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Abstract 

Background: Acute respiratory distress syndrome (ARDS), a life-threatening condition 

characterized by hypoxemia and poor lung compliance, is associated with high mortality. ARDS 

induced by COVID-19 has similar clinical presentations and pathological manifestations as non-

COVID-19 ARDS. However, COVID-19 ARDS is associated with a more protracted inflammatory 

respiratory failure compared to traditional ARDS. Therefore, a comprehensive molecular 

comparison of ARDS of different etiologies groups may pave the way for more specific clinical 

interventions. 

Methods and Findings: In this study, we compared COVID-19 ARDS (n=43) and bacterial 

sepsis-induced (non-COVID-19) ARDS (n=24) using multi-omic plasma profiles covering 663 

metabolites, 1,051 lipids, and 266 proteins. To address both between- and within- ARDS group 

variabilities we followed two approaches. First, we identified 706 molecules differently abundant 

between the two ARDS etiologies, revealing more than 40 biological processes differently 

regulated between the two groups. From these processes, we assembled a cascade of 

therapeutically relevant pathways downstream of sphingosine metabolism. The analysis suggests 

a possible overactivation of arginine metabolism involved in long-term sequelae of ARDS and 

highlights the potential of JAK inhibitors to improve outcomes in bacterial sepsis-induced ARDS.  

The second part of our study involved the comparison of the two ARDS groups with respect to 

clinical manifestations. Using a data-driven multi-omic network, we identified signatures of acute 

kidney injury (AKI) and thrombocytosis within each ARDS group. The AKI-associated network 

implicated mitochondrial dysregulation which might lead to post-ARDS renal-sequalae. The 

thrombocytosis-associated network hinted at a synergy between prothrombotic processes, 

namely IL-17, MAPK, TNF signaling pathways, and cell adhesion molecules. Thus, we speculate 

that combination therapy targeting two or more of these processes may ameliorate 

thrombocytosis-mediated hypercoagulation.  

Conclusion: We present a first comprehensive molecular characterization of differences between 

two ARDS etiologies – COVID-19 and bacterial sepsis. Further investigation into the identified 

pathways will lead to a better understanding of the pathophysiological processes, potentially 

enabling novel therapeutic interventions. 

 

  

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 17, 2022. ; https://doi.org/10.1101/2022.05.16.22274587doi: medRxiv preprint 

https://doi.org/10.1101/2022.05.16.22274587
http://creativecommons.org/licenses/by-nc/4.0/


 3 

1. Introduction  
Acute respiratory distress syndrome (ARDS), a severe form of respiratory failure that is 

associated with high mortality, emerged as a frequent complication of coronavirus disease 2019 

(COVID-19) [1]. ARDS may be induced by other infections (sepsis, influenza), major traumatic 

injury, or inhalation of toxic chemicals [2]. Clinical presentations and pathological manifestations 

of COVID-19 ARDS overlap with non-COVID-19 ARDS, including decreased static lung 

compliance, hypoxemia, hypercarbia, inflammation, thrombosis, and endothelial injury [3–9]. 

However, COVID-19 ARDS is specifically characterized by a protracted hyperinflammatory state, 

and may lead to higher rates of thrombosis as well as fibroproliferative lung remodeling  [10–12]. 

These differences in ARDS etiologies have not yet been fully characterized to an extent that would 

enable timely and tailored clinical care. Moreover, ARDS is a heterogeneous disorder with 

substantial molecular differences even within a specific ARDS group [13]. Thus, to provide deeper 

insight into disease pathophysiology and enable etiology-specific therapeutic interventions, a 

comprehensive molecular characterization of variations between and within ARDS groups is 

needed.  

Previously, ARDS groups have been studied in comparison to non-ARDS reference groups, such 

as healthy controls or hospitalized patients without ARDS [5–9,14–16]. Here, we present the first 

detailed comparative multi-omic analysis between COVID-19 ARDS (n=43) and bacterial sepsis-

induced (non-COVID-19) ARDS (n=24). The comprehensive measurement panel included 1,980 

molecules, including 663 metabolites, 1,051 lipids, and 266 proteins. We followed a two-step 

analysis workflow to elucidate the differences between the two ARDS groups. In the first part, we 

directly compared patients from the two groups to identify differentially abundant molecules. 

These molecules were involved in various biological processes and may highlight the differences 

in the pathological manifestation of the groups. Furthermore, we analyzed a set of ARDS-

associated biological processes with therapeutic relevance, covering various signaling and 

metabolic pathways. In the second part of the study, we associated clinical manifestations, 

including acute kidney injury (AKI), thrombocytosis (platelet count), patient’s oxygen in arterial 

blood to the fraction of the oxygen in the inspired air (PaO2/FiO2), and mortality, with the 

molecular profiles to identify molecular signatures in each ARDS group. For a systematic 

comparison of these molecular changes, we performed multi-omic network analysis and identified 

subnetwork-based signatures. To the best of our knowledge, this is the first study addressing both 

between and within ARDS group variabilities in a large-scale multi-omic setting.  
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2. Results 

2.1 Cohort characteristics and description of molecular data 

We analyzed 67 patients admitted to the intensive care unit at Weill Cornell Medical Center 

