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Abstract 

Parkinson’s disease (PD) is characterized by a long prodromal phase with a multitude of markers 

indicating an increased PD risk prior to clinical diagnosis based on motor symptoms. Current PD 

prediction models do not consider interdependencies of single predictors, lack differentiation by 

subtypes of prodromal PD, and may be limited and potentially biased by confounding factors, 

unspecific assessment methods and restricted access to comprehensive marker data of prospective 

cohorts.  

We used prospective data of 20 established risk and prodromal markers of PD in 1178 healthy, PD-

free individuals and 24 incident PD cases collected longitudinally in the Tübingen evaluation of Risk 

factors for Early detection of NeuroDegeneration (TREND) study at 4 visits over up to 10 years. We 

employed artificial intelligence (AI) to learn and quantify PD marker interdependencies via a Bayesian 

network (BN) with uncertainty estimation using bootstrapping. The BN was employed to generate a 

synthetic cohort and individual marker profiles.  

Robust interdependencies were observed for BN edges from age to subthreshold parkinsonism and 

urinary dysfunction, sex to substantia nigra hyperechogenicity, depression, non-smoking and to 

constipation; depression to symptomatic hypotension and excessive daytime somnolence; solvent 

exposure to cognitive deficits and to physical inactivity; and non-smoking to physical inactivity. 

Conversion to PD was interdependent with prior subthreshold parkinsonism, sex and substantia nigra 

hyperechogenicity. Several additional interdependencies with higher statistical uncertainty were 

identified. Synthetic subjects generated via the BN based representation of the TREND study were 

realistic as assessed through multiple comparison approaches of real and synthetic data.  

Altogether our work demonstrates the potential of modern AI approaches (specifically BNs) in two 

ways: First, to model and understand interdependencies between PD risk and prodromal markers, 

which are so far not accounted for in PD prediction models. Second, the generative nature of BNs 

opens the door for facilitating data sharing in a legally compliant and privacy preserving manner. 

 

1.0 Introduction 

Parkinson’s disease (PD) is characterized by progressive neurodegeneration that has usually advanced 

for many years before PD is clinically diagnosed on the basis of its cardinal motor symptoms (1). In 

addition to old age, a multitude of risk markers, such as genetic factors, lifestyle, environmental factors, 

(comorbid) diseases (e.g., diabetes) as well as biomarkers (e.g., low plasma urate levels, 

hyperechogenicity of the substantia nigra) have been shown to indicate an increased risk of PD in 

prospective studies (2,3). Moreover, prodromal markers may already indicate early neurodegenerative 

processes that can ultimately lead to the clinical diagnosis of PD. Depression, autonomous dysfunction, 

REM-sleep behavior disorder (RBD), subtle motor signs and pathological dopaminergic imaging are 

among the most established prodromal markers (3–5). The International Parkinson and Movement 

Disorder Society (MDS) research criteria for prodromal PD (3,6) have been designed to review and 

continually update the predictive values of risk and prodromal markers of PD as indicated by the 

positive and negative likelihood ratio (LR+, LR-) calculated from a 2x2 table of prospective data: 

marker present/absent and incident PD diagnosis/healthy. Moreover, these criteria proposed a naïve 

Bayesian classifier approach for the calculation of the probability that an individual is in the prodromal 

phase of PD. With age providing an a-priori probability of prodromal PD as derived from 

epidemiological evidence (7), the individual profile of risk and prodromal markers, i.e. constellations 
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of LR+ and LR- values, allows the calculation of an a-posteriori probability of prodromal PD (6). 

While the criteria have repeatedly been shown to be highly specific, sensitivity may depend upon 

marker selection, depth of assessment and time to PD diagnosis and possibly specific subtypes of 

prodromal PD (8, 9). While having the advantages of being both evidence-based as well as practical, 

several limitations and assumptions are inherent to this approach, that should be addressed to improve 

the accuracy of PD prediction. Most critically, statistical independence of risk markers and prodromal 

markers as well as age is assumed when using a naïve Bayesian classifier, which is most likely not 

fulfilled in reality. For example, many prodromal markers (including subtle motor deficits) increase in 

prevalence with advancing age irrespective of a future PD diagnosis, which may decrease their 

specificity for the prediction of PD in an age-dependent manner (10). Also, marker prevalence and 

their predictive value for PD may be sex-specific, e.g., as previously suggested for depression (10). 

Thus, the predictive value for PD as currently assigned to the presence, absence or borderline status of 

a particular marker, which may partially depend on age as well as constellations of the presence and 

absence of other markers in the profile of an individual. Marker co-occurrences may (partially) depend 

on e.g., methodological aspects of data collection and marker assessment, shared bio-pathological 

pathways and clinical comorbidity features. Such interdependencies can influence the actual predictive 

value of specific marker constellations. For instance, markers of different autonomous dysfunctions or 

depression and cognitive deficits and their predictive values might be interdependent for practical, 

statistical, biological and/or clinical reasons.  

Evidence-based PD prediction approaches, such as the MDS research criteria for prodromal PD (3,6), 

may be limited in accuracy and validity due to restricted access to data and evidence obtained in 

prospective studies. Interdependencies, confounders and interactions of markers, demographic and 

cohort-specific variables, and details of the temporal changes of the predictive values of markers 

towards the clinical PD diagnosis, are often not considered or reported in detail in original publications 

(11). If reported, statistical methods often differ between publications complicating their integration 

into a common statistical framework of PD prediction. In this regard the MDS criteria offer a practical 

approach for considering published evidence of predictive markers of PD as often reported or available 

upon request. However, these LR values may be partly confounded (e.g., by age or other markers) 

and/or biased (e.g., by attrition) while temporal information is often missing and thus cannot be 

considered in PD prediction models (11). However, access to comprehensive data and evidence of 

predictive PD markers is often restricted due to legal and ethical considerations that prohibit the sharing 

of patient-level data.  

The heterogeneity of PD in its clinical as well as in its prodromal phase may be partially explained by 

different subtypes of the disease (8, 9), e.g., subtypes differentiated by the site of initiation and 

progression of pathology (brain-first vs. body-first) (12,13). Such subtypes would likely also differ in 

risk and prodromal marker profiles (possibly cognitive deficits/depression in brain-first; autonomous 

dysfunction in body-first PD), and potentially in the temporal dynamics in the prodrome of PD. 

