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Abstract
Recent progress in computational pathology has been driven by deep learning. While code
and data availability are essential to reproduce findings from preceding publications,
ensuring a deep learning model’s reusability is more challenging. For that, the codebase
should be well-documented and easy to integrate in existing workflows, and models should
be robust towards noise and generalizable towards data from different sources. Strikingly,
only a few computational pathology algorithms have been reused by other researchers so
far, let alone employed in a clinical setting.

To assess the current state of reproducibility and reusability of computational pathology
algorithms, we evaluated peer-reviewed articles available in Pubmed, published between
January 2019 and March 2021, in five use cases: stain normalization, tissue type
segmentation, evaluation of cell-level features, genetic alteration prediction, and direct
extraction of grading, staging, and prognostic information. We compiled criteria for data and
code availability, and for statistical result analysis and assessed them in 161 publications.
We found that only one quarter (42 out of 161 publications) made code publicly available
and thus fulfilled our minimum requirement for reproducibility and reusability. Among these
42 papers, three quarters (30 out of 42) analyzed their results statistically, less than half (20
out of 42) have released their trained model weights, and only about a third (16 out of 42)
used an independent cohort for evaluation.

This review highlights candidates for reproducible and reusable algorithms in computational
pathology. It is intended for both pathologists interested in deep learning, and researchers
applying deep learning algorithms to computational pathology challenges. We provide a list
of reusable data handling tools and a detailed overview of the publications together with our
criteria for reproducibility and reusability.
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1 Introduction
Technical progress has been driving digitization in pathology over the past decade. Coupled
with advances in deep learning methods, computational approaches help to localize,
segment, and classify single cells and tissue types in an automated manner - and form the
research field of computational pathology (see Box 1 for a glossary; (Fuchs and Buhmann,
2011). In particular, deep neural networks have recently been shown to reach the
performance level of medical experts on well-defined tasks such as skin cancer diagnosis
(Esteva et al., 2017), lung cancer subtype classification (Coudray et al., 2018), or the
recognition of malignant white blood cells (Matek et al., 2019)

However, despite the steady increase in the number of publications in this field (Fig. 1) and
their promising results, only a few have reached clinical implementation (Echle et al., 2020a;
van der Laak et al., 2021). This is due to several reasons: For deep learning-based methods,
code availability is a natural requirement for reproducibility, which, unfortunately, is not yet
current practice for most publications. Even when code is available, reproducing the original
results can be challenging and requires the assistance of the original author (Pineau et al.,
2020). In particular, ready-to-use scripts with sufficient instructions or intuitive demo
examples are rarely published. This makes the reuse of recent methods difficult for
non-deep-learning experts, especially for pathologists who are not supported by
computational experts. Another reason, which is particularly relevant to clinical
implementation, is the generalization gap of algorithms in computational pathology. Often,
the published performance of deep learning algorithms cannot be transferred to other
datasets, due to differences in staining or scanner settings. Therefore, external validation of
algorithms and statistical robustness analysis are key to assess generalizability. Finally, any
algorithm employed in a clinical setting must additionally be approved by national or
international authorities such as the United States Food and Drugs Administrative (FDA) or
the European Medicines Agency (EMA), an often lengthy and complicated process involving
business markets and legal issues, which is beyond the scope of this review.

Figure 1: The number of
papers published in the
field of computational
pathology in PubMed
[retrieved on 22nd July ‘21]
has markedly increased in
the last 15 years.

Here, we focus on deep learning algorithms for computational pathology and their
reproducibility and reusability. For the ultimate goal of reusing other deep learning
algorithms, the algorithms must be reproducible and generalizable to similar datasets (i.e.,
robust) and external datasets (i.e., replicable) (see Box 2 and Fig. 2 for a definition of
reproducibility and reusability and related terms). Because hematoxylin-and-eosin (H&E)
staining is the most commonly used routine staining for cancer diagnosis and is often
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referred to as the baseline staining (Rosai, 2007), we restrict this review to methods for
H&E-stained whole-slide image (WSI) analysis. We considered five computational pathology
use cases and assembled a systematic overview of publications published between January
2019 and March 2021. For this, we compiled criteria for reproducibility in a practical context
and examined each work with respect to these. We additionally provide an overview of
current data handling tools.