(WCMC) – New York-Presbyterian (NYP) hospital with diagnoses of COVID-19 (n = 43) and 

bacterial sepsis (n = 24). This cohort included 50 (74.6%) males and 17 (25.4%) females, with a 

median age of 60. The median mortality rate was 29.9%, with 11 out of 43 in COVID-19 ARDS 

and 9 out of 24 in bacterial sepsis-induced ARDS. 46.3% of patients suffered from acute kidney 

injury (AKI), with 16 out of 43 in COVID-19 ARDS and 15 out of 24 in bacterial sepsis-induced 

ARDS. The sequential organ failure assessment (SOFA) index was comparable between the two 

groups, with a median of 10 in the COVID-19 group and 9 in the bacterial sepsis group. Detailed 

demographics of the patient cohort are provided in Supplementary Table 1. Plasma samples 

from the patients were subjected to untargeted metabolomics, targeted lipidomics, and targeted 

proteomics profiling. After quality control and preprocessing, 663 metabolites, 1,051 lipids, and 

266 proteins were used for further analysis. The overall study and analysis design are shown in 

Figure 1. 
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Figure 1: Study overview. This study was based on 67 ARDS patients, 43 with COVID-19 and 24 with bacterial sepsis 

group. Profiling of plasma samples resulted in 1,906 measured molecules, including 663 metabolites, 1,051 lipids, and 
266 proteins. For inter-ARDS comparison, we identified molecules and pathways differently regulated between the two 

ARDS groups. In addition, focusing on several selected pathways with therapeutic relevance, we constructed a cascade 

of biological processes starting from sphingosine metabolism. For intra-ARDS comparison, we identified molecules 
associated with clinical manifestations, including acute kidney injury (AKI), thrombocytosis (platelet count), PaO2/FiO2 

ratio, and mortality, within each ARDS group. Further, we constructed a data-driven multi-omic network based on the 

Gaussian graphical model (GGM). This network was used to generate subnetworks associated with clinical 
manifestations.  

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 17, 2022. ; https://doi.org/10.1101/2022.05.16.22274587doi: medRxiv preprint 

https://doi.org/10.1101/2022.05.16.22274587
http://creativecommons.org/licenses/by-nc/4.0/


 6 

2.2 Plasma molecular profiles differentiate the two ARDS groups 

To assess the molecular differences between COVID-19 and bacterial sepsis-induced ARDS, we 

analyzed three molecular layers - metabolic, lipidomic, and proteomic. A total of 175 out of 663 

metabolites, 437 out of 1,051 lipids, and 94 out of 266 proteins were differentially abundant 

between the groups at a 5% false discovery rate (FDR) (Figure 2a). Detailed results of this 

analysis are available in Supplementary Table 2.  

To identify the biological processes underlying the differences between the ARDS groups, the 

differentially abundant molecules were functionally annotated. Metabolites were annotated using 

Metabolon’s ‘sub-pathways’, lipids were annotated by lipid classes, and proteins were annotated 

using signaling pathways from KEGG [17] (Supplementary Table 3). Top ranking pathways are 

depicted in Figure 2b. Interestingly, several of these pathways from each of the three omics have 

previously been implicated in COVID-19 ARDS or non-COVID-19 ARDS and will be further 

discussed per omics and pathway in the following. To corroborate our findings, we used previous 

studies which have compared these ARDS groups with healthy controls or less severe COVID-19 

cases. We followed this route to provide general evidence for the importance of the respective 

pathway in ARDS, and since parallel studies comparing COVID-19 and non-COVID-19 ARDS at 

the molecular level in a high-throughput setting were unavailable.  

Metabolic pathways: Branched-chain amino acids (BCAAs): In our analysis, 10 metabolites from 

this pathway were differentially abundant between the ARDS groups. Of these, 8 had higher levels 

in COVID-19 ARDS compared to bacterial sepsis-induced ARDS, and 2 had lower levels. A 

previous study based on bronchoalveolar lavage (BAL) fluid reported BCAAs to be higher in non-

COVID-19 ARDS groups compared to non-ARDS groups [18]. Further corroborating the role of 

this metabolite class, BCAAs were recently found to be differently regulated in severe COVID-19 

cases compared to mild COVID-19 cases [19]. Glutamate metabolism: 7 metabolites from this 

pathway were found to be differentially abundant between the ARDS groups, of which 4 had 

higher levels in COVID-19 ARDS compared to bacterial sepsis-induced ARDS and 3 had lower 

levels. Previous studies have reported elevated glutamate levels in BAL fluid of non-COVID-19 

ARDS patients compared to healthy controls, as well as elevated levels of metabolites involved 

in glutamate metabolism in serum of patients with severe COVID-19 disease compared to healthy 

controls [19].  

Lipid classes: We observed substantial lipidomic changes between the two ARDS groups, with 

the greatest differences observed in the triacylglycerols (260) and diacylglycerols (32) lipid 

classes. Triacylglycerols and diacylglycerols levels have been previously associated with 
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mortality in ARDS [20], highlighting the role of lipid metabolism in the prognosis of patients. 