However, as comprehensive data of (major) prospective population-based cohorts is often not jointly 

accessible, early (prodromal) subtyping, predictive values of markers (and their interdependencies) by 

subtype is still largely restricted to highly selected and specific clinical populations such as RBD 

patients. Consequently, an evidence-based understanding of prodromal PD to improve PD prediction 

and aid the (subtype-specific) recruitment of future early intervention trials in prodromal PD is 

challenged by the unavoidable statistical biases of each clinical study due to predefined patient 

selection criteria.  

Artificial Intelligence (AI) approaches, such as Bayesian networks (BNs) (14), may offer possible 

solutions to these challenges, as 1) interdependencies of markers can be modelled, 2) BNs can be used 
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to realistically simulate prospective cohorts, which could – at least partially – help to overcome 

restrictions posed by data privacy, and 3) access to such synthetic, comprehensive (population-based) 

cohort data. Thereby, both the consideration of more generalizable evidence underlying PD prediction 

as well a more differentiated investigation and understanding of prodromal PD subtypes may be 

supported and possibly help to inform the design and recruitment for early intervention trials in 

prodromal PD.  

The present study has two different aims: 1) to model a BN with the interdependencies between 

longitudinal data of risk and prodromal markers of PD and incident PD status of a large prospective 

cohort (TREND study), and 2) to demonstrate the feasibility of generating a sufficiently realistic 

synthetic cohort, which shares statistical patterns of the original data and could allow researchers to 

gain a better understanding of properties of the real data before formally applying for access to it. 

 

2.0 Materials and Methods 

2.1 Overview of the TREND study data 

The TREND study is a prospective cohort study which has been conceptualized for the investigation 

of markers that may help to predict PD and/or Alzheimer's disease (AD). The cohort is partly 

population-based and partly enriched with individuals with an increased PD/AD risk by selectively 

recruiting participants based on the presence of olfactory loss, depression, and/or possible RBD. 

Comprehensive assessments of risk and prodromal markers of neurodegeneration, and e.g., 

neurological, neuropsychiatric and quantitative motor testing as well as biosampling in 1,201 

individuals (aged 50+ years at baseline), have been performed every two years (baseline in 2009/2010, 

follow-up 1 to 4; follow-up 5 is currently ongoing). For more information, visit https://www.trend-

studie.de/english. The study was approved by the local ethics committee (Medical Faculty, University 

of Tübingen; 444/2019BO2). All participants provided written informed consent. Study data were 

collected and managed using REDCap electronic data capture tools hosted at University of Tübingen 

(9). 

Cohort participants in part had a delayed inclusion in the study (at follow-up 1) and some participants 

missed single waves or dropped out of the study (retention rate at follow-up 4: 72.4%). Therefore, the 

number of individual visits instead of the wave number of the TREND study is considered in the present 

work. For some participants the duration between two visits may occasionally be longer than two years. 

After excluding individuals with PD or parkinsonism at visit 1, we included data of 1178 (98.08%) 

participants collected at four consecutive visits (Tables 1 and 2) as the number of individuals with five 

visits was substantially lower (n=545, 45.4%). Changes in sample size between visits as well as 

missingness of marker assessments per visit are shown in Tables 1 and 2. For the BN approach 

missingness both due to study drop-out (until visit 4) as well as due to missingness of marker 

assessment at single visits was considered for the imputation of data (see below and Supplementary 

material). 

While all of these participants were PD-free at the first visit, in total n=24 incident PD cases were 

clinically diagnosed at follow-up based on UKBB and MDS diagnostic criteria (15). The visit at which 

the conversion to PD occurred was considered, and descriptive statistics of PD-free individuals and 

incident PD cases regarding demographic factors and risk and prodromal markers of PD are shown in 

Tables 1 and 2. 
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2.2 Bayesian Networks based approach   

We propose a BN based approach (11) to model the interdependencies between different risk and 

prodromal markers of PD and their longitudinal changes in a multi-modal, multi-scale manner. BNs 

are probabilistic graphical models, where nodes represent variables and edges represent probabilistic 

stochastic dependencies between them (12). These stochastic dependencies are characterized by a 

conditional probability table (CPT) for each variable. These conditional distributions are specified by 

the network parameters (details in the Supplementary material) (13). 

In this work we compiled a BN of 10 risk markers and 10 prodromal markers as well as age.  Risk and 

prodromal markers were selected based on the recent MDS research criteria for prodromal PD, and of 

which prospective data has been collected in the TREND study. The markers were assigned to different 

domains including: autonomic dysfunction (constipation, symptomatic orthostatic hypotension, 

erectile and urinary dysfunction), lifestyle features and related diseases (physical inactivity, non-

smoking, diabetes type II), environmental features (occupational pesticide and solvent exposure), 

neuropsychiatric features (depression, global cognitive deficit), neurological features (incident PD 

diagnosis (PD conversion based on neurological diagnosis), subthreshold parkinsonism (based on 

MDS-UPDRS-III), possible REM-sleep behavior disorder (pRBD), hyposmia, substantia nigra (SN) 

hyperechogenicity), genetic factors (first-degree family history of PD, polygenic risk scores of PD, 

GBA mutations) and demographic factors (age, sex). Since erectile dysfunction was only assessed in 

males, this prodromal marker was not included in the final BN to avoid biases to the model. The details 

of marker assessment methods and definitions are provided in the Supplementary material. This also 

includes details regarding the handling of missing values. 

We employed a BN to learn dependencies between these variables in a data-driven manner as a function 

of time. BNs result in a quantitative network representing statistical dependencies between variables 

(12,14). For each variable the probability to take a specific value, dependent on the values of its parents 

in the network, is inferred from the data. Notably, age (younger or older than 65 years) as well as risk 

and prodromal markers of PD have been discretized such that all variables indicate the presence or 

absence (or borderline status) of a marker in an individual TREND participant, as published previously 

for the TREND cohort (15, 16) and suggested by the MDS research criteria for prodromal PD (3, 6). 