Box 1: Glossary
Digital pathology: Histological slides are scanned and digitized, such that pathologists can
examine the patient material on a computer instead of working on optical microscopes.
Digitized slides can be stored and processed, enabling the use of computational methods in
the diagnostic process.

Computational pathology: The analysis of digitized histological slides with computational
methods (Fuchs and Buhmann, 2011).

Specimen: A tissue sample, e.g., obtained during a biopsy or other surgical procedures,
typically fixed in formalin and embedded in paraffin (FFPE).

Section: A thin slice (with a typical thickness of 3-15 µm) of a specimen mounted on a
microscopic slide.
Whole-slide image (WSI): The digitized image of a tissue section on a microscope slide.
Slides can be scanned in very high magnification resulting in images of sizes up to several
giga-pixels.

Tiles and patches: WSIs are split up into smaller images (e.g. 512x512 pixels), also called
patches, that can be processed by neural networks. If the patches are used for subsequent
WSI-rendering by stitching them back together, they are often called tiles. Unlike WSIs,
these smaller units of image data allow for easier and parallelized image processing.

Annotations: Diagnostic information on pixel-level or patch-level are obtained from manual
expert pathologist labeling. WSI-level annotations can be all diagnostic information about the
patient (e.g., age, survival, staging, grading) mostly obtained without additional expert
pathologist interaction.

Supervised learning: Training procedure of a neural network, where the ground truth, i.e.,
the correct label for the task, is available for each data point. However, in medical imaging
and especially in computational pathology, full expert annotations at pixel-level or patch-level
are very time-consuming and hence rare. Pixel-level annotations are used to localize tissues
in segmentation tasks, where each pixel is assigned a tissue label. Patch-level annotations
are used for classification tasks, where one label is predicted for the entire input patch.

Weakly supervised learning: Due   to the rareness of fully annotated WSIs, weakly
supervised learning approaches, like multiple-instance learning (MIL), are often used to train
neural networks. With MIL only WSI-level annotations, such as diagnostic information on the
cancer type or survival, are required for classification.

Convolutional neural network (CNN): A neural network that can be trained to extract
features by sliding learnable filters across the image. This makes CNNs translationally
invariant and therefore well suited for histological data since important features can be found
anywhere on a tile.
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U-Net: A powerful CNN with an encoder-decoder architecture used for segmenting
biomedical images (Ronneberger et al., 2015). It was adapted in many different ways and
ranks among the most common architectures for segmentation tasks.

Mask R-CNN: A CNN architecture for instance segmentation in object detection (He et al.,
2017). In contrast to U-Net that does not distinguish between instances of a class, Mask
R-CNN outputs a segmentation mask for each instance on the image, which makes it useful
for tasks such as nuclei segmentation and cell counting.

Figure 2: Reproducibility, robustness, replicability, and reusability in the context of deep learning
algorithms for computational pathology.

Box 2: Definitions
Reproducibility: Using identical materials and procedures, the results of a study can be
duplicated, and ultimately, identical conclusions can be drawn (Goodman et al., 2016). In the
context of algorithms, the same result can be obtained from the same data, code, and
analysis methods (Artner et al., 2020; Pineau et al., 2020).

Robustness: The same results are obtained from an algorithm despite small perturbations
in the input (Li, 2018; Oala et al., 2020).

Replicability: Conclusions are stable based on independently acquired data (Artner et al.,
2020; Pineau et al., 2020), i.e., code and analysis methods can be employed to external
data with similar results and performance. For deep learning algorithms, replicability is
equivalent to model generalizability, which is a key requirement for the clinical application of
new algorithms.

Reusability: A piece of software is considered reusable if it can be included in an existing
computational pathology setup with minor efforts (e.g., without the need for extensive
rearrangements of the workflow).
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2 Use Cases
We collected 161 papers from January 2019 and March 2021 on the automated analysis of
histological slides for cancer diagnosis and treatment (Supplementary Table T1-5). We split
this body of literature into the following use cases: (i) stain normalization, (ii) tissue type
segmentation, (iii) evaluation of cell-level features, (iv) genetic alteration prediction, and (v)
direct extraction of grading, staging, and prognostic information (Fig. 3).

In this technical chapter, we first provide a brief introduction of every use case, followed by
an overview of the latest deep learning methods with a focus on works that provide code
along with the publication. At the end of each section, we wrap up with an analysis of the
reproducibility in the specific context.