However, previous studies have reported inconsistent results, with both higher and lower levels 

of triacylglycerols in the COVID-19 compared to a control group [8,21]. In our study, 158 TAGs 

and 29 DAGs had higher levels in COVID-19 ARDS compared to bacterial sepsis-induced ARDS 

while 102 TAGs and 3 DAGs had lower levels.  

Proteomic pathways: PI3K-AKT signaling: In our analysis, 12 proteins from the PI3K-AKT 

pathway were differentially abundant between the ARDS groups, of which 8 molecules had higher 

levels in COVID-19 ARDS compared to bacterial sepsis-induced ARDS and 4 had lower levels. 

PI3K-AKT signaling plays a pivotal role in the induction of a hyperinflammatory state [22] and the 

propagation of acute lung injury [23]. Previous studies found the pathway to be elevated in 

COVID-19 [24] compared to influenza patients. MAPK signaling: 11 proteins from the MAPK 

pathway were differentially abundant between the ARDS groups, of which 8 proteins had higher 

levels in COVID-19 ARDS compared to bacterial sepsis-induced ARDS, and 3 had lower levels. 

The MAPK signaling pathway has previously been reported to promote ARDS [25], and its 

inhibition has been discussed as a potential therapeutic approach for COVID-19 [26]. 

Overall, we identified 706 molecules differently abundant between the two ARDS etiologies, 

revealing more than 40 biological processes (Supplementary Table 3) differently regulated 

between the two groups.  
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Figure 2: Multi-omic comparison between COVID-19 ARDS and bacterial sepsis-induced ARDS. a. Metabolomic, 
lipidomic, and proteomic analyses between the two ARDS groups. 706 molecules were differently abundant in the two 

ARDS groups. b. Functional annotations of significant molecules. Pathways and classes with at least 4 significant 

molecules were included in these plots. FDR – false discovery rate. Lipid class abbreviations: TAG – Triacylglycerol, 
PC – Phosphatidylcholine, DAG – Diacylglycerol, CE – Cholesteryl ester, HCER – Hexosylceramides, Total – total 

lipids, SM – Sphingomyelin, LPC – Lysophosphatidylcholine, LCER - Lactosylceramides, DCER – Dihydroceramides, 

CER – Ceramides, PE – Phosphatidylethanolamine, MAG – Monoacylglycerol, LPE - Lysophosphatidylethanolamine, 
PI - Phosphatidylinositol.  
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2.3 The multi-omic interplay of therapeutically relevant ARDS-associated pathways 

Pathway annotations provide functional relevance to the molecules differently abundant between 

the two ARDS etiologies. However, such an analysis does not provide any insights into the 

interplay of these pathways in the context of ARDS pathology. From the list of differently regulated 

pathways (Supplementary Table 3), we selected a few ARDS-associated processes for detailed 

investigation at the molecular level. We built a cascade of pathways that have been reported to 

be of pharmaceutical interest in inflammatory or infectious diseases and used literature-based 

evidence of their interactions (Figure 3). Each of the pathways in this cascade and its therapeutic 

potential in ARDS is discussed in the following. 

Sphingosine metabolism: The cascade is built downstream of sphingosine metabolism, 

involving sphingosine-1 phosphate (S1P) and its receptors (S1PRs) (Figure 3a). In our analysis, 

sphingosine and sphingosine-1 phosphate levels were higher in COVID-19 compared to bacterial 

sepsis-induced ARDS.  

Sphingosine metabolism plays an important role in immune and vascular systems [27,28]. S1P 

and S1PRs have gained considerable attention in the treatment of various inflammatory 

conditions. For instance, Fingolimod (FTY720), an agonist of S1PR1, is already in clinical use for 

multiple sclerosis (MS), a chronic autoimmune inflammatory disorder [29]. Moreover, S1P analogs 

have been studied for the treatment of cytokine storms [30] and pulmonary infections induced by 

influenza H1N1 and paramyxovirus [31]. Consequently, and owing to the life-threatening 

hyperinflammatory syndrome induced by SARS-COV2 infections [32], three clinical trials were 

launched to use S1P-S1RPs agonists (Fingolimod, Opaganib) against COVID-19 

(Clinicaltrials.gov identifiers: NCT04280588, NCT04467840, NCT04414618).  

MAPK/ERK, RAS, PI3K-AKT pathways: S1PRs regulate various downstream signaling 

pathways, including MAPK/ERK, RAS, PI3K-AKT (Figure 3b) [33], which are involved in viral 

replication and propagation [34–37]. In our analysis, 12 proteins from the MAPK, PI3K-AKT, and 

RAS signaling pathways had higher levels in COVID-19 ARDS compared to bacterial sepsis-

induced ARDS and 6 proteins had lower levels.  

Several components from the MAPK/ERK, RAS, and PI3K-AKT pathways have previously been 

implicated in COVID-19 and non-COVID-19 ARDS [38]. For instance, PDGF subunits and TGF-

beta 1 have been linked to the post-ARDS pulmonary fibrosis [39] and blockage of TNF-R1 by 

GSK1995057 has been suggested to have therapeutic potential in ARDS [40]. Moreover, 
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pulmonary sequelae of COVID-19 have been associated with IL-6 and TGF-beta via provocation 

of a fibrotic state [41].  