For each variable a CPT was determined while the overall BN was learned. Conversion to PD was 

defined as one node in the BN irrespective of the visit at which PD was diagnosed. Further details 

about the BN learning procedure including the constraints imposed and handling of missing values are 

reported in the Supplementary material. 

We trained a BN based on the data of all 1178 subjects using a non-parametric bootstrap (16) by 

randomly selecting n = 1178 for 1,000 times, with replacement, and for each of these 1,000 bootstrap 

samples we learned a complete BN structure. The relative frequency of observing a particular edge 

(i.e. stochastic dependency) among those 1,000 bootstraps was determined (see BN edges in Figure 1), 

and served as an indicator of the level of statistical confidence, i.e., a higher value means a stronger 

support by the data for the existence of the respective connection. A value of 1.0 indicates two specific 

nodes were interdependent in all the 1,000 learned BNs, a value of 0.5 indicates in 50% of the BNs an 

interdependency was observed.  

2.4 Generating synthetic TREND subjects 

BNs belong to the class of generative machine learning models. That means they learn the multivariate 

statistical distribution underlying the observed data. Therefore, random samples drawn from the model 
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correspond to synthetic subjects (see Supplementary material for details). To demonstrate the utility of 

synthetic subjects generated by the BN model we performed different tests: 

1. We generated the same number of synthetic individuals as real individuals for the data and then 

tested whether a conventional random forest (RF) classifier was able to separate between synthetic and 

real subjects within 10 times repeated 10-fold cross-validation scheme (5). Therefore, we sequentially 

left out 1/10 of subjects and trained an RF on the remaining subjects to learn the discrimination between 

real and synthetic subjects. We used the left-out portion of the data to assess the prediction performance 

of the RF. We used the partial area under ROC curve (pAUC) at a pre-specified true positive rate of 

99% for real subjects as a measure of the prediction performance. The area under the ROC curve at 

which the detection rate for real subjects was between 99% and 100% served as an indicator of the 

validity of the synthetic TREND participants. This was done to account for the fact that 

misclassification of a synthetic TREND participant as real would be far less relevant as the other way 

around. 

2. As a second test we used the synthetic data to learn a BN structure and compared it to the BN 

learned from real data by counting the fraction of overlapping edges. 

3. As a third test, we trained and evaluated the prediction performance of different machine 

learning models on real as well as synthetic data. More specifically, we here focused on the prodromal 

markers pRBD, hyposmia and depression. We trained a machine learning model (a random forest 

classifier) to test the prediction ability of several variables to predict these prodromal markers at 

multiple visits. Outcomes at a subsequent visit were predicted by training the classifier on variables 

from the previous visit. For example, to predict the prodromal marker at visit 2, the classifier was 

trained on all the markers (measured longitudinally in the study) at visit 1. We either trained and tested 

the classifier on real subjects or trained the classifier on simulated / synthetic subjects generated by the 

BN and subsequently tested the classifier on real subjects. We evaluated the prediction performance of 

machine learning models using 10-fold cross validation repeated for 10 times. The overall dataset was 

randomly split into 10 folds, of which sequentially one of the folds was left out for testing the model, 

while the rest of the data was used for training. The prediction ability was measured via the area under 

the receiver operator characteristic curve (AUC) (17).  

 

3.0 Results 

3.1 Descriptive statistics 

For each of the four visits, the descriptive statistics of the longitudinal data of risk markers (Table 1) 

and prodromal markers (Table 2) of PD-free individuals and incident PD cases is shown. Of 1178 

subjects, 24 participants were clinically diagnosed with PD over the course of the prospective TREND. 

3.2 The Bayesian network of risk and prodromal markers of PD in the TREND study 

Figure 1 depicts the overall network structure of all connections learned from the TREND data. A wide 

range in the level of confidence regarding the interconnectedness, i.e., statistical interdependence, was 

observed between several nodes and domain clusters of nodes. High probabilistic confidence (>0.5) of 

edges between different markers in the BN was found for edges between age to subthreshold 

parkinsonism (MDS-UPDRS-III) and urinary dysfunction, sex to SN hyperechogenicity, depression, 

non-smoking and to constipation; depression to symptomatic hypotension and excessive daytime 

somnolence; solvent exposure to cognitive deficits and to physical inactivity; and non-smoking to 

physical inactivity. Pairwise co-occurrences of different markers showing edges with probabilistic 
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certainties of >0.2 in the BN were shown and statistically tested for significance in Table 3. All of these 

edges also showed statistically significant co-occurrences between markers, except for sex and PD 

family history, sex and diabetes type-II (visit 1), occupational solvent exposure (visit 3) and 

constipation (visit 3), as well as GBA mutation carriers and PRS. These associations were no longer 

significant after accounting for multiple testing. 

The BN revealed both expected as well as novel connections between risk and prodromal markers and 

the phenoconversion to PD. Plausibly, the nodes with edges directed to the conversion to PD comprised 

(prior) subthreshold parkinsonism indicated by MDS-UPDRS-III scores, age, and (with lower 

statistical confidence), SN hyperechogenicity. Further expected marker interdependencies were 

observed for edges pointing from depression and solvent exposure to global cognitive deficits, which 

itself was linked to physical inactivity while non-smoking was linked to physical inactivity. Edges 

pointing from depression to excessive daytime somnolence, pointing from solvent exposure and 

depression to hyposmia, or pointing from hyposmia to global cognitive deficits and to SN 

hyperechogenicity demonstrated further expected interdependencies. Unexpected interdependencies 

were observed from depression to non-smoking; pesticide exposure to symptomatic hypotension; 

physical inactivity to urinary dysfunction; and edges with directionality from SN hyperechogenicity, 

global cognitive deficits, sex and PD family history to diabetes. Interestingly, constipation was 

dependent on sex, global cognitive and occupational solvent exposure. Surprisingly, little 

interdependencies were observed for pRBD, which was only linked to depression and received an edge 

from physical inactivity. Nodes with genetic features were not dependent on other markers except for 

sex being linked to PD family history, which itself was linked to diabetes.  

Nodes of the same marker assessed at different timepoints were largely highly interdependent, except 

for subthreshold parkinsonism (MDS-UPDRS-III) for which visit 2 and visit 3, which were not linked 

to other nodes of the BN. MDS-UPDRS-III at visit 1 showed no edge with the corresponding nodes of 

other visits, but instead only received edges from depression and pesticide exposure at visit 1. An 

interactive Cytoscape network file of the BN is given in the Supplementary material. 