As a prerequisite to any use case, open and publicly available data handling tools for
reading, annotating, and sharing histopathological data are essential. We compiled the most
common tools in Box 3 and provide a more detailed overview in the supplementary material
(Supplementary Table T0) on software features, requirements, and the possibility to extend
the tool with its own code.

Figure 3: Overview of the use of deep learning in computational pathology including data handling
tools for reading, annotating, and sharing WSIs (Box 3) and five applications of deep learning
methods, which are covered in Section 2.1 - 2.5

Box 3: Data Handling Tools
A key prerequisite for implementing, transferring, and reusing computational pathology
algorithms between researchers and different labs or institutions is a software structure that
allows for the exchange of image data, annotations, and meta-information. With the progress
of computational pathology, numerous data handling tools have been developed. In many
tools, image data handling is based on system-level libraries like OpenSlide (Goode et al.,
2013) or OMERO (Allan et al., 2012). They enable data to be interoperable between different
vendor-specific image formats. Most of these tools also provide user interfaces for
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pathologists to annotate images. Annotations can include class labeling or point flags,
geometric shapes, and image-level labeling. While many popular image data handling and
annotation tools were developed as standalone packages (e.g., SlideRunner (Aubreville et
al., 2018), QuPath (Bankhead et al., 2017), ASAP1) an increasing number of recently
developed packages, such as Cytomine (Marée et al., 2016) or EXACT (Marzahl et al.,
2021) allow for web-based, collaborative data handling, which is essential for distributing,
exchanging, and annotating data as well as evaluating models in a multi-institutional setting.

In addition to image annotation and exchange, data-handling packages allow integration with
independently developed analysis algorithms at different levels. Some tools offer integrated
scripting for automation of the tasks, e.g., using Groovy in QuPath. Additionally,
programming interfaces to popular machine learning languages such as Python have been
developed, e.g., for OMERO. Several tools, such as EXACT and CaMicroscope2, offer
integrated, server-side evaluation of deep learning models. A detailed overview of open and
publicly available data handling tools and their respective functionalities is provided in
Supplementary Table T1.

2.1 Stain Normalization
Most work in computational histopathology focuses on H&E-stained routine sections, with
hematoxylin staining nuclei in blue-purple and eosin staining extracellular material in pink
(Chan, 2014). Digitized sections are prone to a multitude of image variations, caused by
differences in the tissue preparation technique (e.g. the thickness and flatness of the sample
cut), staining protocols, handling, and storage conditions. Moreover, slide scanners differ in
microscope illumination, image post-processing, or noise handling. These factors lead to
large variability in the visual appearance of WSIs that affects subsequent analysis and may
lead to poor generalizability of algorithms. Computational methods aim at reducing the
effects of these variations (Chen et al., 2017), e.g., by normalizing the stain color from a
predefined source domain to one or more target domains, to arrive at a comparable visual
appearance. These methods include improvements of analytical approaches, such as color
deconvolution, and more recently, deep learning-based methods.

Color space methods. Color deconvolution separates the hematoxylin from the eosin
component in optical density space based on a reference tile (Macenko et al., 2009). This
approach has been developed further recently: Adaptive color deconvolution (Zheng et al.,
2019) incorporated the underlying stain distribution of the target WSI instead of only a single
tile. There, the authors assumed that each pixel is assigned to one stain and fitted a
deconvolution matrix to a group of randomly sampled pixels from the source WSI using
gradient-based optimization. Alternatively, non-negative matrix factorization has been used
to obtain a color deconvolution matrix (Vahadane et al., 2016) and was optimized for GPU
usage (Anand et al., 2019).

Generative models. The increasing popularity of Generative Adversarial Networks (GANs)
has led to the development of style-transfer methods for stain normalization (Tschuchnig et
al., 2020), which can be trained on all target WSI tiles instead of expert-picked reference
tiles (Liang et al., 2020). StainGAN was trained with a cycle-consistency loss between the
source and target domain, and the generator of the target domain was used to normalize all

