009	0.009
The whole of Japan	Males	0–39	Mental disorders	0.056	0.062	0.064	0.066	0.068	0.070	0.073	0.076	0.078	0.082	0.084	0.091
- Prefecture	Males	0–39	Mental disorders	0.045	0.044	0.056	0.049	0.051	0.049	0.057	0.061	0.063	0.067	0.065	0.067
The whole of Japan	Males	40–74	Hypertension	0.267	0.283	0.277	0.284	0.295	0.296	0.295	0.304	0.305	0.306	0.311	0.329
Fukushima Prefecture	Males	40–74	Hypertension	0.297	0.290	0.339	0.307	0.304	0.328	0.324	0.327	0.327	0.328	0.329	0.323
The whole of Japan	Males	40–74	Hyperlipidemia	0.238	0.251	0.255	0.270	0.278	0.278	0.281	0.281	0.279	0.283	0.290	0.308
Fukushima Prefecture	Males	40–74	Hyperlipidemia	0.176	0.176	0.195	0.213	0.221	0.277	0.286	0.286	0.282	0.279	0.289	0.282
The whole of Japan	Males	40–74	Diabetes	0.168	0.176	0.168	0.168	0.169	0.171	0.172	0.177	0.178	0.179	0.181	0.190
Fukushima Prefecture	Males	40–74	Diabetes	0.140	0.140	0.131	0.140	0.153	0.150	0.157	0.157	0.158	0.157	0.157	0.151
The whole of Japan	Males	40–74	Mental disorders	0.093	0.098	0.097	0.099	0.097	0.098	0.100	0.102	0.102	0.102	0.102	0.105
Fukushima Prefecture	Males	40–74	Mental disorders	0.091	0.100	0.108	0.094	0.091	0.085	0.091	0.091	0.092	0.090	0.087	0.085
The whole of Japan	Females	0–74	Hypertension	0.087	0.089	0.086	0.086	0.086	0.084	0.082	0.082	0.081	0.079	0.080	0.084
Fukushima Prefecture	Females	0–74	Hypertension	0.088	0.084	0.107	0.108	0.106	0.111	0.108	0.103	0.098	0.099	0.099	0.096

The whole of Japan	Females	0–74	Hyperlipidemia	0.101	0.103	0.100	0.101	0.101	0.100	0.099	0.099	0.095	0.095	0.097	0.102
Fukushima Prefecture	Females	0–74	Hyperlipidemia	0.097	0.087	0.105	0.104	0.103	0.112	0.108	0.106	0.103	0.104	0.109	0.107
The whole of Japan	Females	0–74	Diabetes	0.048	0.049	0.048	0.048	0.048	0.048	0.048	0.049	0.048	0.049	0.049	0.051
Fukushima Prefecture	Females	0–74	Diabetes	0.033	0.027	0.037	0.044	0.049	0.050	0.046	0.045	0.044	0.046	0.047	0.046
The whole of Japan	Females	0–74	Mental disorders	0.080	0.084	0.084	0.085	0.087	0.087	0.088	0.090	0.091	0.093	0.095	0.100
Fukushima Prefecture	Females	0–74	Mental disorders	0.074	0.076	0.093	0.093	0.087	0.091	0.086	0.089	0.087	0.091	0.091	0.091
The whole of Japan	Females	0–39	Hypertension	0.006	0.006	0.006	0.007	0.007	0.007	0.007	0.007	0.007	0.007	0.007	0.008
Fukushima Prefecture	Females	0–39	Hypertension	0.006	0.006	0.006	0.006	0.008	0.007	0.007	0.009	0.007	0.008	0.008	0.007
The whole of Japan	Females	0–39	Hyperlipidemia	0.013	0.013	0.012	0.013	0.013	0.013	0.013	0.014	0.013	0.013	0.014	0.015
Fukushima Prefecture	Females	0–39	Hyperlipidemia	0.011	0.007	0.010	0.011	0.009	0.013	0.011	0.010	0.012	0.013	0.015	0.015
The whole of Japan	Females	0–39	Diabetes	0.008	0.008	0.008	0.008	0.008	0.008	0.009	0.009	0.009	0.009	0.010	0.010
Fukushima Prefecture	Females	0–39	Diabetes	0.004	0.003	0.005	0.007	0.006	0.006	0.005	0.005	0.006	0.007	0.008	0.009
The whole of Japan	Females	0–39	Mental disorders	0.053	0.057	0.057	0.059	0.061	0.062	0.063	0.066	0.068	0.072	0.075	0.080
Fukushima Prefecture	Females	0–39	Mental disorders	0.051	0.054	0.058	0.056	0.055	0.059	0.059	0.063	0.066	0.069	0.067	0.069
The whole of Japan	Females	40–74	Hypertension	0.210	0.215	0.208	0.208	0.206	0.202	0.196	0.196	0.193	0.190	0.191	0.202
Fukushima Prefecture	Females	40–74	Hypertension	0.213	0.204	0.262	0.265	0.256	0.269	0.261	0.247	0.237	0.237	0.238	0.232
The whole of Japan	Females	40–74	Hyperlipidemia	0.236	0.240	0.234	0.235	0.235	0.233	0.229	0.229	0.221	0.220	0.224	0.234
Fukushima Prefecture	Females	40–74	Hyperlipidemia	0.228	0.209	0.250	0.245	0.246	0.263	0.257	0.251	0.241	0.242	0.253	0.248
The whole of Japan	Females	40–74	Diabetes	0.109	0.112	0.110	0.109	0.110	0.109	0.108	0.110	0.108	0.108	0.110	0.113
Fukushima Prefecture	Females	40–74	Diabetes	0.076	0.065	0.086	0.101	0.114	0.117	0.109	0.105	0.102	0.105	0.106	0.102
The whole of Japan	Females	40–74	Mental disorders	0.120	0.125	0.123	0.126	0.126	0.126	0.127	0.127	0.126	0.126	0.127	0.130
Fukushima Prefecture	Females	40–74	Mental disorders	0.110	0.111	0.146	0.150	0.138	0.139	0.127	0.127	0.121	0.126	0.127	0.123