3.3. Simulation of a synthetic TREND study cohort 

The generative property of the BN allowed the simulation of synthetic versions of the prospective data 

of the TREND study and to extract individual synthetic participant profiles including age and the risk 

and prodromal markers of PD. Table 4 shows five arbitrary examples of synthetic subjects (from the 

synthetic cohort with the same sample size) and three real subjects together with their individual data 

(at visit 4) on age, sex, MDS-UPDRS-III, pRBD, depression, global cognitive deficits and PD 

conversion status. The Multiple Correspondence Analysis (MCA) (18) plot shown in Figure 2 indicates 

the similarity of synthetic subjects in relation to real ones. Further systematic comparisons of the 

distribution of individual variables and their correlation structure are presented in the Supplementary 

material (Figures S2-S6). An RF classifier trained to discriminate between real and synthetic subjects 

only performed slightly better than chance level (pAUC 52%), indicating that both real and synthetic 

subjects cannot be reliably discriminated (Figure S7). 

 

3.4 Evaluating the utility of synthetic TREND subjects 

We repeated the training of the BN based on the synthetically generated data. Subsequently, we 

counted, how many robust marker edges (bootstrap probability >50%) were common between the 

original BN trained on real and the BN trained on synthetic data. Accordingly, we could establish a 

high degree of similarity of 84.12% (143 edges) between the BNs learned from synthetic and real data. 
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To further evaluate the utility of synthetically generated TREND subjects we developed RF classifiers 

to predict for the individual participant, whether a participant would develop pRBD, hyposmia and/or 

depression at subsequent visits of the study. As outlined in the Methods part of this paper, 

corresponding classifiers were trained within a 10-times repeated 10-fold cross-validation, once on real 

subjects and once on synthetically generated subjects. To account for the possible variability due to the 

random sampling of synthetic subjects from the BN model, the process was repeated 10 times. Models 

were always tested on real patients.  

Despite synthetic data generally showing a high similarity to real data, our results indicate a loss of 

~10% AUC when training on synthetic compared to training on real subjects (Figure S9). This could 

be due to slight differences between real and synthetic data regarding the distribution of individual 

variables (e.g. hyposmia, physical inactivity, see Figure S4) as well as correlation structure (Figure 

S6). Notably, RFs are a comparably complex machine learning method, which allows for modeling 

highly nonlinear structures.  

Altogether these results highlight that synthetic data share many patterns of real patient data, but they 

are not identical and hence do not necessarily allow for coming to identical statistical conclusions.  

 

4.0 Discussion      

The present study shows the feasibility of generating a Bayesian network based on prospective data of 

established risk and prodromal markers of PD in the TREND cohort of elderly PD-free individuals and 

incident PD cases: (1) The BN model showed several expected as well as unexpected interdependencies 

of these markers, which may be explained by biological and clinical reasons for the co-occurrences of 

markers and/or by confounding due to practical and other methodological aspects of marker 

assessment. (2) The BN allowed to create a synthetic representation of the TREND cohort regarding 

marker interdependencies and to derive realistic marker profiles of individual synthetic participants. 

The multitude of marker interdependencies as revealed through the artificial intelligence-based BN 

modelling approach could have important methodological implications for evidence-based PD 

prediction approaches as well as for the understanding of the interplay of different markers in the 

prodromal phase of PD.  

The current methodological approach of the MDS research criteria for prodromal PD (20,21) uses a 

naïve Bayesian classifier for the prediction of PD (or diagnosis of prodromal PD), which assumes that 

predictive values of risk and prodromal markers are independent. Based on our findings from a BN 

model and pair-wise testing of co-occurrences of established PD markers in the prospective TREND 

cohort, we could show that for many of these predictive markers the assumption of statistical 

independence is most likely not met. Hence, concerns about the validity of the naïve Bayes classifier 

approach for PD prediction are raised. 

While the number of incident PD cases was relatively low in the present study, robust and plausible 

interdependency was observed between prior motor deficits indicating subthreshold parkinsonism and 

the phenoconversion to PD. Also, age and SN hyperechogenicity were linked to the incidence of PD, 

which was expected as the prevalence of PD markedly increases with advancing age (20,21) and SN 

hyperechogenicity is observed in 83% of PD patients (22). However, for SN hyperechogenicity a 

substantially lower certainty was present in the bootstrapping of the BN models as may be partly 

explained both by low number of incident PD cases and by potential prodromal differences between 
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distinct subtypes of the disease, e.g., the hypothesized brain-first vs. body-first prodromal PD subtypes 

(23–25). Among risk and prodromal markers of PD, which have been shown to also play a role in other 

neurodegenerative and neuropsychiatric conditions, several interdependencies were observed in the 

TREND BN model. Depression is a risk factor of cognitive decline but may also affect motivational 

aspects reducing cognitive performance in challenging neuropsychological test situations, and both 

may underlie the interdependency between depression and global cognitive deficits (26,27). 

Occupational solvent exposure has been associated with an increased risk of global cognitive 

impairment (28), which is consistent with their observed interdependency in the BN. Global cognitive 

deficits were linked to physical inactivity, which is an established risk factor for cognitive decline and 

dementia (29). As expected, current smokers were less physically active than former smokers and non-

smokers explaining the edge between non-smoking and physical inactivity. Similarly, non-smoking 

was linked to depression and smokers were more frequently depressed than non-smokers. Given the 

known protective effects of smoking for PD (30) and increased PD risk due to physical inactivity and 

depression (31,32), these often co-occurring factors may have opposing effects for individual PD risk 

estimates. Excessive daytime somnolence has been shown to be both a risk factor for depression as 

well as a frequent comorbid factor in depressed individuals, supporting their interdependency observed 

in the BN (33). Depression has been previously linked to lower olfactory performance and, conversely, 

patients with olfactory dysfunction have been reported to show symptoms of depression that worsened 

with the severity of smell loss (34). Hyposmia has been shown to be a risk factor for cognitive 

impairment and neurodegeneration (35). However, odor discrimination tests might be more cognitively 

challenging in those with cognitive deficits (36), which might in part also explain the interdependency 

between hyposmia and global cognitive deficits. Olfactory loss is observed in the vast majority of PD 

patients (37), and as SN hyperechogenicity is also highly prevalent in PD patients these markers may 

plausibly frequently co-occur in clinical as well as prodromal PD. However, only a low level of 

confidence of this edge was observed in the BN, and the interdependency of hyposmia and SN 

hyperechogenicity may be more robust in specifically selected individuals in the prodrome of PD, 

possibly in particular in brain-first prodromal PD.  