2 https://github.com/camicroscope/caMicroscope
1 https://computationalpathologygroup.github.io/ASAP/
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images in that domain (Shaban et al., 2019b). However, GANs may not always preserve the
tissue structure (Cohen et al., 2018). To overcome this, StainNet trained a convolutional
neural network (CNN) consisting of 1x1-convolutions and thereby transformed the source
image from its original color space via intermediate color spaces to the target color space
without losing structural information (Kang et al., 2020). However, this approach relies on
image pairs from two different domains, which is challenging as paired images rarely exist.
Alternatively, specific loss functions that compare images before and after normalization can
be used to preserve the histopathological information including texture, structure, and color
features added to the traditional GAN-loss that learns the stain distribution of a reference
dataset (Liang et al., 2020). In contrast to normalization methods, GANs can also be used to
simulate stain variability by generating synthetic images. This renders neural networks on
downstream tasks more robust and avoids losing relevant information due to limitations of
normalization methods. Yamashita et al. (2021) propose data augmentation based on style
transfer from artistic paintings by replacing the low-level texture content with the style of
artistic images. Since this produces unrealistic images for augmentation, Wagner et al.
(2021) use a GAN architecture for multiple domains to synthesize realistic histological
images while preserving the tissue structure.

Stain-aware models. Unlike the above stain normalization methods that project the external
test data to the original training domain as a pre-processing step, stain information can be
incorporated directly into the model, e.g., for nuclei segmentation by creating a
hematoxylin-aware CNN (Zhao et al., 2020a). This approach is based on a U-Net
(Ronneberger et al., 2015) and has three branches: one for processing the input image, one
for processing the hematoxylin component (retrieved from a standard color deconvolution
method), and one for feature aggregation of the other branches to finally output
segmentation maps.

2.2 Tissue Type Segmentation
Accurate segmentation of a WSI into tissue types (e.g., epithelial vs. stromal vs. lymphatic
tissue) allows for quantitative follow-up analysis. Depending on the kind of available
annotations, we discriminate between the following categories: Methods for pixel-wise or
patch-wise segmentation, hierarchical architectures that imitate a pathologist’s workflow, and
methods that use WSI-level annotations and are therefore weakly supervised.

Pixel-wise segmentation. Vellal et al. (2021) assessed the risk of breast cancer from image
features, such as the percentage of fibrous stroma, epithelium, and fatty tissue. To extract
these features, they trained a 21-layer convolutional network inspired by VGG (Simonyan
and Zisserman, 2014) and U-Net (Ronneberger et al., 2015) for pixel-wise segmentation of
large 2048x2048 pixel tiles. Graham et al. (2020) developed a rotation-invariant CNN to
account for the inherent rotational symmetry of histology images and validated their
application on pixel-wise gland segmentation. Jayapandian et al. (2021) used pixel-wise
segmentation for identifying six tissue types in kidney biopsies, applying the same U-Net
architecture for segmenting patches with different magnifications.

Patch-wise segmentation. Image patches can be classified separately, and subsequently
stitched together to create a coarse segmentation map of the entire WSI. From such
segmented patches, Zhao et al. (2020b) computed a WSI’s tumor-stroma-ratio (TSR), a
prognostic factor for colorectal cancer. Here, a pretrained VGG (Simonyan and Zisserman,
2014) was fine-tuned for classifying tiles into nine tissue types to determine the TSR.
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Rączkowski et al. (2019) proposed an active learning framework to train a CNN, inspired by
ResNet (He et al., 2016) and DarkNet (Redmon and Farhadi, 2017) for patch classification in
colorectal cancer. The network’s uncertainty, estimated via Monte-Carlo dropout sampling
(Gal and Ghahramani, 2015), was used to detect outlier tiles in the training set and to select
them afterward for reconsideration. Wang et al. (2019) generated spatial tissue maps by
classifying single cells into tumor, stroma, and lymphocytes. For this, they first extracted
nuclei positions. Then, small patches centered around these nuclei were extracted and
classified into the three classes using a CNN. The resulting classified positions can be used
to extract spatial statistics or to generate segmentation masks using a kernel smoothing
algorithm.

Hierarchical segmentation approaches mimic the workflow of pathologists by aggregating
information from multiple scales of magnification. Schmitz et al. (2021) created a family of
U-Net-based encoder-decoder architectures that process high- and low-resolution image
tiles in separate branches from three publicly available datasets with liver, breast, and lymph
node tissue. Additionally, they proposed a gate that decides whether to include the global
context optimized by a classification loss to ease gradient flow through the deeper layers of
the encoder for the global context. Alternatively, HookNet (van Rijthoven et al., 2021) fused
the hidden space of multiple U-Net-based models that operate on different scales to deal
with high resolution and contextual information in breast and lung cancer.