			2015	10 2020.					
Area	Sex	Ages	Diseases	2015	2016	2017	2018	2019	2020
The whole of Japan	Males and females	0–39	Hypertension	0.010	0.010	0.010	0.010	0.010	0.011
The whole of Japan	Males and females	40–74	Hypertension	0.249	0.254	0.252	0.251	0.254	0.268
The whole of Japan	Males and females	0–74	Hypertension	0.104	0.106	0.106	0.105	0.107	0.113
The whole of Japan	Males	0–39	Hypertension	0.012	0.012	0.012	0.013	0.013	0.014
The whole of Japan	Males	40–74	Hypertension	0.295	0.304	0.305	0.306	0.311	0.329
The whole of Japan	Males	0–74	Hypertension	0.124	0.128	0.128	0.129	0.131	0.139
The whole of Japan	Males	0–19	Hypertension	0.002	0.002	0.002	0.002	0.002	0.003
The whole of Japan	Males	20–39	Hypertension	0.021	0.021	0.022	0.022	0.022	0.025
The whole of Japan	Males	40–64	Hypertension	0.245	0.254	0.255	0.255	0.259	0.278
The whole of Japan	Males	65–74	Hypertension	0.529	0.539	0.545	0.548	0.555	0.568
The whole of Japan	Females	0–39	Hypertension	0.007	0.007	0.007	0.007	0.007	0.008
The whole of Japan	Females	40–74	Hypertension	0.196	0.196	0.193	0.190	0.191	0.202
The whole of Japan	Females	0–74	Hypertension	0.082	0.082	0.081	0.079	0.080	0.084
The whole of Japan	Females	0–19	Hypertension	0.001	0.002	0.002	0.002	0.002	0.002
The whole of Japan	Females	20–39	Hypertension	0.012	0.012	0.012	0.012	0.012	0.013
The whole of Japan	Females	40–64	Hypertension	0.136	0.139	0.137	0.135	0.137	0.148
The whole of Japan	Females	65–74	Hypertension	0.481	0.466	0.457	0.452	0.448	0.457
The whole of Japan	Males and females	0–39	Hyperlipidemia	0.020	0.019	0.019	0.019	0.021	0.023
The whole of Japan	Males and females	40–74	Hyperlipidemia	0.258	0.256	0.251	0.252	0.259	0.272
The whole of Japan	Males and females	0–74	Hyperlipidemia	0.114	0.113	0.111	0.112	0.115	0.121
The whole of Japan	Males	0–39	Hyperlipidemia	0.025	0.024	0.024	0.025	0.027	0.030

Table S3. Annual age-adjusted prevalence of each disease in the whole of Japan by age groups and sex and 47 prefectures (males, 0–39 years) from 2015 to 2020.

The whole of Japan	Males	40–74	Hyperlipidemia	0.281	0.281	0.279	0.283	0.290	0.308
The whole of Japan	Males	0–74	Hyperlipidemia	0.126	0.126	0.125	0.127	0.131	0.140
The whole of Japan	Males	0–19	Hyperlipidemia	0.003	0.003	0.003	0.003	0.003	0.004
The whole of Japan	Males	20–39	Hyperlipidemia	0.045	0.044	0.043	0.046	0.049	0.055
The whole of Japan	Males	40–64	Hyperlipidemia	0.252	0.252	0.247	0.251	0.258	0.277
The whole of Japan	Males	65–74	Hyperlipidemia	0.420	0.421	0.427	0.434	0.441	0.456
The whole of Japan	Females	0–39	Hyperlipidemia	0.013	0.014	0.013	0.013	0.014	0.015
The whole of Japan	Females	40–74	Hyperlipidemia	0.229	0.229	0.221	0.220	0.224	0.234
The whole of Japan	Females	0–74	Hyperlipidemia	0.099	0.099	0.095	0.095	0.097	0.102
The whole of Japan	Females	0–19	Hyperlipidemia	0.003	0.003	0.003	0.003	0.003	0.003
The whole of Japan	Females	20–39	Hyperlipidemia	0.023	0.023	0.022	0.023	0.025	0.027
The whole of Japan	Females	40–64	Hyperlipidemia	0.171	0.172	0.165	0.164	0.169	0.179
The whole of Japan	Females	65–74	Hyperlipidemia	0.506	0.496	0.486	0.484	0.484	0.491
The whole of Japan	Males and females	0–39	Diabetes	0.009	0.010	0.010	0.011	0.011	0.012
The whole of Japan	Males and females	40–74	Diabetes	0.142	0.146	0.145	0.145	0.147	0.154
The whole of Japan	Males and females	0–74	Diabetes	0.062	0.064	0.064	0.064	0.065	0.068
The whole of Japan	Males	0–39	Diabetes	0.010	0.011	0.011	0.012	0.012	0.013
The whole of Japan	Males	40–74	Diabetes	0.172	0.177	0.178	0.179	0.181	0.190
The whole of Japan	Males	0–74	Diabetes	0.074	0.077	0.077	0.078	0.079	0.084
The whole of Japan	Males	0–19	Diabetes	0.002	0.002	0.002	0.002	0.002	0.003
The whole of Japan	Males	20–39	Diabetes	0.018	0.018	0.019	0.020	0.021	0.024
The whole of Japan	Males	40–64	Diabetes	0.141	0.146	0.146	0.147	0.150	0.160
The whole of Japan	Males	65–74	Diabetes	0.318	0.323	0.330	0.328	0.331	0.337
The whole of Japan	Females	0–39	Diabetes	0.009	0.009	0.009	0.009	0.010	0.010

The whole of Japan	Females	40–74	Diabetes	0.108	0.110	0.108	0.108	0.110	0.113
The whole of Japan	Females	0–74	Diabetes	0.048	0.049	0.048	0.049	0.049	0.051
The whole of Japan	Females	0–19	Diabetes	0.002	0.002	0.002	0.002	0.003	0.003
The whole of Japan	Females	20–39	Diabetes	0.015	0.016	0.016	0.016	0.017	0.017
The whole of Japan	Females	40–64	Diabetes	0.076	0.079	0.078	0.077	0.079	0.084
The whole of Japan	Females	65–74	Diabetes	0.257	0.254	0.251	0.254	0.252	0.252
The whole of Japan	Males and females	0–39	Mental disorders	0.068	0.071	0.073	0.077	0.080	0.086
The whole of Japan	Males and females	40–74	Mental disorders	0.113	0.113	0.113	0.113	0.113	0.117
The whole of Japan	Males and females	0–74	Mental disorders	0.086	0.088	0.089	0.091	0.093	0.098
The whole of Japan	Males	0–39	Mental disorders	0.073	0.076	0.078	0.082	0.084	0.091
The whole of Japan	Males	40–74	Mental disorders	0.100	0.102	0.102	0.102	0.102	0.105
The whole of Japan	Males	0–74	Mental disorders	0.084	0.086	0.088	0.090	0.091	0.097
The whole of Japan	Males	0–19	Mental disorders	0.064	0.067	0.071	0.075	0.079	0.083
The whole of Japan	Males	20–39	Mental disorders	0.081	0.084	0.085	0.088	0.089	0.098
The whole of Japan	Males	40–64	Mental disorders	0.101	0.104	0.104	0.105	0.104	0.109
The whole of Japan	Males	65–74	Mental disorders	0.095	0.092	0.092	0.090	0.088	0.088
The whole of Japan	Females	0–39	Mental disorders	0.063	0.066	0.068	0.072	0.075	0.080
The whole of Japan	Females	40–74	Mental disorders	0.127	0.127	0.126	0.126	0.127	0.130
The whole of Japan	Females	0–74	Mental disorders	0.088	0.090	0.091	0.093	0.095	0.100
The whole of Japan	Females	0–19	Mental disorders	0.040	0.042	0.045	0.048	0.050	0.053
The whole of Japan	Females	20–39	Mental disorders	0.085	0.088	0.090	0.094	0.098	0.106
The whole of Japan	Females	40–64	Mental disorders	0.117	0.119	0.119	0.120	0.122	0.126
The whole of Japan	Females	65–74	Mental disorders	0.171	0.167	0.160	0.153	0.148	0.146
Hokkaido Prefecture	Males	0–39	Hypertension	0.009	0.011	0.011	0.012	0.012	0.012