Arginine metabolism: It has been reported that the PI3K-AKT and JAK-STAT signaling 

pathways induce nitric oxide (NO) production via arginine [42] (Figure 3c). NO production at 

higher levels mediates lung injury via the formation of toxic oxidants [43]. In our data, arginine 

levels were higher in COVID-19 ARDS compared to bacterial sepsis-induced ARDS. Notably, NO 

was not measured in our data. 

Arginine depletion strategies that block its conversion to NO and citrulline are effective in inhibiting 

viral replication (HCV, HIV) [44,45] and have thus been discussed as a therapeutic approach in 

the context of the COVID-19 [46]. Furthermore, Karki et. al [47], reported higher levels of the 

NOS2 gene (coding for iNOS, one of the enzymes catalyzing nitric oxide production) in severe 

and critical COVID-19 cases compared to controls [47]. 

JAK/STAT signaling pathway: In our analysis, 4 proteins from the JAK/STAT signaling 

pathways had higher levels in COVID-19 ARDS compared to bacterial sepsis-induced ARDS, and 

6 proteins had lower levels (Figure 3d). Two recent clinical trials have shown improved outcomes 

in COVID-19 patients that received JAK inhibitors [48,49]. 

Taken together, in this section we investigated the interplay of metabolic and signaling events 

that potentially lead to and propagate the pathophysiology of ARDS. Some of our observations 

could be corroborated using ARDS-specific literature. The rest of the findings are potentially novel 

and can be further investigated in a targeted manner to establish a mechanistic understanding of 

specific pathways/molecules in the context of ARDS. Overall, our analysis suggests that ARDS 

is an inflammatory process coordinated by multiple cellular processes with severe physiological 

implications.  
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Figure 3: Multi-omic interplay of selected, therapeutically relevant ARDS-associated pathways. We selected 
several pathways that are of pharmaceutical interest in inflammatory or infectious diseases and built the cascade using 

literature-based knowledge of their interactions. This cascade begins with sphingosine metabolism, which is a target of 

interest to improve inflammatory conditions [29,30]. Sphingosine-1 phosphate (S1P) and its receptors (S1PRs) activate 
MAPK, RAS, and PI3K-Akt signaling pathways downstream [33]. These signaling pathways are central to various 

biological functions, including viral replication and propagation in host cells [34–37]. Inhibition of these pathways has 

been discussed as a potential therapeutic approach for treating ARDS [38,40]. Further down in this cascade, arginine 
metabolism can be activated by PI3K-AKT and JAK-STAT signaling pathways [42]. These pathways activate the nitric 

oxide synthase enzymes, which catalyze the conversion of arginine to nitric oxide. Arginine depletion strategies have 

been discussed in the context of controlling viral infections [44,45], and JAK inhibition was found to be effective in 
improving the outcome of COVID-19 [48,49].  
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2.4 Network-based molecular signatures of ARDS-related clinical manifestations 

In this part of our study, we compared the differences in omics associations with clinical 

manifestations across the two ARDS groups. These included acute kidney injury (AKI), 

thrombocytosis (determined by a pathological increase in platelet count), PaO2/FiO2 ratio (low 

ratio indicates severe hypoxia), and mortality. For PaO2/FiO2 ratio, we only found significant 

correlations in the COVID-19 ARDS group and there were no molecules associated with mortality 

in our data. Thus, these two clinical parameters were not used for the comparison of ARDS 

groups.  

In total, 249 molecules were associated with AKI and 111 molecules associated with platelet count 

(Figure 4a). 76 molecules overlapped between the two ARDS groups, 49 molecules in AKI 

signature, and 27 molecules in thrombocytosis (platelet count) signature. Detailed results of this 

analysis are available in Supplementary Tables 4-6.  

To obtain a systematic view of these dysregulated multi-omic molecules across ARDS groups, 

we adopted a network-based approach. To this end, we generated a data-driven Gaussian 

graphical model (GGM, Figure 4b) [50], which is a partial correlation-based approach to identify 

interactions between molecules. GGMs have previously been shown to reconstruct biochemical 

pathways from omics data [51–53] and therefore add biological relevance to results aside from 

the predefined pathway annotations. We then extracted subnetworks for AKI and thrombocytosis 

(see methods for details), which will be discussed in the following subsections. An interactive 

Cytoscape version of the full network and all subnetworks for further exploration are available in 

Supplementary File 1. 
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Figure 4: Overview of intra-ARDS multi-omic signatures within each ARDS. a. Molecules associated with each of 
the two clinical manifestations that could be compared across ARDS groups (AKI and platelet count) for each omics 
layer. 249 molecules were associated with AKI and 111 with platelet count in the ARDS groups. b. Gaussian graphical 
model (GGM) of metabolites, lipids, and proteins. Shapes and colors of the molecules in the network are based on the 
omics type.  
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2.4.1 Acute kidney injury (AKI) signature 

AKI is a sudden reduction in normal kidney function leading to an accumulation of toxic waste 

products in blood. It is a common complication of ARDS, occurring in 44.3% of patients with non-

COVID-19 ARDS [54] and 49.5% of patients with COVID-19 ARDS [55]. In our study, 46.3% of 

patients suffered from AKI, with 16 out of 43 (37.20%) in COVID-19 ARDS and 15 out of 24 

(62.50%) in bacterial sepsis-induced ARDS. 