Weakly supervised methods typically require slide-level annotations only. One recent
approach was training CNNs directly on the entire WSI of lung cancer sections (Chen et al.,
2021). Subsequently, class activation maps (Zhou et al., 2016) highlight relevant cancerous
regions that were also identified by pathologists, which can be interpreted as a confidence
measure of the algorithm. Similarly, Silva-Rodríguez et al. (2021) trained a feature extraction
network on the entire, downsampled WSI for the classification of global Gleason grades on
prostate cancer. During inference, semantic segmentations are upscaled from the feature
maps and achieve similar performance as fully supervised approaches while only using the
global labels. Alternatively, the WSI can be split into patches, and patch-wise features used
for WSI classification (Lu et al., 2021). Using this approach, attention scores produce
interpretable heatmaps to visualize which regions contribute to the network’s prediction.

2.3 Evaluation of cell-level features
The evaluation of cell-level properties is a standard task in histopathology. For example, cell
density and the abundance of dividing cells in tumor tissue are two important features for
tumor grading. A multitude of deep learning approaches has been proposed for these and
related tasks (Lagree et al., 2021). Here we focus on two of the most widely studied
cell-level tasks, namely segmentation of nuclei and detection of mitoses.

Nuclei segmentation. To benchmark efforts in this field, segmentation challenges have
been introduced, like the Multi-Organ Nucleus Segmentation Challenge (Kumar et al., 2020),
which provided 30 images and around 22,000 nuclear boundary annotations in a public
dataset. Out of the top six participants, three used U-Net-based semantic segmentation
(Ronneberger et al., 2015), two used Mask R-CNN-based instance segmentation (He et al.,
2017), and one group used stacked U-Net and R-CNN models. The two dominating
algorithms have been further tailored towards nuclear segmentation: Cui et al. (2019)
predicted a boundary map additionally to object segmentations to separate touching nuclei
efficiently. Jin et al. (2020) incorporated a U-Net into a pipeline to detect lymph node
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metastasis in breast cancer patients, integrating multiple segmentation channels for nuclei,
mitosis, tubule, etc. in the U-Net input. The Mask R-CNN has successfully been combined
with a deep convolutional gaussian mixture color normalization model, which clusters pixels
according to nucleus morphology (Jung et al., 2019), where the authors performed multiple
interferences and post-processing steps to boost segmentation performance. Recently, other
approaches such as GANs have been proposed (Mahmood et al., 2020a), where the
network is trained on unpaired data to map segmentation masks to nuclei images. To ease
the annotation process for nuclei segmentation, Qu et al. (2020) provided a deep learning
framework trained on incomplete annotations, which are much easier to generate. Their
two-stage approach first detected nuclei locations based on the partial annotations, before
self-training with background propagation was applied to boost nuclei detection. In the
second stage, a segmentation model was trained with this data in a weakly supervised
fashion.

Mitosis detection. Identifying cells that are in the mitotic phases of the cell cycle is a
diagnostically relevant task e.g. for breast cancer grading and prognosis (Veta et al., 2019).
Several challenges released public datasets and benchmarked competing approaches for
mitosis detection, e.g., ICPR MITOS-2012 (Roux et al., 2013), ICPR MITOS-ATYPIA-2014
(Roux et al., 2014), or TUPAC 16 (Veta et al., 2019). Most of the recently developed mitosis
detection methods can be grouped into three categories: classification, segmentation, and
detection. As one of the first deep learning applications in the medical field, Cireşan et al.
(2013) trained a network to classify each pixel in an image by considering a tile centered
around that pixel whilst tiles are extracted in a sliding-window fashion. This process was
accelerated by precomputing the hematoxylin fraction of the H&E staining, which highlighted
nuclei as mitosis candidates and hence restricted tile extraction (Saha et al., 2018). More
recently, Pati et al. (2021) combined a classification task with metric learning to reduce the
necessary amount of labeled data for more efficient network training. Another approach for
mitosis detection is pixel-wise semantic segmentation. Jiménez and Racoceanu (2019)
showed that a U-net-based semantic segmentation approach led to higher accuracy than
previous classification approaches. Lafarge et al. (2021) proposed a special Euclidean
motion group convolution to achieve translation and rotation invariance, which was
integrated into a U-net architecture and improved the model’s robustness. Many other recent
papers on mitosis detection were based on object detection (Lei et al., 2019, 2021; Sohail et
al., 2021; Wollmann and Rohr, 2021), where only a weak centroid annotation that marks the
center of the mitotic figure is required, compared to pixel-wise annotations for segmentation
approaches. An alternative approach applied a cascade network, combining a first-stage
object detection to identify mitosis candidates and a second-stage classification network for
refinement (Mahmood et al., 2020b).