Aomori Prefecture	Males	0–39	Hypertension	0.014	0.011	0.011	0.011	0.011	0.013
Iwate Prefecture	Males	0–39	Hypertension	0.012	0.011	0.010	0.012	0.013	0.013
Miyagi Prefecture	Males	0–39	Hypertension	0.012	0.012	0.011	0.012	0.012	0.012
Akita Prefecture	Males	0–39	Hypertension	0.015	0.011	0.010	0.012	0.013	0.012
Yamagata Prefecture	Males	0–39	Hypertension	0.011	0.011	0.015	0.016	0.017	0.015
Fukushima Prefecture	Males	0–39	Hypertension	0.010	0.010	0.011	0.012	0.013	0.012
Ibaraki Prefecture	Males	0–39	Hypertension	0.010	0.010	0.010	0.010	0.011	0.012
Tochigi Prefecture	Males	0–39	Hypertension	0.011	0.012	0.012	0.014	0.013	0.013
Gunma Prefecture	Males	0–39	Hypertension	0.012	0.010	0.009	0.010	0.010	0.011
Saitama Prefecture	Males	0–39	Hypertension	0.008	0.008	0.008	0.008	0.008	0.009
Chiba Prefecture	Males	0–39	Hypertension	0.009	0.009	0.009	0.010	0.009	0.009
Tokyo Metropolitan Government	Males	0–39	Hypertension	0.009	0.009	0.008	0.009	0.009	0.009
Kanagawa Prefecture	Males	0–39	Hypertension	0.009	0.008	0.009	0.009	0.009	0.009
Niigata Prefecture	Males	0–39	Hypertension	0.007	0.008	0.008	0.010	0.011	0.013
Toyama Prefecture	Males	0–39	Hypertension	0.012	0.010	0.012	0.012	0.011	0.013
Ishikawa Prefecture	Males	0–39	Hypertension	0.010	0.011	0.011	0.010	0.011	0.012
Fukui Prefecture	Males	0–39	Hypertension	0.009	0.008	0.008	0.010	0.011	0.013
Yamanashi Prefecture	Males	0–39	Hypertension	0.008	0.010	0.008	0.008	0.009	0.009
Nagano Prefecture	Males	0–39	Hypertension	0.011	0.012	0.011	0.012	0.012	0.012
Gifu Prefecture	Males	0–39	Hypertension	0.008	0.008	0.007	0.008	0.008	0.008
Shizuoka Prefecture	Males	0–39	Hypertension	0.010	0.010	0.010	0.010	0.010	0.010
Aichi Prefecture	Males	0–39	Hypertension	0.009	0.009	0.009	0.009	0.010	0.009
Mie Prefecture	Males	0–39	Hypertension	0.008	0.008	0.008	0.009	0.008	0.009
Shiga Prefecture	Males	0–39	Hypertension	0.011	0.008	0.009	0.009	0.009	0.010

Kyoto Prefecture	Males	0–39	Hypertension	0.008	0.008	0.007	0.007	0.008	0.008
Osaka Prefecture	Males	0–39	Hypertension	0.010	0.010	0.009	0.009	0.009	0.009
Hyogo Prefecture	Males	0–39	Hypertension	0.008	0.007	0.008	0.007	0.008	0.008
Nara Prefecture	Males	0–39	Hypertension	0.007	0.008	0.008	0.009	0.007	0.008
Wakayama Prefecture	Males	0–39	Hypertension	0.008	0.006	0.009	0.008	0.010	0.009
Tottori Prefecture	Males	0–39	Hypertension	0.010	0.008	0.007	0.009	0.009	0.011
Shimane Prefecture	Males	0–39	Hypertension	0.004	0.010	0.008	0.012	0.012	0.012
Okayama Prefecture	Males	0–39	Hypertension	0.009	0.009	0.009	0.009	0.010	0.010
Hiroshima Prefecture	Males	0–39	Hypertension	0.009	0.009	0.008	0.009	0.009	0.009
Yamaguchi Prefecture	Males	0–39	Hypertension	0.008	0.008	0.008	0.008	0.008	0.010
Tokushima Prefecture	Males	0–39	Hypertension	0.006	0.013	0.008	0.008	0.009	0.010
Kagawa Prefecture	Males	0–39	Hypertension	0.010	0.010	0.009	0.010	0.010	0.010
Ehime Prefecture	Males	0–39	Hypertension	0.007	0.008	0.007	0.009	0.008	0.009
Kochi Prefecture	Males	0–39	Hypertension	0.007	0.006	0.007	0.007	0.007	0.007
Fukuoka Prefecture	Males	0–39	Hypertension	0.008	0.009	0.009	0.009	0.010	0.009
Saga Prefecture	Males	0–39	Hypertension	0.010	0.010	0.010	0.008	0.008	0.010
Nagasaki Prefecture	Males	0–39	Hypertension	0.008	0.009	0.011	0.012	0.011	0.010
Kumamoto Prefecture	Males	0–39	Hypertension	0.008	0.009	0.010	0.010	0.011	0.011
Oita Prefecture	Males	0–39	Hypertension	0.010	0.011	0.009	0.009	0.010	0.009
Miyazaki Prefecture	Males	0–39	Hypertension	0.007	0.008	0.008	0.010	0.009	0.011
Kagoshima Prefecture	Males	0–39	Hypertension	0.010	0.008	0.008	0.008	0.009	0.010
Okinawa Prefecture	Males	0–39	Hypertension	0.009	0.015	0.012	0.012	0.013	0.013
Hokkaido Prefecture	Males	0–39	Hyperlipidemia	0.024	0.024	0.022	0.023	0.025	0.024
Aomori Prefecture	Males	0–39	Hyperlipidemia	0.023	0.021	0.021	0.020	0.024	0.023