Within COVID-19 ARDS patients, 233 molecules were associated with AKI, including 231 

metabolites (135 positively, 96 negatively), 2 proteins (both positively), and no lipids. In bacterial 

sepsis-induced ARDS, 65 metabolites were associated with AKI (46 positively, 19 negatively), 

and no proteins or lipids. The AKI-associated subnetwork consisted of 245 molecules connected 

by 373 correlation-based edges. Within this subnetwork, we focused on the largest connected 

component with 190 molecules and 318 interactions (Figure 5a). 121 molecules in this 

subnetwork were significant in COVID-19 ARDS (5% FDR), and 27 molecules were significant in 

bacterial sepsis-induced ARDS.  

Metabolites from this subnetwork were from two main metabolic groups: amino acid metabolism 

and fatty acids from the acylcarnitine class. In critical illness, protein catabolism leads to the 

production of excess amino acids [56,57], whereas in lung injury, fatty acid oxidation is altered, 

resulting in the production of acylcarnitines [58]. Amino acid dysregulation has been reported in 

correlation with COVID-19 severity [59–61], further highlighting the role and relevance of amino 

acid metabolism. Both amino acids and acylcarnitines are known to be involved in bioenergetic 

processes mediated by mitochondria [62,63] and have also been associated with kidney injury 

[64]. Mitochondrial dysfunction often leads to oxidative stress [65], which is a characteristic feature 

of COVID-19 as well as ARDS from other etiologies [66,67]. Therefore, the dysregulation of 

acylcarnitines and amino acid metabolism observed in plasma suggests widespread 

mitochondrial dysfunction in AKI associated with ARDS.  
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2.4.2 Thrombocytosis signature 

Thrombocytosis is marked by increased production of thrombocytes (platelets), which can be 

triggered by an underlying condition, such as infection. Platelet activation is crucial for various 

normal physiological and pathophysiological processes, including hemostasis, thrombosis, and 

immune response [68]. Thrombosis or coagulopathy is associated with poor prognosis in ARDS 

patients [11,69]. Previous studies have reported high incidences of thrombotic complications in 

COVID-19 ARDS as compared to non-COVID-19 ARDS patients [11]. It has also been postulated 

that thrombotic manifestation in COVID-19 ARDS is atypical, i.e., despite increased platelet 

consumption, circulating platelet count is maintained via a compensatory platelet production 

[11,69]. 

Within COVID-19 ARDS patients, 65 molecules were associated with platelet count, including 28 

metabolites (24 positively, 4 negatively), 36 proteins (27 positively, 9 negatively), and 1 lipid 

(positively). In bacterial sepsis-induced ADRS, 73 molecules were associated with  platelet count, 

including 20 metabolites (all positively), 33 lipids (31 positively, 2 negatively), and 20 proteins (19 

positively, 1 negatively). The thrombocytosis-associated subnetwork consisted of 165 molecules 

connected by 268 correlation-based edges. Within this subnetwork, we focused on the largest 

connected component with 89 molecules and 208 interactions (Figure 5b). 33 proteins in the 

subnetwork were significantly associated with  platelet count in COVID-19 ARDS, and 20 proteins 

were significantly associated with  platelet count in bacterial sepsis-induced ARDS. 

Proteins in this subnetwork were mainly cell adhesion molecules or belonged to IL-17, MAPK, 

and TNF signaling pathways. IL-17 signaling is associated with severe inflammatory conditions 

and works in synergy with TNF signaling to induce vascular genes as well as cell adhesion 

molecules [70]. After vascular injury, cell adhesion molecules mediate activation of platelet 

adhesion [71,72]. IL-17 TNF, and the MAPK signaling pathway have previously been implicated 

in enabling thrombosis [73–76], a frequent complication in COVID-19 ARDS [77] as well as non-

COVID-19 ARDS [78]. Therapies targeting IL-17, TNF, and MAPK have been discussed for 

COVID-19 treatment [26,79–82]. 

Taken together, our finding of correlations between thrombocytosis (platelet count) and molecules 

involved in cell adhesion, IL-17, TNF, MAPK signaling pathways imply a coordinated effort of 

these pathways toward thrombocytosis-mediated coagulopathy during ARDS. 
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Figure 5: Subnetwork-based signatures of two clinical manifestations across ARDS groups. a. AKI-associated 

subnetwork enriched in amino acids and acylcarnitines, indicating mitochondrial dysfunction. b. Thrombocytosis-

associated subnetwork enriched IL-17, MAPK, TNF signaling pathways, and cell adhesion molecules. These are 
prothrombotic processes that may lead to hypercoagulative complications in COVID-19. 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 17, 2022. ; https://doi.org/10.1101/2022.05.16.22274587doi: medRxiv preprint 

https://doi.org/10.1101/2022.05.16.22274587
http://creativecommons.org/licenses/by-nc/4.0/