2.4 Genetic alteration prediction
As genetic alterations can carry crucial predictive and prognostic information, they have
become increasingly relevant to the diagnostic workup and the selection of therapeutic
pathways (Ashley, 2016). Therefore, patients are profiled for genetic alterations that
characterize their disease, e.g., in colorectal cancer (Singh et al., 2021), to obtain better
targeted therapies. However, using molecular assays to determine the mutational spectrum
of malignant cells is expensive and time-consuming. Furthermore, DNA or RNA extracted
from small samples may not suffice quantitatively for a comprehensive analysis, and RNA in
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older samples may already be degraded and hence not qualified for analysis. Techniques
such as whole-genome sequencing require fresh tissue and are thus not applicable on
formalin-fixed paraffin-embedded tissue that is usually used for histological sample
preparation. Therefore, algorithm-based prognostic stratification and mutation prediction
from H&E-stained WSIs offers an attractive, cost- and time-effective as well as
tissue-sparing addition to existing molecular characterization methods.

Image-based mutation prediction. While some genetic alterations, such as mutations,
copy number variations, and translocations can be relevant for disease characterization, the
majority of work has so far focussed on mutation prediction from imaging data. Coudray et
al. (2018) were the first to address this topic. They found that six commonly mutated genes
in lung adenocarcinoma (STK11, EGFR, FAT1, SETBP1, KRAS, and TP53) can be predicted
from WSI images. Since then, image-based mutation prediction has been applied to various
types of cancers, such as melanoma (Kim et al., 2019; Zhang et al., 2020b), breast cancer
(Anand et al., 2020; Bychkov et al., 2021; Lu et al., 2020), lung cancer (Wang et al., 2020;
Yu et al., 2020), colorectal cancer (Cao et al., 2020; Echle et al., 2020b; Jang et al., 2020),
bladder cancer (Woerl et al., 2020), and thyroid carcinoma (Tsou and Wu, 2019). Several
recent studies attempt a pan-cancer approach that predicts genetic alteration across multiple
tissue types from WSIs directly (Kather et al., 2020; Noorbakhsh et al., 2020).

Modeling strategies for mutation prediction. Most approaches rely on standardized
processing pipelines from pre-processing (see Section 2.1) and region of interest extraction
(Section 2.2) to model training and evaluation. As network architectures, common CNN
models such as Inception (Szegedy et al., 2016) or ResNet (He et al., 2016) are used for
per-tile prediction, where all tiles from a patient WSI inherit the same label. This label can be
both continuous (e.g., tumor mutational burden) or categorical (e.g., the mutation status of a
selected gene, or the microsatellite status) (Coudray et al., 2018; Kather et al., 2020). The
final prediction at WSI level is an aggregation of tile labels using, in the simplest case,
majority voting (for categorical targets) or averaging (for continuous targets). Alternatively,
Cao et al. (2020) employ multiple instance learning (MIL) since it does not need instance
labels for each tile and achieves better accuracy than standard supervised learning
methods. Fu et al. (2020) did not train an end-to-end neural network for direct mutation
prediction but rather classified each tile into different malignant and non-malignant tissue
types. This classification network was used to extract features in a pan-cancer fashion and,
subsequently, to predict driver gene mutations. Almost all studies mentioned above, except
for Bychkov et al. (2021), trained their networks on publicly available data from The Cancer
Genome Atlas (TCGA) (Gutman et al., 2013).