Iwate Prefecture	Males	0–39	Hyperlipidemia	0.026	0.027	0.025	0.030	0.032	0.031
Miyagi Prefecture	Males	0–39	Hyperlipidemia	0.024	0.025	0.022	0.027	0.027	0.026
Akita Prefecture	Males	0–39	Hyperlipidemia	0.031	0.032	0.024	0.025	0.034	0.030
Yamagata Prefecture	Males	0–39	Hyperlipidemia	0.022	0.025	0.030	0.033	0.037	0.036
Fukushima Prefecture	Males	0–39	Hyperlipidemia	0.023	0.026	0.023	0.024	0.027	0.028
Ibaraki Prefecture	Males	0–39	Hyperlipidemia	0.023	0.022	0.021	0.020	0.021	0.021
Tochigi Prefecture	Males	0–39	Hyperlipidemia	0.032	0.030	0.027	0.028	0.028	0.029
Gunma Prefecture	Males	0–39	Hyperlipidemia	0.021	0.023	0.020	0.021	0.024	0.024
Saitama Prefecture	Males	0–39	Hyperlipidemia	0.016	0.014	0.013	0.015	0.016	0.016
Chiba Prefecture	Males	0–39	Hyperlipidemia	0.017	0.016	0.015	0.016	0.016	0.017
Tokyo Metropolitan Government	Males	0–39	Hyperlipidemia	0.017	0.018	0.016	0.017	0.018	0.019
Kanagawa Prefecture	Males	0–39	Hyperlipidemia	0.017	0.016	0.015	0.017	0.018	0.018
Niigata Prefecture	Males	0–39	Hyperlipidemia	0.022	0.024	0.023	0.026	0.030	0.031
Toyama Prefecture	Males	0–39	Hyperlipidemia	0.025	0.025	0.023	0.022	0.024	0.024
Ishikawa Prefecture	Males	0–39	Hyperlipidemia	0.021	0.019	0.017	0.018	0.022	0.022
Fukui Prefecture	Males	0–39	Hyperlipidemia	0.024	0.023	0.016	0.018	0.025	0.027
Yamanashi Prefecture	Males	0–39	Hyperlipidemia	0.017	0.019	0.016	0.017	0.016	0.015
Nagano Prefecture	Males	0–39	Hyperlipidemia	0.025	0.027	0.025	0.024	0.025	0.028
Gifu Prefecture	Males	0–39	Hyperlipidemia	0.015	0.016	0.014	0.017	0.019	0.020
Shizuoka Prefecture	Males	0–39	Hyperlipidemia	0.020	0.021	0.019	0.021	0.024	0.026
Aichi Prefecture	Males	0–39	Hyperlipidemia	0.018	0.019	0.019	0.020	0.022	0.023
Mie Prefecture	Males	0–39	Hyperlipidemia	0.014	0.014	0.014	0.018	0.018	0.018
Shiga Prefecture	Males	0–39	Hyperlipidemia	0.015	0.016	0.015	0.016	0.017	0.019
Kyoto Prefecture	Males	0–39	Hyperlipidemia	0.017	0.015	0.016	0.015	0.015	0.017

Osaka Prefecture	Males	0–39	Hyperlipidemia	0.018	0.018	0.017	0.017	0.017	0.017
Hyogo Prefecture	Males	0–39	Hyperlipidemia	0.016	0.014	0.014	0.015	0.018	0.018
Nara Prefecture	Males	0–39	Hyperlipidemia	0.014	0.014	0.011	0.013	0.013	0.014
Wakayama Prefecture	Males	0–39	Hyperlipidemia	0.016	0.017	0.018	0.016	0.016	0.017
Tottori Prefecture	Males	0–39	Hyperlipidemia	0.026	0.018	0.019	0.017	0.019	0.021
Shimane Prefecture	Males	0–39	Hyperlipidemia	0.014	0.020	0.022	0.024	0.027	0.026
Okayama Prefecture	Males	0–39	Hyperlipidemia	0.021	0.019	0.020	0.019	0.020	0.023
Hiroshima Prefecture	Males	0–39	Hyperlipidemia	0.017	0.018	0.017	0.018	0.019	0.019
Yamaguchi Prefecture	Males	0–39	Hyperlipidemia	0.013	0.013	0.012	0.015	0.017	0.018
Tokushima Prefecture	Males	0–39	Hyperlipidemia	0.016	0.022	0.014	0.020	0.018	0.019
Kagawa Prefecture	Males	0–39	Hyperlipidemia	0.017	0.019	0.018	0.018	0.022	0.022
Ehime Prefecture	Males	0–39	Hyperlipidemia	0.016	0.017	0.017	0.017	0.020	0.022
Kochi Prefecture	Males	0–39	Hyperlipidemia	0.018	0.011	0.012	0.015	0.016	0.017
Fukuoka Prefecture	Males	0–39	Hyperlipidemia	0.015	0.017	0.015	0.018	0.019	0.019
Saga Prefecture	Males	0–39	Hyperlipidemia	0.034	0.025	0.023	0.027	0.025	0.025
Nagasaki Prefecture	Males	0–39	Hyperlipidemia	0.014	0.015	0.016	0.019	0.019	0.021
Kumamoto Prefecture	Males	0–39	Hyperlipidemia	0.019	0.021	0.020	0.019	0.022	0.022
Oita Prefecture	Males	0–39	Hyperlipidemia	0.018	0.014	0.016	0.019	0.020	0.021
Miyazaki Prefecture	Males	0–39	Hyperlipidemia	0.016	0.015	0.017	0.022	0.022	0.025
Kagoshima Prefecture	Males	0–39	Hyperlipidemia	0.021	0.018	0.016	0.017	0.022	0.020
Okinawa Prefecture	Males	0–39	Hyperlipidemia	0.016	0.017	0.016	0.017	0.018	0.017
Hokkaido Prefecture	Males	0–39	Diabetes	0.013	0.013	0.013	0.014	0.014	0.013
Aomori Prefecture	Males	0–39	Diabetes	0.009	0.009	0.011	0.010	0.012	0.013
Iwate Prefecture	Males	0–39	Diabetes	0.007	0.006	0.008	0.008	0.008	0.009

Miyagi Prefecture	Males	0–39	Diabetes	0.010	0.011	0.010	0.011	0.010	0.010
Akita Prefecture	Males	0–39	Diabetes	0.009	0.009	0.008	0.008	0.010	0.010
Yamagata Prefecture	Males	0–39	Diabetes	0.010	0.010	0.010	0.013	0.015	0.013
Fukushima Prefecture	Males	0–39	Diabetes	0.006	0.007	0.007	0.008	0.009	0.009
Ibaraki Prefecture	Males	0–39	Diabetes	0.008	0.009	0.010	0.009	0.010	0.010
Tochigi Prefecture	Males	0–39	Diabetes	0.009	0.010	0.010	0.011	0.010	0.012
Gunma Prefecture	Males	0–39	Diabetes	0.008	0.009	0.009	0.011	0.010	0.010
Saitama Prefecture	Males	0–39	Diabetes	0.006	0.007	0.007	0.007	0.007	0.008
Chiba Prefecture	Males	0–39	Diabetes	0.009	0.009	0.008	0.009	0.009	0.009
Tokyo Metropolitan Government	Males	0–39	Diabetes	0.008	0.008	0.009	0.009	0.009	0.010
Kanagawa Prefecture	Males	0–39	Diabetes	0.007	0.007	0.007	0.009	0.009	0.009
Niigata Prefecture	Males	0–39	Diabetes	0.006	0.006	0.008	0.009	0.010	0.010
Toyama Prefecture	Males	0–39	Diabetes	0.010	0.010	0.010	0.009	0.010	0.010
Ishikawa Prefecture	Males	0–39	Diabetes	0.008	0.010	0.008	0.009	0.011	0.011
Fukui Prefecture	Males	0–39	Diabetes	0.006	0.008	0.007	0.009	0.010	0.011
Yamanashi Prefecture	Males	0–39	Diabetes	0.008	0.008	0.008	0.009	0.009	0.009
Nagano Prefecture	Males	0–39	Diabetes	0.008	0.007	0.008	0.008	0.008	0.008
Gifu Prefecture	Males	0–39	Diabetes	0.007	0.007	0.007	0.008	0.008	0.008
Shizuoka Prefecture	Males	0–39	Diabetes	0.009	0.009	0.009	0.010	0.011	0.011
Aichi Prefecture	Males	0–39	Diabetes	0.007	0.007	0.008	0.008	0.009	0.009
Mie Prefecture	Males	0–39	Diabetes	0.007	0.006	0.007	0.008	0.008	0.008
Shiga Prefecture	Males	0–39	Diabetes	0.007	0.008	0.007	0.007	0.009	0.009
Kyoto Prefecture	Males	0–39	Diabetes	0.006	0.006	0.006	0.006	0.007	0.007
Osaka Prefecture	Males	0–39	Diabetes	0.008	0.009	0.008	0.009	0.009	0.009