 17 

 

3. Discussion 
In this study, we performed a comprehensive multi-omic comparative analysis of COVID-19 and 

bacterial sepsis-induced ARDS. We profiled plasma samples from 67 patients hospitalized at 

WCMC/NYP using untargeted metabolomics, untargeted lipidomics, and targeted proteomics 

profiling, resulting in the quantification of 1,980 molecules. To perform the comparison of 

molecular differences between these ARDS groups, we followed two approaches. First, to identify 

differently regulated molecules and biological processes in the two groups, we directly compared 

the molecular profiles between COVID-19 ARDS and bacterial sepsis-induced ARDS. Second, to 

obtain an overview of the similarities and differences in molecular presentation of severity in both 

groups, we compared molecular associations with clinical manifestation within each group.  

For the first part of the study, we identified 706 molecules (metabolites, lipids, proteins) differently 

abundant between COVID-19 ARDS and bacterial sepsis-induced ARDS. These molecules 

spanned various biological processes (Figure 2b) and may drive the pathological manifestation 

of the two etiologies. To further contextualize our findings, we built a cascade of ARDS-induced 

changes in a selected set of interrelated pathways with therapeutic relevance, including 

sphingosine metabolism, MAPK, RAS, PI3K/AKT signaling, arginine metabolism, and JAK-STAT 

signaling. This analysis suggested that ARDS is coordinated by multiple cellular processes with 

severe pathophysiological consequences and led to two main propositions: (1) We speculate that 

arginine metabolism plays a critical role in the long-term sequelae of ARDS, as arginine 

metabolism has previously been shown to be altered in the pulmonary fibrosis [83,84]. (2) We 

postulate that blockage of JAK-STAT signaling may improve outcomes of bacterial sepsis-

induced ARDS. JAK-STAT activation has been implicated in the pathogenesis of ARDS 

previously [85,86] and its inhibition has already been shown to improve outcomes of COVID-19 

ARDS [87].  

For the second part of our study, to examine within-ARDS heterogeneity, we compared molecular 

profiles within each of the two ARDS groups concerning clinical manifestations. We identified 

ARDS group-specific signatures for AKI, thrombocytosis (platelet count). Using a multi-omic 

network, we identified two network-based signatures for AKI and thrombocytosis. The AKI-related 

subnetwork included deregulated amino acids and acylcarnitines, hinting toward aberrations in 

bioenergetic processes mediated by mitochondria. Importantly, mitochondrial dysfunction is 

known to cause the progression of AKI to chronic kidney disease (CKD) [88,89]. Thus, we 
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hypothesize that mitochondrial dysfunction associated with ARDS may lead to a worse prognosis 

of AKI. Renal sequelae have been studied in people suffering from severe AKI and requiring renal 

replacement therapy during COVID-19 infection [41]. The thrombocytosis-related subnetwork 

included deregulated molecules from IL-17, TNF, MAPK signaling pathways, and cell adhesion 

molecules. Our findings suggest a synergy between the above-mentioned prothrombotic 

processes [73,90,91] as a likely reason for hypercoagulation in ARDS. We speculate that 

combination therapy targeting two or more of these processes may ameliorate hypercoagulation. 

Our findings are based on a study design with several limitations. (1) Samples in each ARDS 

group were collected years apart, which may cause variation in the molecular profiles due to 

differences in sample collection protocols and duration of storage. (2) The number of samples in 

each ARDS group is limited and imbalanced, with 43 COVID-19 samples and 24 bacterial sepsis 

samples, which reduces statistical power. (3) Our findings are based on molecules measured in 

plasma; thus, the measurements may not be representative of the site of ARDS, i.e., the lungs. 

(4) Our results are based on statistical associations, and further experiments are needed for 

validation as well as mechanistic and causal insights.  

In summary, we presented a first report on the molecular comparison between two ARDS 

etiologies – COVID-19 and bacterial sepsis. Our study is a step toward solving two pertinent 

clinical challenges associated with ARDS: the identification of novel therapeutic options, and the 

delineation of heterogeneous pathophysiological manifestations within the ARDS [38]. Even 

though for COVID-19 ARDS, a few partially effective immunotherapeutic options have been 

identified in anti-IL-6 therapy and JAK inhibitors, treatment remains a challenge for bacterial 

sepsis-induced ARDS. Using an inter-ARDS comparison, we highlighted therapeutically relevant 

signaling and metabolic pathways for ARDS of different etiologies. Using an intra-ARDS analysis, 

we identified molecular signatures characterizing patient heterogeneity within each ARDS group. 

Our findings are encouraging and warrant further investigation to evaluate their potential for 

applicability in clinics and ARDS-specific therapeutic intervention. 
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4. Methods 

4.1 Patient Population 

The cohort was derived from the Weill Cornell Biobank of Critical Illness (WC-BOCI) at 

WCMC/NYP. The process for recruitment, data collection, and sample processing has been 

described previously [93–95]. In brief, the recruits in the WC-BOCI database were patients 

admitted to the intensive care unit with valid consent between October 2014 to May 2021, 

including 67 patients with COVID-19 ARDS (n=43) and bacterial sepsis-induced ARDS (n=24). 