2.5  Grading, Staging, and Prognostic Information Extraction
A typical goal of the analysis of pathology slides is not only to recognize and evaluate
primary lesions but also to determine their histopathologic subtype and grade (as defined by
respective WHO classifications for different tumor entities) and to derive therapeutically
relevant information from these features. In the context of computational pathology, this set
of tasks can be addressed through the determination of features that are known to possess
prognostic or predictive value. Alternatively, it can be attempted to extract prognostic or
predictive information directly from imaging data, molecular properties, or clinical data. Both
methodologies have recently been applied across a variety of entities.
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Inference of known factors and biomarkers. Computational pathology approaches to
extract known markers and scores include determination of the Gleason score in Prostate
Cancer (Bulten et al., 2021; Nagpal et al., 2019; Steiner et al., 2020), grading of gliomas
(Rathore et al., 2020; Truong et al., 2020), and automated evaluation of mitoses (Chang and
Mrkonjic, 2020; Pantanowitz et al., 2020) or tumor-infiltrating lymphocytes in breast
(Balkenhol et al., 2021) and head and neck cancer (Shaban et al., 2019a). Machine learning
methods have also been applied in disease staging, e.g., to assess the degree of spread to
the lymph nodes, either by highlighting areas suspicious for lymphovascular invasion as in
the case of testicular cancer (Ghosh et al., 2021) or by predicting the risk of lymph node
metastasis from the primary lesion in the case of bladder cancer (Harmon et al., 2020).
Several studies inferred molecular properties with a prognostic value from H&E, such as
microsatellite instability in gastrointestinal cancer (Kather et al., 2019a), or the molecular
subtype of invasive bladder cancer (Woerl et al., 2020).

Image-based biomarkers. Finally, prognostic factors can be derived directly either from
histopathology images (Zhao et al., 2020b) or in combination with other clinical or molecular
data, e.g., from the genome or transcriptome (Failmezger et al., 2020; Hao et al., 2020; Zhao
et al., 2020b). Potentially, this route can be followed without referring to previously known
prognostic factors. Hence, while these approaches may first rely on computational
predictions alone, they may also lead to the identification of novel prognostic or predictive
factors that lend themselves to direct human evaluation, which can be identified through
explainability methods (Tosun et al., 2020). Examples of this approach include automated
quantification of intratumoral stroma in rectal cancer (Geessink et al., 2019), evaluation of
nuclear morphology for survival prediction in lung cancer (Alsubaie et al., 2021), deep
learning-based prognosis in nasopharyngeal cancer (Geessink et al., 2019; Zhang et al.,
2020a), and survival prediction in colorectal cancer (Abbet et al., 2020; Kather et al., 2019b).

3 Methods
To assess reproducibility and reusability in computational pathology, we (i) monitored
whether and how code was publicly available, (ii) evaluated criteria for data access, and (iii)
checked if the statistical variance of the reported findings was provided. In Supplementary
Table T2, we list all 42 publications (out of 161) together with the following evaluation criteria
that we used for code, data, and statistical variance:

a) Inspired by the FAIR principles demanding that data should be findable, accessible,
interoperable, and reusable (Wilkinson et al., 2016), we surveyed whether the code
was made publicly available, in addition to also noting the platform that was used for
sharing and the programming language and machine learning frameworks that were
employed. Further, we checked for instructions for running the code, whether the
code was minimally documented, and if a pretrained model was available for direct
application.

b) For the 42 publications with available code, we evaluated data access and checked
whether the dataset and required annotations were publicly available. Additionally,
we recorded what kind of data had been used (e.g., tiled WSIs versus entire WSIs).
We also reported whether the relevant pre-processing steps were provided as well as
the training – validation – test split that was used for model development and
evaluation. In terms of replicability, we specified what kind of test set had been used,
whether it was similar to the training set or whether it covered an independent cohort.
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c) Finally, we checked if any measure of statistical variance of the reported findings was
provided. This is one way to tackle the difficulties concerned with reproducing the
results, which can be introduced on multiple levels: computer-level inaccuracies like
floating-point numbers that can be rounded differently on different machines,
architectures, or execution environments (Hill, 2019), or algorithm-level stochasticity
due to the stochastic behavior of optimization techniques. One way of dealing with
this is to statistically analyze the experimental results and perform a sufficient
exploration of hyperparameters (Pineau et al., 2020). A straightforward evaluation
approach is to repeat the experiment multiple times and report mean and standard
deviation across experiments, or over several folds of cross-validation.