Hyogo Prefecture	Males	0–39	Diabetes	0.007	0.007	0.008	0.008	0.009	0.008
Nara Prefecture	Males	0–39	Diabetes	0.005	0.004	0.006	0.006	0.007	0.007
Wakayama Prefecture	Males	0–39	Diabetes	0.006	0.006	0.008	0.007	0.007	0.008
Tottori Prefecture	Males	0–39	Diabetes	0.005	0.005	0.008	0.009	0.009	0.008
Shimane Prefecture	Males	0–39	Diabetes	0.007	0.009	0.008	0.009	0.010	0.011
Okayama Prefecture	Males	0–39	Diabetes	0.007	0.006	0.008	0.008	0.008	0.009
Hiroshima Prefecture	Males	0–39	Diabetes	0.010	0.011	0.012	0.011	0.012	0.012
Yamaguchi Prefecture	Males	0–39	Diabetes	0.007	0.007	0.007	0.007	0.009	0.009
Tokushima Prefecture	Males	0–39	Diabetes	0.007	0.011	0.008	0.011	0.010	0.012
Kagawa Prefecture	Males	0–39	Diabetes	0.008	0.009	0.011	0.010	0.010	0.009
Ehime Prefecture	Males	0–39	Diabetes	0.005	0.007	0.007	0.008	0.009	0.010
Kochi Prefecture	Males	0–39	Diabetes	0.005	0.004	0.004	0.007	0.006	0.006
Fukuoka Prefecture	Males	0–39	Diabetes	0.007	0.007	0.008	0.008	0.009	0.009
Saga Prefecture	Males	0–39	Diabetes	0.006	0.005	0.005	0.007	0.006	0.007
Nagasaki Prefecture	Males	0–39	Diabetes	0.008	0.008	0.009	0.010	0.010	0.013
Kumamoto Prefecture	Males	0–39	Diabetes	0.008	0.008	0.008	0.009	0.009	0.010
Oita Prefecture	Males	0–39	Diabetes	0.008	0.008	0.007	0.009	0.011	0.010
Miyazaki Prefecture	Males	0–39	Diabetes	0.005	0.007	0.010	0.012	0.011	0.010
Kagoshima Prefecture	Males	0–39	Diabetes	0.008	0.007	0.008	0.009	0.009	0.010
Okinawa Prefecture	Males	0–39	Diabetes	0.006	0.009	0.006	0.006	0.008	0.008
Hokkaido Prefecture	Males	0–39	Mental disorders	0.065	0.069	0.067	0.071	0.073	0.073
Aomori Prefecture	Males	0–39	Mental disorders	0.059	0.057	0.058	0.058	0.062	0.062
Iwate Prefecture	Males	0–39	Mental disorders	0.046	0.052	0.053	0.059	0.060	0.063
Miyagi Prefecture	Males	0–39	Mental disorders	0.061	0.062	0.061	0.064	0.065	0.066

Akita Prefecture	Males	0–39	Mental disorders	0.060	0.061	0.060	0.065	0.067	0.071
Yamagata Prefecture	Males	0–39	Mental disorders	0.054	0.058	0.056	0.063	0.062	0.064
Fukushima Prefecture	Males	0–39	Mental disorders	0.057	0.061	0.063	0.067	0.065	0.067
Ibaraki Prefecture	Males	0–39	Mental disorders	0.049	0.050	0.052	0.053	0.057	0.062
Tochigi Prefecture	Males	0–39	Mental disorders	0.060	0.062	0.063	0.068	0.070	0.069
Gunma Prefecture	Males	0–39	Mental disorders	0.048	0.051	0.055	0.060	0.062	0.060
Saitama Prefecture	Males	0–39	Mental disorders	0.050	0.052	0.054	0.057	0.059	0.059
Chiba Prefecture	Males	0–39	Mental disorders	0.050	0.054	0.054	0.057	0.060	0.060
Tokyo Metropolitan Government	Males	0–39	Mental disorders	0.070	0.073	0.072	0.077	0.080	0.078
Kanagawa Prefecture	Males	0–39	Mental disorders	0.057	0.059	0.061	0.065	0.068	0.068
Niigata Prefecture	Males	0–39	Mental disorders	0.047	0.057	0.060	0.064	0.069	0.073
Toyama Prefecture	Males	0–39	Mental disorders	0.058	0.057	0.061	0.061	0.067	0.068
Ishikawa Prefecture	Males	0–39	Mental disorders	0.049	0.051	0.058	0.057	0.057	0.062
Fukui Prefecture	Males	0–39	Mental disorders	0.049	0.054	0.049	0.053	0.057	0.069
Yamanashi Prefecture	Males	0–39	Mental disorders	0.054	0.058	0.057	0.056	0.065	0.063
Nagano Prefecture	Males	0–39	Mental disorders	0.070	0.075	0.075	0.079	0.083	0.086
Gifu Prefecture	Males	0–39	Mental disorders	0.056	0.057	0.059	0.063	0.065	0.064
Shizuoka Prefecture	Males	0–39	Mental disorders	0.062	0.065	0.066	0.070	0.071	0.071
Aichi Prefecture	Males	0–39	Mental disorders	0.064	0.065	0.066	0.068	0.072	0.070
Mie Prefecture	Males	0–39	Mental disorders	0.053	0.052	0.053	0.055	0.057	0.057
Shiga Prefecture	Males	0–39	Mental disorders	0.058	0.058	0.052	0.050	0.054	0.051
Kyoto Prefecture	Males	0–39	Mental disorders	0.051	0.049	0.048	0.054	0.057	0.058
Osaka Prefecture	Males	0–39	Mental disorders	0.056	0.061	0.061	0.065	0.068	0.067
Hyogo Prefecture	Males	0–39	Mental disorders	0.056	0.058	0.059	0.063	0.066	0.065