Clinical data such as demographics, vital signs, labs, and ventilator parameters were obtained 

through the Weill Cornell-Critical Care Database for Advanced Research (WC-CEDAR) and the 

Weill Cornell Medicine COVID Institutional Data Repository (COVID-IDR). Additional clinical data 

was obtained through manual abstraction from the electronic health records. 

4.2 Clinical manifestations 

Definitions used to diagnose key clinical manifestations used in the study are described below. 

Acute Respiratory Distress Syndrome (ARDS). We defined ARDS by the Berlin definition [96], 

which was then adjudicated by two independent pulmonary and critical care attendings after a 

review of the subject’s history, arterial blood gas, and chest X-ray. Bacterial sepsis-induced ARDS 

was defined if subjects met the criteria for ARDS in addition to meeting the definition for sepsis 

outlined in The Third International Consensus Definitions for Sepsis and Septic Shock [97]. 

Subjects were diagnosed with COVID-19 if a viral swab of the nasopharynx tested positive 

exclusively for SARS-CoV-2 via RT-PCR. 

Acute Kidney Injury (AKI). AKI was defined based on the ‘Kidney Disease: Improving Global 

Outcomes’ definition (KDIGO). KDIGO requires a change of serum creatinine greater than or 

equal to 0.3 mg/dL within 48 hours, an increase in serum creatinine greater than or equal to 1.5 

times baseline serum creatinine known or presumed to have occurred within the past 7 days, or 

urine output less than or equal to 0.5 mL/kg/hour for six hours [98].  

Sequential Organ Failure Assessment (SOFA). The SOFA score is a clinical tool used by 

clinicians in the ICU to determine the degree of a patient’s organ failure. The SOFA score is 

composed of the following variables, with higher values being assigned for more severe 

alterations: PaO2/FiO2 (mm Hg), Platelets x 103/µL, Glasgow Coma Scale, Bilirubin (mg/dL), 

Mean Arterial Pressure or administration of vasoactive required, and Creatinine (mg/dL) [99]. 
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4.3 Sample handling  

Standard serum collection and storage practices at the New York-Presbyterian/Weill Cornell 

Medical College include collecting venous blood into a serum-separating tube (SST). Serum was 

obtained by centrifuging at 1,500g for 7 minutes as soon as possible after collection and latest 2 

hours after sample collection. Specimens were stored at 4°C for 1 to 5 days before being 

coded/de-identified and then transferred into a -80°C freezer. Samples were thawed and 

inactivated in different ways: For the metabolic profiling, x3 sample volume of HPLC grade ethanol 

was added; for the proteomics analysis, the samples were heat-inactivated in a water bath of 

56°C for 15 minutes. After these processes, the samples were again stored at -80°C until the omic 

profiling were performed.  

4.4 Proteomic profiling 

This assay was performed using the Olink platform (Uppsala, Sweden) at the Proteomics Core of 

Weill Cornell Medicine-Qatar, according to the manufacturer's instructions. We used the 

Inflammation, Cardiovascular II, and Cardiovascular III panels. High throughput real-time PCR of 

reporter DNA lined to protein-specific antibodies was performed on a 96-well integrated fluidic 

circuits chip (Fluidigm, San Francisco, CA). Each sample was spiked with quality controls to 

monitor the incubation, extension, and detection steps of the assay. Additionally, samples 

representing external, negative, and inter-plate controls were included in each analysis run. From 

the raw data, real time PCR cycle threshold (Ct) values were extracted using Fluidigm reverse 

transcription polymerase chain reaction (RT-PCR) analysis software at a quality threshold of 0.5 

and linear baseline correction. Ct values were further processed using the Olink NPX manager 

software (Olink, Uppsala, Sweden). Here, log2-transformed Ct values from each sample and 

analyte were normalized based on spiked-in extension controls and scale-inverted to obtain 

Normalized log2-scaled Protein Expression (NPX) values. NPX values were adjusted based on 

the median of interplate controls (IPC) for each protein and intensity median scaled between all 

samples and plates. 

4.5 Metabolomic profiling 

This assay was performed by Metabolon, Inc (Morrisville, NC) which utilizes ultrahigh 

performance liquid chromatograph-tandem mass spectroscopy (UPLC-MS/MS).  

Sample preparation was performed using the automated MicroLab STAR® system from Hamilton 

Company. For quality control, before extraction, several recovery standards were added. For 
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extraction, methanol with vigorous shaking followed by centrifugation was used to remove protein, 

dissociate small molecules bound to protein or trapped in the precipitated protein matrix, and 

recover chemically diverse metabolites.  The resulting extract was placed briefly on a TurboVap® 

(Zymark) to remove the organic solvent and stored overnight under nitrogen before preparation 

for analysis.   

For quality assurance /quality control (QA/QC), several types of controls were analyzed in concert 

with the experimental samples that allowed instrument performance monitoring and aided 

chromatographic alignment. Instrument variability was determined by calculating the median 

relative standard deviation (RSD) for the standards that were added to each sample before 

injection into the mass spectrometers.  Overall process variability was determined by calculating 

the median RSD for all endogenous metabolites (i.e., non-instrument standards) present in 100% 

of the pooled matrix samples. Experimental samples were randomized across the platform run 

with QC samples spaced evenly among the injections. 