Occupational pesticide exposure was interdependent with symptomatic hypotension, however both 

markers have been assessed without highly specific methods. The degree and specific exposure to 

pesticides might vary widely among the TREND participants, and symptomatic hypotension has been 

assessed via self-report questionnaire only, and thus may not constitute neurogenic orthostatic 

hypotension (20). The statistical confidence was not high for the interdependency between these 

markers and thus remains to be further investigated. Sedentary lifestyle has been shown to increase the 

risk of urinary incontinence (38,39), which might underlie the edge between physical inactivity to 

urinary dysfunction. Moreover, age showed a robust edge to urinary dysfunction, which is plausible as 

this prodromal marker becomes more prevalent with aging.  Diabetes received interesting edges from 

several nodes including SN hyperechogenicity, global cognitive deficits, sex and PD family history, 

and while their confidences were low, this finding might provide new hypotheses regarding biological 

prodromal mechanisms to be tested in future studies. 

Several node interdependencies were unexpected and should be further investigated in independent 

cohorts. Possible RBD was only assessed using a self-report questionnaire, and while we applied the 

most specific criteria to determine the presence and absence of (possible) RBD (40), polysomnography 

would likely reveal a high false-positive rate among pRBD as a prevalence of polysomnography-

proven RBD is less than 2% in the general, elderly population (41). Low specificity of the assessment 

methods might have contributed to the lack of interdependencies between possible RBD and many 

other risk and prodromal markers of PD, including markers of autonomous dysfunction, which, 

together with RBD, may often co-occur in a body-first prodromal PD subtype (23). pRBD was linked 
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to depression and physical inactivity, which, however, might in part correspond to unspecific sleep 

disturbances in depression (42) and (obese) physically inactive individuals (e.g., with obstructive sleep 

apnea) (43). Interestingly, constipation (a hypothesized body-first prodromal PD marker) showed 

interdependency with global cognitive deficits and occupational solvent exposure (both hypothesized 

brain-first markers), but not with other autonomous dysfunctions or pRBD. Possibly, as constipation 

is frequent in old age, its specificity for (incident) PD and thus interdependence with other 

risk/prodromal markers of (body-first) PD might be low. However, the relationship between 

constipation and other risk/prodromal markers of PD and their collective predictive values for PD 

(subtypes), and, e.g., PD risk conveyed through the gut microbiome (44), should be further 

investigated. Genetic risk markers of PD were, except for sex and diabetes, not interdependent with 

other risk and prodromal markers of PD, and while the number of GBA mutation carriers was low, a 

positive PD family history and a high polygenic risk score may increase the PD risk in a highly complex 

and multifaceted manner, which may partly explain the lack of their direct interdependency with other 

risk and prodromal markers. While we expected age to be interdependent with several other markers 

frequent in old age (e.g., constipation, SN hyperechogenicity, hyposmia, global cognitive deficits), yet 

such edges were not observed in the BN and accounting for age did largely not alter effects of pair-

wise co-occurrences in our logistic regression analysis.  As expected, nodes of the same marker 

assessed at different visits were largely highly interdependent. Subthreshold parkinsonism based on 

MDS-UPDRS-III at visit 1 however showed no edge with the corresponding nodes of other visits, and 

the data of visits 2 and 3 were interdependent with one another, yet not connected to the BN. Possibly, 

motor deficits were either not (yet) apparent in some participants or motor deficits may have been 

confounded with non-PD related arthritic, tendon, bone or muscle complications at the first visit.  

BN-based sharing of cohort information in prodromal PD research might be a means to provide 

researchers with a “preview” on patient-level data without having to go through a typically time-

consuming legal process, which is necessary to get access to real data. While our analysis has shown 

that synthetic data shares many characteristics of real data, it is not identical and therefore statistical 

analysis results could differ between real and synthetic data. The intent behind the generation of 

synthetic data is thus not to replace the analysis of real data, but to facilitate the understanding of a data 

source by data analysts in a simple manner. Notably, the Dutch Netherlands Cancer Institute (NKI) 

has, based on similar considerations, recently launched a synthetic cancer cohort on their webpage: 

https://iknl.nl/en/ncr/synthetic-dataset. A similar strategy might be useful for the prodromal PD 

research community to facilitate data sharing and to overcome the still existing data silos. In this 

context, it should be emphasized that one of the key bottlenecks in modern medicine is the fact that 

clinical studies are scattered across organizations. Each clinical study is unavoidably biased by 

inclusion and exclusion criteria, therefore raising concerns about the representativeness of a particular 

study for the overall (prodromal) disease population. It is thus necessary that results obtained with data 

from one study are cross-checked with those from another one to generate sufficient evidence, and this 

is in particular true for machine learning models. Comprehensive cohort data of population-based 

studies often cannot be shared due to legal restrictions. Therefore, techniques are required, which lower 

the hurdle for a legally compliant sharing of clinical and population-based cohort data. While federated 

data analysis techniques are now gaining a lot of interest, setting up an according network of 

organizations is highly challenging from a technical as well as management point of view. Synthetic 

data could fill a gap, because organizations are potentially willing to share such data more easily. Still, 

appropriate protection measures for synthetic data should be taken to avoid the theoretically still 

existing possibility of adversarial attacks (19). 