Nara Prefecture	Males	0–39	Mental disorders	0.051	0.056	0.059	0.062	0.063	0.068
Wakayama Prefecture	Males	0–39	Mental disorders	0.053	0.061	0.060	0.062	0.068	0.069
Tottori Prefecture	Males	0–39	Mental disorders	0.074	0.071	0.064	0.067	0.073	0.076
Shimane Prefecture	Males	0–39	Mental disorders	0.051	0.060	0.057	0.059	0.069	0.068
Okayama Prefecture	Males	0–39	Mental disorders	0.076	0.083	0.083	0.082	0.085	0.081
Hiroshima Prefecture	Males	0–39	Mental disorders	0.067	0.070	0.068	0.070	0.075	0.073
Yamaguchi Prefecture	Males	0–39	Mental disorders	0.054	0.056	0.058	0.062	0.061	0.066
Tokushima Prefecture	Males	0–39	Mental disorders	0.059	0.065	0.071	0.068	0.075	0.076
Kagawa Prefecture	Males	0–39	Mental disorders	0.057	0.069	0.068	0.073	0.073	0.072
Ehime Prefecture	Males	0–39	Mental disorders	0.044	0.051	0.048	0.056	0.057	0.058
Kochi Prefecture	Males	0–39	Mental disorders	0.045	0.046	0.050	0.052	0.061	0.059
Fukuoka Prefecture	Males	0–39	Mental disorders	0.052	0.055	0.055	0.060	0.062	0.062
Saga Prefecture	Males	0–39	Mental disorders	0.051	0.058	0.058	0.065	0.068	0.073
Nagasaki Prefecture	Males	0–39	Mental disorders	0.060	0.068	0.067	0.071	0.075	0.074
Kumamoto Prefecture	Males	0–39	Mental disorders	0.053	0.057	0.060	0.062	0.066	0.064
Oita Prefecture	Males	0–39	Mental disorders	0.054	0.057	0.059	0.060	0.067	0.066
Miyazaki Prefecture	Males	0–39	Mental disorders	0.053	0.055	0.052	0.055	0.057	0.060
Kagoshima Prefecture	Males	0–39	Mental disorders	0.049	0.050	0.049	0.054	0.052	0.053
Okinawa Prefecture	Males	0–39	Mental disorders	0.046	0.053	0.057	0.058	0.060	0.061

Prefectures	Population density (persons/km ²)	COVID-19 infection rate (10 ⁻⁵ /y)
Hokkaido Prefecture	63.1	255.1
Aomori Prefecture	132.3	37.8
Iwate Prefecture	80.9	31.2
Miyagi Prefecture	314.8	95.6
Akita Prefecture	84.7	14.2
Yamagata Prefecture	116.1	35.8
Fukushima Prefecture	136.5	50.2
Ibaraki Prefecture	479.1	83.7
Tochigi Prefecture	306.7	75.2
Gunma Prefecture	309.5	117.5
Saitama Prefecture	1945.9	193.5
Chiba Prefecture	1225.3	175.4
Tokyo Metropolitan Government	6305.6	435.8
Kanagawa Prefecture	3811.4	230.9
Niigata Prefecture	177.7	24.3
Toyama Prefecture	248.6	53.1
Ishikawa Prefecture	272.2	94.0
Fukui Prefecture	186.1	45.5
Yamanashi Prefecture	185.1	69.1
Nagano Prefecture	153.9	56.7
Gifu Prefecture	191.4	112.8
Shizuoka Prefecture	476.8	72.4

Table S4. Population density	z and COVID-19 in	nfection rate in 202	0 in each prefecture
Table 57. Topulation density		11100110111400111202	0 m cach protocture.

Aichi Prefecture	1464.4	218.7
Mie Prefecture	314.1	71.2
Shiga Prefecture	353.7	83.2
Kyoto Prefecture	552.0	188.9
Osaka Prefecture	4644.8	339.7
Hyogo Prefecture	660.6	180.5
Nara Prefecture	366.8	145.9
Wakayama Prefecture	202.0	64.9
Tottori Prefecture	160.0	21.2
Shimane Prefecture	101.3	30.6
Okayama Prefecture	267.6	71.6
Hiroshima Prefecture	333.4	117.4
Yamaguchi Prefecture	224.1	42.9
Fokushima Prefecture	179.1	26.7
Kagawa Prefecture	522.9	31.0
Ehime Prefecture	241.2	33.9
Kochi Prefecture	99.8	93.5
Fukuoka Prefecture	1028.7	174.8
Saga Prefecture	337.5	56.8
Nagasaki Prefecture	327.0	48.5
Kumamoto Prefecture	238.9	105.9
Oita Prefecture	181.6	59.8
Miyazaki Prefecture	141.7	69.1
Kagoshima Prefecture	177.4	62.3