For Ultrahigh Performance Liquid Chromatography-Tandem Mass Spectroscopy (UPLC-MS/MS), 

the sample extract was dried and then reconstituted in solvents compatible with each of the four 

mass spectroscopic methods. Each reconstitution solvent contained a series of standards at fixed 

concentrations to ensure injection and chromatographic consistency. The methods were 

optimized for acidic positive ion hydrophilic compounds, acidic positive ion hydrophobic 

compounds, and basic negative ions, the fourth aliquot was analyzed via negative ionization. 

For metabolite identification, raw data was extracted, peak-identified and QC processed using 

Metabolon’s hardware and software. Metabolon maintains a library based on authenticated 

standards that contain the retention time/index (RI), mass to charge ratio (m/z), and 

chromatographic data (including MS/MS spectral data) on all molecules present in the library.  A 

variety of curation procedures were carried out to ensure that a high-quality data set was made 

available for statistical analysis and data interpretation.   

4.6 Lipidomic profiling 

This assay was also performed by Metabolon, Inc.   

For sample preparation, lipids were extracted from the biofluid in the presence of deuterated 

internal standards using an automated BUME extraction according to the method of Lofgren et al 

[100].  
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For MS analysis, the extracts were dried under nitrogen and reconstituted in a 

dichloromethane:methanol solution containing ammonium acetate. The extracts were transferred 

to vials for infusion-MS analysis, performed on a Shimadzu LC with nano PEEK tubing and the 

Sciex SelexIon-5500 QTRAP.  The samples were analyzed via both positive and negative mode 

electrospray. The 5500 QTRAP was operated in MRM mode with a total of more than 1,100 

MRMs. Individual lipid species were quantified by taking the ratio of the signal intensity of each 

target compound to that of its assigned internal standard, then multiplying it by the concentration 

of internal standard added to the sample. Lipid class concentrations were calculated from the sum 

of all molecular species within a class, and fatty acid compositions were determined by calculating 

the proportion of each class comprised of individual fatty acids 

4.7 Data processing 

Metabolites, lipids, and proteins with more than 25% missing values were removed, leaving 663 

out of 1,005 measured metabolites, 1,051 out of 1,218 measured lipids, and 266 out of 276 

measured proteins. Sample-wise variation in the data was corrected using probabilistic quotient 

normalization [101], followed by log2 transformation. The remaining missing values were imputed 

using a k-nearest-neighbor-based algorithm [102]. Ten proteins (CCL3, CXCL1, FGF-21, FGF-

23, IL-18, IL-6, MCP-1, OPG, SCF, uPA) were measured in multiple Olink panels, and the 

replicate values for each sample were averaged prior to statistical analysis. All data processing 

was performed using the maplet R package [103]. 

4.8 Differential analysis of molecules 

The metabolite, lipid, and protein associations were computed using linear models with the 

molecules as response variables and diagnosis/clinical manifestations (ARDS group, AKI levels, 

thrombocyte/platelet count, mortality status) as predictors. Since demographic factors including 

age, sex, and BMI are considered determinants of COVID-19 severity [104], we did not consider 

them as covariates in the models. Multiple hypothesis testing was accounted for by correcting the 

p-values using the Benjamini-Hochberg (BH) method [105]. All of these analyses were performed 

using the maplet R package [103]. 

4.9 Pathway annotation and filtering 

Metabolites were annotated using Metabolon’s ‘sub-pathway’ groups, lipids were annotated by 

lipid classes, and proteins were annotated using signaling pathways from Kyoto Encyclopedia of 

Genes and Genomes (KEGG) [17]. The complete list of pathways annotated to the significant 
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molecules is available in Supplementary Table 3. For Figure 2b, only pathways/classes with at 

least 4 significant molecules were included. Moreover, only Metabolon’s sub-pathways with the 

term ‘metabolism’ and only KEGG pathways with the phrase ‘signaling pathway’ were considered 

for this analysis. 

4.10 Multi-Omic network inference 

A partial correlation-based Gaussian graphical model (GGM) was computed using the GeneNet 

R package [106] to infer a multi-omic network. Partial correlations with FDR < 0.05 were used for 

network construction between molecules. This multi-omic network was annotated with a score 

which was computed for each molecule/outcome combination as follows:  

𝑝!"#$% = − log&'(𝑝. 𝑎𝑑𝑗) ⋅ 𝑑, where 𝑝. 𝑎𝑑𝑗 is the adjusted p-value of the model, and d is the direction 

(-1/1) of the association based on test statistic (positive or negative correlation with the outcome). 

This score was used to color the nodes in Figure 5. 

Subnetworks associated with clinical manifestations were generated from the multi-omic network 

by selecting the molecules significantly associated with the specific clinical manifestation at 5% 

FDR and at 10% FDR that interact with the molecules significant at 5% FDR. Within this 

subnetwork, we focused on the largest connected component. 
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