The present study has several limitations that need to be discussed. 1. Despite an excellent retention 

rate in the TREND study participant attrition as well as missing data for single visits were observed in 
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the longitudinal data. While we comprehensively imputed missing data while accounting for data 

missing not at-random, it might have introduced slight biases into the data and marker 

interdependencies. 2. Inter-visit dependency of markers, such as ratings of motor deficits, might in part 

be lowered due to changes of investigators between different waves of TREND data collection and 

assessment. 3. While a directionality of edges between markers is proposed by our BN approach, 

alternative directions may be observed in different models. However, indeed directions not predefined 

by constraints were largely expected. 4. BN structure and parameter learning requires sufficiently large 

datasets that are representative for the disease population. The BN model thus renders the re-

identification of real patients from the training data relatively unlikely. However, in its current 

implementation our approach does not provide strict theoretical guarantees for this situation. But we 

like to point out that privacy preserving training of neural network models is possible and has been 

tested by us and others in the past (45).  

4.1 Conclusion 

In conclusion, the present study used a BN to disentangle the relationships of various established risk 

and prodromal markers in a large prospective cohort and showed that many of these markers are 

interdependent. Interdependencies of these predictive markers have not been accounted for in current 

PD prediction approaches, such as the MDS research criteria for prodromal PD (20,21). Moreover, the 

independent predictive value of individual markers has not been determined or incorporated into PD 

prediction models as comprehensive marker data of prospective cohorts is hardly published or 

accessible. While the BN of the TREND cohort contained data of a large sample of PD-free individuals, 

yet only a small sample of incident PD cases were available. Hence, an accurate PD prediction 

accounting for the interdependencies in marker profiles could not be derived from the given data.  

We demonstrated that the BN model of TREND cohort data could be used to generate a sufficiently 

realistic cohort of synthetic TREND subjects, which would allow researchers to obtain a useful 

“preview” on TREND data. This has to be seen in the context of the fact that PD prediction accounting 

for the heterogeneity, complexity and temporal dynamics of (prodromal) PD (subtypes) will require 

further collaboration and data sharing in the future, e.g., by jointly investigating and integrating data 

(or models of these data) across multiple observational cohorts with a large cumulative number of 

incident PD cases. In addition, the current trend regarding the analysis of large real-world data sources 

(e.g., electronic health records) should not be ignored.  

Overall, this work demonstrates the potential of modern AI approaches to advance our understanding 

of prodromal PD and to facilitate data sharing. 
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 Table 1 

Features  Visit 1  Visit 2  Visit 3  Visit 4  

Risk markers  Category  PD-free 

(n=1178)  

PD-free 

(n=1070)  

Incident 

PD (n=6)  

PD-free 

(n=981)  

Incident 

PD (n=5)  

PD-free 

(n=880)  

Incident 

PD (n=5)  

Age at visit 1    63 (58, 68)  65 (60, 70)  74 (70, 74)  67 (62, 72)  75 (73, 76)  69 (64, 74)  70 (68, 71)  

Sex  Male  599 (51%)  546 (51%)  5 (83%)  503 (51%)  5 (100%)  464 (53%)  3 (60%)  

Female  579 (49%)  524 (49%)  1 (17%)  478 (49%)  0 (0%)  416 (47%)  2 (40%)  

PD family history  No  1010 (86%)  917 (86%)  3 (50%)  840 (86%)  4 (80%)  751 (85%)  4 (80%)  

Yes  168 (14%)  153 (14%)  3 (50%)  141 (14%)  1 (20%)  129 (15%)  1 (20%)  

Polygenic risk 

score  

Marker absent  247 (21%)  218 (20%)  2 (33%)  204 (21%)  1 (20%)  181 (21%)  3 (60%)  

Borderline 500 (42%)  459 (43%)  2 (33%)  420 (43%)  2 (40%)  380 (43%)  1 (20%)  

Marker present  252 (21%)  237 (22%)  1 (17%)  218 (22%)  1 (20%)  197 (22%)  0 (0%)  

Missing  179 (15%)  156 (15%)  1 (17%)  139 (14%)  1 (20%)  22 (14%)  1 (20%)  

GBA mutation  No  1126 (96%)  1021 (95%)  6 (100%)  938 (96%)  2 (40%)  845 (96%)  4 (80 %)  

Yes  52 (4%)  49 (5%)  0 (0%)  43 (4%)  3 (60%)     35 (4%)  1 (20%)  

SN 

hyperechogenicity  

SN-  839 (71%)  771 (72%)  1(17%)  714 (73%)  3 (60%)  641 (73%)  3 (60%)  

SN+  210 (18%)  191 (18%)  5 (83%)  178 (18%)  2 (40%)  168 (19%)  2 (40%)  

Missing  129 (11%)  108 (10%)  0 (0%)  89 (9%)  0 (0%)  71 (8%)  0 (0%)  

Occupational 

pesticide exposure 

No  878 (75%)  855 (80%)  1(17%)  839 (86%)  1 (20%)  813 (92%)  3 (60%)  

Yes  19 (2%)  18 (2%)  0 (0%)  17 (2%)  0 (0%)  17 (2%)  0 (0%)  

Missing  281 (24%)  197 (18%)  5 (83%)  125 (13%)  4 (80%)  50 (6%)  2 (40%)  

Occupational 

solvent exposure 

Yes  774 (66%)  753 (70%)  1 (17%)  739 (75%)  1 (20%)  714 (81%)  2 (40%)  

No  129 (11%)  125 (12%)  0 (0%)  122 (12%)  0 (0%)  117 (13%)  1 (20%)  

Missing  275 (23%)  192 (18%)  5 (83%)  120 (12%)  4 (80%)  49 (6%)  2 (40%)  

Diabetes type II  No  1131 (96%)  1015 (95%)  5 (83%)  922 (94%)  5 (100%)  826 (94%)  4 (80%)  

  Yes  47 (4%)  55 (5%)  1 (17%)  59 (6%)  0 (0%)  54 (6%)  1 (20%)  

  Missing  0 (0%)  0 (0%)  0 (0%)  0 (0%)  0 (0%)     0 (0%)  0 (0%)  

Physical inactivity No  542 (46%)  343 (32%)  1 (17%)  754 (77%)  4 (80%)  701 (80%)  3 (60%)  

Yes  142 (12%)  98(9%)    0 (0%)  223 (23%)  1 (20%)  176 (20%)  2 (40%)  

Missing  494 (42%)  629 (59%)  5 (83%)  4 (0%)  0 (0%)  3 (0%)  0 (0%)  