Okinawa Prefecture 649.5 362.1

					uncert	ainty interv	al).					
		Hypertension			Hyperlipidemia			Diabetes			Mental disorders	
Ages and sexes	2011–2013 <i>vs</i>	2014–2016 <i>vs</i>	2017–2019 <i>vs</i>	2011–2013 <i>vs</i>	2014–2016 <i>vs</i>	2017–2019 <i>vs</i>	2011–2013 <i>vs</i>	2014–2016 <i>vs</i>	2017–2019 <i>vs</i>	2011–2013 <i>v</i> s	2014–2016 <i>vs</i>	2017–2019 v:
	2009–2010	2009–2010	2009–2010	2009–2010	2009–2010	2009–2010	2009–2010	2009–2010	2009–2010	2009–2010	2009–2010	2009–2010
The whole of	0.001	0.001	0.002	0.003	0.005	0.004	-0.001	0.000	0.002	0.004	0.008	0.013
Japan	(-0.003–0.005)	(-0.002–0.005)	(-0.001–0.005)	(-0.001–0.007)	(0.003–0.008)	(0.000–0.007)	(-0.003–0.001)	(-0.002–0.002)	(0.000–0.004)	(-0.002–0.009)	(0.002–0.014)	(0.008–0.019)
Iwate Prefecture	0.007	-0.007	-0.006	0.019	0.019	0.020	0.007	-0.001	0.002	0.000	-0.002	0.004
	(-0.002–0.015)	(-0.013–0.000)	(-0.013–0.001)	(-0.004–0.043)	(-0.004–0.042)	(-0.003–0.042)	(0.003–0.012)	(-0.005–0.004)	(-0.001–0.006)	(-0.029–0.030)	(-0.031–0.027)	(-0.025–0.033
Miyagi	-0.001	-0.005	-0.009	0.013	0.010	0.010	0.004	0.002	0.000	-0.001	0.000	0.002
Prefecture	(-0.015–0.012)	(-0.017–0.008)	(-0.021–0.002)	(0.000–0.027)	(-0.002–0.021)	(-0.002–0.021)	(-0.014–0.021)	(-0.015–0.019)	(-0.017–0.017)	(-0.012–0.011)	(-0.011–0.012)	(-0.009–0.014
Fukushima	0.015	0.018	0.014	0.008	0.025	0.023	0.008	0.014	0.014	0.010	0.006	0.009
Prefecture	(0.011–0.018)	(0.015–0.020)	(0.013–0.016)	(0.002–0.014)	(0.020–0.031)	(0.016–0.030)	(0.003–0.014)	(0.013–0.015)	(0.013–0.015)	(0.003–0.018)	(0.002–0.009)	(0.006–0.012)
Hamadori	0.031	0.015	0.018	0.004	0.017	0.010	0.016	0.019	0.013	0.025	0.025	0.036
	(0.015–0.048)	(0.012–0.017)	(0.013–0.022)	(-0.024–0.032)	(-0.010–0.042)	(-0.015–0.035)	(-0.003–0.035)	(0.002–0.035)	(-0.003–0.029)	(0.002–0.047)	(0.016–0.034)	(0.026–0.046)
Nakadori	-0.005	0.008	0.001	0.004	0.037	0.032	0.004	0.016	0.017	0.008	0.004	0.009
	(-0.017–0.007)	(-0.004–0.020)	(-0.011–0.014)	(-0.013–0.021)	(0.023–0.053)	(0.016–0.048)	(-0.007–0.014)	(0.011–0.021)	(0.013–0.022)	(0.004–0.012)	(-0.003–0.010)	(0.007–0.012)
Aizu	0.015	0.013	0.009	-0.006	-0.002	0.005	0.002	0.010	0.014	0.008	0.009	0.011
	(0.004–0.024)	(0.007–0.019)	(0.003–0.015)	(-0.012–0.000)	(-0.009–0.006)	(-0.002–0.011)	(-0.005–0.008)	(0.003–0.017)	(0.011–0.016)	(0.002–0.014)	(0.005–0.014)	(0.006–0.016)
Iwate Prefecture vs the whole of Japan	0.006 (-0.003–0.015)	-0.008 (-0.015 0.001)	-0.008 (-0.015–0.000)	0.016 (-0.008–0.040)	0.014 (-0.009–0.037)	0.016 (-0.008–0.039)	0.008 (0.004–0.013)	-0.001 (-0.006–0.004)	0.001 (-0.004–0.005)	-0.003 (-0.033–0.026)	-0.010 (-0.040–0.019)	-0.009 (-0.039–0.020
Miyagi Prefecture vs the whole of Japan	-0.002 (-0.016–0.012)	-0.006 (-0.019–0.007)	-0.011 (-0.023–0.001)	0.010 (-0.004–0.024)	0.004 (-0.007–0.016)	0.006 (-0.006–0.018)	0.005 (-0.013–0.022)	0.002 (-0.015–0.019)	-0.002 (-0.018–0.015)	-0.004 (-0.017–0.008)	-0.008 (-0.021–0.005)	-0.011 (-0.024–0.002
Fukushima Prefecture vs the whole of Japan	0.014 (0.009–0.019)	0.016 (0.012–0.020)	0.013 (0.009–0.016)	0.005 (-0.002–0.012)	0.020 (0.014–0.027)	0.019 (0.011–0.027)	0.009 (0.004–0.015)	0.013 (0.011–0.016)	0.012 (0.010–0.014)	0.006 (-0.003–0.015)	-0.002 (-0.009–0.004)	-0.005 (-0.011–0.002
Hamadori vs the whole of Japan	0.031	0.013	0.016	0.001	0.011	0.006	0.017	0.018	0.011	0.021	0.017	0.022
	(0.013–0.048)	(0.009–0.017)	(0.010–0.021)	(-0.027–0.029)	(-0.015–0.037)	(-0.020–0.031)	(-0.002–0.036)	(0.002–0.035)	(-0.005–0.028)	(-0.002–0.044)	(0.007–0.028)	(0.011–0.034
Nakadori vs the whole of Japan	-0.006	0.006	-0.001	0.001	0.032	0.028	0.005	0.016	0.015	0.004	-0.004	-0.004
	(-0.019–0.007)	(-0.006–0.019)	(-0.013–0.012)	(-0.016–0.018)	(0.017–0.048)	(0.012–0.044)	(-0.006–0.015)	(0.010–0.021)	(0.010–0.021)	(-0.003–0.011)	(-0.013–0.005)	(-0.010–0.002
Aizu <i>v</i> s the whole of Japan	0.014 (0.003–0.024)	0.012 (0.005–0.018)	0.007 (0.000–0.014)	-0.009 (-0.017 0.002)	-0.007 (-0.015–0.001)	0.001 (-0.006–0.008)	0.003 (-0.004–0.009)	0.010 (0.002–0.017)	0.012 (0.009–0.014)	0.004 (-0.005–0.012)	0.001 (-0.006–0.008)	-0.002 (-0.010–0.006

Table S5. Difference in age-adjusted prevalence between three time periods and 2009–2010 (males and females, 0–74 years). Arithmetic mean (95%