Non-smoking  Marker absent  535 (45%)  478 (45%)  2 (33%)  438 (45%)  3(60%)  396 (45%)  0 (0%)  

  Borderline 533 (45%)  509 (48%)  4 (67%)  470 (48%)  2(40%)  422 (48%)  4 (80%)  

  Marker present  109 (9%)  83 (8%)  0 (0%)  72 (7%)  0 (0%)  61 (7%)  1 (20%)  

  Missing  1 (0.1%)     0 (0%)  0 (0%)  1 (0.1%)  0 (0%)  1 (0.1%)  0 (0%)  

Table 1. Summary statistics of age and risk markers of PD-free individuals and incident PD cases at different visits, absolute 

and relative (%) frequencies of marker presence or median (inter-quartile range in brackets) are given unless specified 

otherwise. Sample sizes per visit are indicated. Missingness of marker data within a given visit is indicated, i.e. not 

considering longitudinal study dropout. Percentage values indicate the relative frequency of marker 

presence/absence/borderline/missingness within PD-free and incident PD groups, respectively, and within each visit. GBA, 

glucocerebrosidase; PD, Parkinson’s disease; SN, substantia nigra.  
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Table 2 

Features  Visit 1  Visit 2  Visit 3  Visit 4  

Prodromal 

markers  

Category PD-free 

(n=1178) 

PD-free  

(n= 1170) 

Incident PD 

(n= 6) 

PD-free 

(n= 981) 

Incident 

PD (n= 5) 

PD-free (n= 

880) 

Incident 

PD (n= 5) 

Hyposmia Marker absent 913 (78%) 860 (80%) 1 (17%) 747 (76%) 0 (0%) 665 (76%) 1 (20%) 

Borderline 244 (21%) 186 (17%) 4 (67%) 194 (20%) 5 (100%) 164 (19%) 4 (80%) 

Marker present 17 (1%) 4 (0.4%) 0 (0%) 24 (2%) 0 (0%) 42 (5%) 0 (0%) 

Missing 4 (0.3%) 20 (2%) 1 (17%) 16 (2%) 0 (0%) 9 (1%) 0 (0%) 

Constipation Marker absent 1015 (86%) 891 (83%) 4 (67%) 810 (83%) 2 (40%) 758 (86%) 5 (100%) 

Borderline 139 (12%) 135 (13%) 2 (33%) 113 (12%) 2 (40%) 90 (10%) 0 (0%) 

Marker present 15 (1%) 23 (2%) 0 (0%) 28 (3%) 1 (20%) 28 (3%) 0 (0%) 

Missing 9 (1%) 21 (2%) 0 (0%) 16 (2%) 0 (0%) 4 (1%) 0 (0%) 

Excessive 

Daytime 

Somnolence 

No 0 (0%) 32 (3%) 1 (17%) 383 (39%) 1 (20%) 839 (95%) 5 (100%) 

Yes 1178 (100%) 1037 (97%) 0 (0%) 586 (60%) 0 (0%) 2 (0.2%) 0 (0%) 

Missing 0 (0%) 10 (<1%) 5 (83%) 12 (1%) 4 (80%) 39 (4%) 0 (0%) 

Symptomatic 

Hypotension 

Marker absent 918 (78%) 793 (74%) 5 (83%) 746 (76%) 5 (100%) 738 (84%) 3 (60%) 

Borderline 230 (20%) 218 (20%) 0 (0%) 200 (20%) 0 (0%) 96 (11%) 1 (20%) 

Marker present 28 (2%) 52 (5%) 1 (17%) 27 (3%) 0 (0%) 43 (5%) 1 (20%) 

Missing 2 (0.2%) 7 (1%) 0 (0%) 6 (0.6%) 0 (0%) 3 (0.3%) 0 (0%) 

Urinary 

Dysfunction 

Marker absent 733 (62%) 691 (65%) 4 (67%) 637 (65%) 2 (40%) 631 (72%) 3 (60%) 

Borderline 391 (33%) 286 (27%) 1 (17%) 269 (27%) 2 (40%) 192 (22%) 1 (20%) 

Marker present 51 (4 %) 82 (8%) 1 (17%) 65 (7%) 1 (20%) 53 (6%) 1 (20%) 

Missing 3 (0.3%) 11 (1%) 0 (0%) 10 (1%) 0 (0%) 4 (1%) 0 (0%) 

pRBD No 1116 (95%) 1041(97%) 6 (100%) 959 (98%) 4 (80%) 852 (97%) 4 (80%)  

Yes 54 (5%) 28 (3%) 0 (0%) 22 (2%) 1 (20%) 28 (3%) 1 (20%)  

Missing 8 (1%) 1 (<0.1%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 

Subthreshold 

parkinsonism 

(MDS-

UPDRS-III) 

No motor deficit 1006 (85%) 980 (92%) 0 (0%) 913 (93%) 1 (20%) 784 (89%) 1 (20%) 

Borderline motor deficit 120 (10%) 66 (6%) 1 (17%) 39 (4%) 2 (40%) 63 (7%) 0 (0%) 

Subthreshold parkinsonism 52 (4%) 24 (2%) 5 (83%) 29 (3%) 2 (40%) 33 (4%) 4 (80%) 

Missing 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 

Depression No 830 (70%) 735 (69%) 3 (50%) 666 (65%) 4 (80%) 599 (68%) 4 (80%)  

Yes 348 (30%) 335 (31%) 3 (50%) 315 (32%) 1 (20%) 281 (32%) 1 (20%)  

Missing 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 

Global 

cognitive 

deficits 

No 971 (82%) 911 (85%) 6 (100%) 856 (87%) 4 (80%) 788 (90%) 4 (80%) 

Yes 194 (16%) 142 (13%) 0 (0%) 111 (11%) 1 (20%) 81 (9%) 1 (20) 

Missing 13 (1%) 17 (2%) 0 (0%) 14 (1%) 0 (0%) 11 (1%) 0 (0%) 
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Table 2. Summary statistics of prodromal markers of PD-free individuals and incident PD cases at different time 

points, absolute and relative (%) frequencies of marker presence or median (inter-quartile range in brackets) are 

given unless specified otherwise. Sample sizes per visit are indicated. Missingness of marker data within a given 

visit is indicated, i.e. not considering longitudinal study dropout. Percentage values indicate the relative 

frequency of marker presence/absence/borderline/missingness within PD-free and incident PD groups, 

respectively, and within each visit. MDS-UPDRS-III, MDS-sponsored Unified Parkinson’s Disease Rating 

Scale, motor part 3; PD, Parkinson’s disease, pRBD, possible REM sleep behavior disorder. 
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Table 3 

Risk/prodromal marker A Risk/prodromal marker B 

Risk/prodromal marker B 

Participants (n) 
p-value  

No  Borderline  Yes  
Male sex  

Depression (V1)  471    128  <0.0001*  
Female sex  359    220  
Male sex  

Non-smoker (V1)  228  320  51  <0.0001*  
Female sex  308  213  58  
Male sex  

SN hyperechogenicity  453    146  <0.0001*  
Female sex  515    64  
Male sex  

Constipation (V1)  549  45  5  <0.0001*  
Female sex  472  96  11  
Male sex  

PD family history  529    70  0.013  
Female sex  481    98  
Male sex  

Symptomatic hypotension (V1)  508  83  8  <0.0001*  
Female sex  412  147  20  
Male sex  

Diabetes type II (V1)  567    32  0.024  
Female sex  564    15  
Exposure to solvents (V1)  

Cognitive deficits (V1)  302    86  <0.0001*  
No exposure to solvents (V1)  678    112  
Exposure to solvents (V2)  

Cognitive deficits (V2)  246    176  <0.0001*  
No exposure to solvents (V2)  682    74  
Exposure to solvents (V3)  

Cognitive deficits (V3)  201    237  <0.0001*  
No exposure to solvents (V3)  668    72  
Exposure to solvents (V3)  

Constipation (V3)  394  32  12  0.029  
No exposure to solvents (V3)  626  88  26  
Exposure to pesticides (V1)  

Symptomatic hypotension (V1)  13  20  1  <0.0001*  
No exposure to pesticides (V1)  907  210  27  
Presence of depression (V2)  

Day time somnolence (V4)  414    26  <0.0001*  
Absence of depression (V2)  725    13  
Presence of depression (V2)  

Symptomatic hypotension (V2)  213  200  27  <0.0001*  
Absence of depression (V2)  588  122  28  
Non-smoker at visit (V1)  

Physically active (V1)  
107    429  <0.0001*  

Borderline smoker (V1)  82    451  
Smoker (V1)  63    46  
Non-smoker (V1)  

Depression (V1)  
389    147  <0.0001*  

Borderline smoker (V1)  382    151  
Smoker (V1)  59    50  
Presence of Global cognitive deficits (V2)  

Physically active (V3)  224    85  <0.0001*  
Absence of Global cognitive deficits (V2)  193    676  
GBA mutation carries  

Polygenic risk score  21  24  7  0.002  
GBA mutation non-carriers  226  655  245  
Age (> 65 years)  

Conversion to PD  500    23  <0.0001*  
Age (≤ 65 years)      654    1  
Age (> 65 years)  

Subthreshold parkinsonism (V4)  462  31  30  <0.0001*  
Age (≤ 65 years)  616  32  7  
Age (> 65 years)  

Subthreshold parkinsonism (V1)  418  71  34  <0.0001*  
Age (≤ 65 years)  588  49  18  
Age (> 65 years)  

Urinary Dysfunction (V1)  269  220  34  <0.0001*  
Age (≤ 65 years)  465  173  17  
Age (> 65 years)  

Non-smoking (V1)  260  236  27  <0.0001*  
Age (≤ 65 years)  276  297  82  

  

Table 3: Statistical testing of the co-occurrence of risk and prodromal marker pairs (A & B) in the 

TREND data (including imputed data) as suggested by edges in the TREND BN of real data. P-values 

have been calculated based on a 𝜒2-test and corrected for multiple testing using Holm’s method. 

Significant findings (after Holm-Bonferroni correction for multiple testing) are indicated by an 

asterisk. Findings remain significant in logistic regressions additionally accounting for age and sex. V, 

visit. 
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Table 4 

Subjects Age Sex 

MDS-UPDRS-III 

(V4) 

pRBD 

(V4) 

Depression 

(V4) 

Global cognitive 

deficits (V4) 

Conversion 

to PD 

Synthetic subject # 1 68 Male No motor deficit No No No No 

Synthetic subject #2 67 Female No motor deficit No No No No 

Synthetic subject #3 68 Male 
Subthreshold 

parkinsonism 
No No Yes Yes 

Synthetic subject #4 73 Female No motor deficit No No No No 

Synthetic subject #5 69 Male 
Borderline motor 

deficit 
No No No Yes 

Real subject #1 63 Female No motor deficit No No No No 

Real subject #2 68 Male 
Subthreshold 

parkinsonism 
No No No Yes 

Real subject #3 70 Male 
Borderline motor 

deficit 
No No No Yes 

 

Table 4. Examples of synthetic and real subjects and their demographics, selected prodromal markers, 

subthreshold parkinsonism (MDS-UPDRS-III) and PD conversion status at visit 4. The rows in bold 

represent the similarity between the real and synthetic subjects’ data for incident PD cases. MDS-

UPDRS-III, subthreshold parkinsonism indicated by the MDS-sponsored Unified Parkinson’s Disease 

Rating Scale; PD, Parkinson’s Disease, pRBD, possible REM-sleep behavior disorder. V, visit. 

 

Figure captions 

Figure 1: Interdependencies between different risk markers and prodromal markers of Parkinson’s 

Disease. The depicted Bayesian network represents interdependencies between variables learned from 

prospective TREND data. Domains of marker nodes are indicated by circle color. The node of the 

“Conversion to PD” is indicated by a red circle outline. Numbers on edges indicate the level of 

statistical confidence (bootstrap probability), and dashed edge lines indicate confidences <0.5 while 

solid lines indicate a confidence ≥0.5. A higher value indicates a higher confidence in the existence of 

a connection. Nodes isolated from the rest of the network are not shown. V indicates the respective 

visit number.  

 

Figure 2. Multiple correspondence (MCA) analysis plot of prospective data of real (in blue) and 

simulated (in yellow) TREND participants.  
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