Hypertension Hyperlipidemia Diabetes Mental disorders Ages and sexes 2014–2016 vs 2014-2016 vs 2014–2016 vs 2014-2016 vs 2011–2013 vs 2017-2019 vs 2011-2013 vs 2017-2019 vs 2011–2013 vs 2017–2019 vs 2011-2013 vs 2017-2019 vs 2009-2010 2009-2010 2009-2010 2009-2010 2009-2010 2009-2010 2009-2010 2009-2010 2009-2010 2009-2010 2009-2010 2009-2010 0.016 0.013 0.005 0.020 0.019 0.009 0.013 0.012 0.006 -0.002 -0.005 Males and females 0.014 (0–74 y) (0.009 - 0.019)(0.012 - 0.020)(0.009 - 0.016)(-0.002 - 0.012)(0.014 - 0.027)(0.011 - 0.027)(0.004 - 0.015)(0.011 - 0.016)(0.010-0.014) (-0.003 - 0.015)(-0.009 - 0.004)(-0.011 - 0.002)0.005 0.002 0.000 0.003 0.031 0.029 0.002 0.006 0.005 0.000 -0.006 -0.006 Males (0-74 y) (-0.008-0.018) (-0.005-0.010) (-0.007 - 0.007)(-0.007 - 0.014)(0.025 - 0.037)(0.022 - 0.036)(-0.003 - 0.008)(0.002-0.010) (0.002-0.008) (-0.009-0.010) (-0.015 - 0.003)(-0.013 - 0.001)0.026 0.020 0.013 0.019 0.019 0.013 0.017 0.015 0.013 0.007 0.003 0.023 Females (0-74 y) (0.019-0.027) (0.020 - 0.033)(0.016-0.025) (0.004 - 0.023)(0.009 - 0.030)(0.009 - 0.030)(0.005 - 0.022)(0.011 - 0.023)(0.009-0.021) (0.006 - 0.019)(0.001-0.013) (-0.003 - 0.009)Males and females 0.000 0.000 0.001 0.000 0.004 0.006 0.001 0.001 0.002 0.000 -0.002 -0.002 (0–39 y) (-0.001 - 0.001)(-0.001 - 0.001)(0.000 - 0.003)(-0.002 - 0.003)(0.002-0.006) (0.002 - 0.009)(0.001 - 0.002)(0.000 - 0.001)(0.001 - 0.003)(-0.007 - 0.007)(-0.009 - 0.006)(-0.009 - 0.005)-0.008 0.035 Males and females 0.041 0.030 0.011 0.045 0.040 0.021 0.033 0.028 0.015 -0.003 (-0.016--(40-74 y) (0.022 - 0.048)(0.030 - 0.052)(0.021 - 0.039)(-0.004-0.026) (0.031 - 0.058)(0.025 - 0.056)(0.007 - 0.035)(0.027 - 0.038)(0.023 - 0.034)(0.000 - 0.030)(-0.011 - 0.005)0.001) -0.001 -0.003 -0.001 -0.001 0.004 0.004 0.001 0.001 0.001 0.001 -0.002 -0.002 Males (0-39 y) (-0.003 - 0.002)(-0.005 - 0.000)(-0.003 - 0.002)(-0.004 - 0.001)(0.002-0.006) (0.001 - 0.008)(-0.001 - 0.002)(-0.001 - 0.002)(-0.001 - 0.002)(-0.007 - 0.009)(-0.012 - 0.008)(-0.009 - 0.006)-0.013 0.013 0.010 0.002 0.011 0.071 0.068 0.005 0.014 0.010 0.000 -0.011 Males (40-74 y) (-0.023---(-0.017 - 0.043)(-0.008 - 0.027)(-0.015 - 0.019)(-0.013-0.035) (0.057-0.085) (0.052 - 0.083)(-0.009 - 0.020)(0.005 - 0.023)(0.003 - 0.018)(-0.014 - 0.014)(-0.022 - 0.000)0.003) 0.002 0.002 -0.001 0.001 0.001 0.001 0.001 0.002 0.004 0.001 0.000 0.000 Females (0-39 y) (-0.001 - 0.002)(0.000 - 0.002)(0.001 - 0.002)(-0.003-0.006) (-0.003 - 0.006)(-0.001 - 0.008)(0.001 - 0.004)(-0.001 - 0.002)(0.000 - 0.003)(-0.006 - 0.006)(-0.007 - 0.007)(-0.008 - 0.005)0.057 0.064 0.049 0.032 0.046 0.043 0.030 0.042 0.036 0.032 0.017 0.010 Females (40-74 y) (0.046 - 0.068)(0.048 - 0.081)(0.039 - 0.060)(0.013 - 0.051)(0.026 - 0.067)(0.023 - 0.064)(0.011 - 0.051)(0.028-0.056) (0.024 - 0.048)(0.023 - 0.041)(0.008 - 0.026)(0.004 - 0.016)

Table S6. Difference in age-adjusted prevalence between three time periods and 2009–2010 by age groups and sex (Fukushima Prefecture vs the whole of Japan). Arithmetic mean (95% uncertainty interval).

Ages and sexes	Hypertension	Hyperlipidemia	Diabetes	Mental disorders
Males and females (0–74)	0.006 (0.003–0.009)	0.008 (0.002–0.015)	0.003 (0.001–0.004)	0.003 (0.003–0.004
Males and females (0–39)	0.001 (0.001–0.001)	0.003 (0.000–0.005)	0.000 (0.000–0.001)	0.003 (0.002–0.004
Males and females (40–74)	0.014 (0.007–0.021)	0.017 (0.004–0.030)	0.006 (0.001–0.010)	0.003 (0.002–0.004
Males (0–74)	0.007 (0.003–0.010)	0.010 (0.003–0.017)	0.003 (0.001–0.005)	0.003 (0.002–0.004)
Males (0–39)	0.001 (0.001–0.002)	0.004 (0.000–0.007)	0.001 (0.001–0.001)	0.004 (0.003–0.004
Males (40-74)	0.015 (0.006–0.024)	0.019 (0.007–0.031)	0.007 (0.002–0.012)	0.003 (0.000–0.005
Males (0–19)	0.000 (0.000–0.000)	0.000 (0.000–0.001)	0.000 (0.000–0.000)	0.000 (-0.001–0.001
Males (20–39)	0.002 (0.002–0.003)	0.007 (0.001–0.013)	0.001 (0.001–0.002)	0.007 (0.005–0.008
Males (40-64)	0.016 (0.006–0.026)	0.021 (0.008–0.035)	0.008 (0.003–0.013)	0.003 (0.000–0.006
Males (65–74)	0.007 (0.001–0.014)	0.011 (0.003–0.019)	0.001 (-0.007–0.010)	0.001 (-0.001–0.003
Females (0-74)	0.006 (0.004–0.008)	0.007 (0.001–0.012)	0.002 (0.000–0.003)	0.003 (0.002–0.004
Females (0-39)	0.001 (0.000–0.001)	0.001 (0.000–0.003)	0.000 (0.000–0.001)	0.003 (0.002–0.004
Females (40–74)	0.013 (0.009–0.017)	0.015 (0.003–0.027)	0.004 (0.001–0.007)	0.003 (0.002–0.005
Females (0–19)	0.000 (0.000–0.000)	0.000 (0.000–0.000)	0.000 (0.000–0.000)	0.000 (0.000–0.001
Females (20–39)	0.001 (0.000–0.002)	0.002 (0.000–0.005)	0.001 (0.000–0.001)	0.005 (0.003–0.006
Females (40–64)	0.012 (0.006–0.018)	0.015 (0.002–0.027)	0.005 (0.001–0.009)	0.003 (0.002–0.004
Females (65–74)	0.020 (0.006-0.034)	0.016 (0.001–0.031)	0.002 (-0.005–0.008)	0.004 (0.001–0.007

Table S7. Difference between observed and estimated prevalence in 2020 by age groups and sex (the whole of Japan). Arithmetic mean (95% uncertainty interval).

Table S8. Correlations between population density or COVID-19 infection rate and ratio of observed to estimated age-adjusted prevalence of mental	
disorders in 2020 among 47 prefectures (males, 0–39 years). p: Spearman's rank correlation coefficient (95% uncertainty interval).	

	Hypertension	Hyperlipidemia	Diabetes	Mental disorders
Population density	-0.110 (-0.392–0.191)	-0.021 (-0.314-0.276)	0.031 (-0.266-0.323)	-0.374 (-0.6030.088)
COVID-19 Infection rate	-0.168 (-0.441–0.134)	-0.075 (-0.362-0.225)	-0.145 (-0.422-0.157)	-0.376 (-0.6040.091)

Table S9. Correlations between population density or COVID-19 infection rate and difference between observed and estimated age-adjusted prevalence of mental disorders in 2020 among 47 prefectures (males, 0–39 years). p: Spearman's rank correlation coefficient (95% uncertainty interval).

	Hypertension	Hyperlipidemia	Diabetes	Mental disorders
Population density	-0.033 (-0.325–0.265)	0.007 (-0.289-0.301)	0.044 (-0.255-0.335)	-0.355 (-0.5890.067)
COVID-19 Infection rate	-0.122 (-0.402–0.180)	-0.054 (-0.344-0.245)	-0.137 (-0.416-0.164)	-0.344 (-0.5800.055)