4 Results
Code availability. In our study, 42 out of 161 publications (26%) made their code publicly
available (Fig. 3a). Interestingly, the ratio of publications with code differs across the five use
cases: For stain normalization, we retrieved 29 research papers, where only 7 (24%) of them
provided code with their method. In the field of tissue type segmentation and localization,
only 12 out of our total 51 investigated papers (24%) had their code publicly available and
only three publications provided the pretrained model weights. Among the 28 research
papers that we screened for the evaluation of cell-level features, 11 papers (39%) provided
code with the publications. The code of 5 of these 11 could be run in Google Colab and thus
was directly applicable. For genetic alteration prediction, 8 out of 13 papers (61%) have
provided their code along with their method. In survival analysis, only 4 out of 38 studies
(11%) published code. Interestingly, genetic alteration prediction has the highest ratio of
published code. One reason for this could be that a key publication for genetic alteration
prediction published in Nature Medicine included a well-documented codebase (Coudray et
al., 2018); most subsequent publications build on this work and could therefore publish their
code more easily. Hence, the level of reusability in one field may depend on the preceding
publications. This also strengthens the role of the publisher in the context of reproducibility
and reusability in computational pathology. For the 42 papers that published their code, we
checked the evaluation criteria for code, data, and statistical variance detailed in Section 3
and detailed them in Supplementary Table T2.

Model weights and frameworks. Pretrained model weights were only available for half of
the publications that also provided code (Fig. 3b); this renders a reproduction of
experimental results difficult, in particular, because the pre-processing steps are rarely
available. Also, without model weights a direct application without retraining the model is not
possible, hence hampering its use by pathologists that are not specialized in deep learning.
Almost 75% of the methods were implemented in Python using the open and publicly
available machine learning frameworks TensorFlow3 (38%) and PyTorch4 (36%; Fig. 4c).

Datasets. More than half of all methods (57%) were evaluated on publicly available datasets
(Fig. 3d). Most studies (e.g., all 13 studies reviewed for generic alteration prediction)
developed their methods based on TCGA (Gutman et al., 2013) it contains data from
multiple institutions; thus, it can be split into training and test sets by cohort level. It was also
a common practice to complement TCGA with external, mostly private data as an

4 https://pytorch.org/
3 https://www.tensorflow.org/
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independent evaluation cohort. Nevertheless, TCGA, with a few hundred slides for each
cancer type, is not sufficient to represent all cancer heterogeneity. The reliance of
computational pathology on relatively few publicly available datasets renders their selection
strategy and processing critical. Batch effects can be detected by deep learning models and
lead to overestimation of the model’s performance (Howard et al., 2020). Therefore, we
strongly encourage the development of more publicly available multi-institutional datasets.

Statistical variance. We believe that a thorough evaluation of sources and magnitude of
variability, both on an algorithmic and a data level, is an important step towards making
modern computational pathology algorithms more reusable and generalizable. Almost
three-quarters (73%) of the methods analyzed their results statistically, in which we
considered all kinds of statistical notions to be statistical analysis (Fig. 3f). Many different
sources of variability can be relevant to the performance of computational pathology
algorithms, and it may therefore be difficult to devise a single strategy for quantifying all
sources.

Figure 4: Analysis of our systematic literature search on 161 computational pathology papers. a) The
proportion of methods with publicly available code (26%) differs across the use cases. b) Half of the
publications with code release their final model weights. c) Most works (74%) used PyTorch or
Tensorflow as machine learning frameworks. d) Mainly, large public datasets are used and sometimes
complemented by private cohorts. e) Almost half of the publications used an independent cohort for
evaluation. f) The largest part analyzes their results statistically.

5 Conclusion
It has been increasingly recognized that computational reproducibility and reusability are an
essential part of good scientific practice for deep learning applications (Haibe-Kains et al.,
2020; Hutson, 2018; Stodden et al., 2016). Especially for the interdisciplinary field of

Wagner et al. Comp Path REVIEW draft 13

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 17, 2022. ; https://doi.org/10.1101/2022.05.15.22275108doi: medRxiv preprint 

https://paperpile.com/c/B7Xgcn/6E0O
https://paperpile.com/c/B7Xgcn/Lw16+Ndts+1oKG
https://paperpile.com/c/B7Xgcn/Lw16+Ndts+1oKG
https://doi.org/10.1101/2022.05.15.22275108
http://creativecommons.org/licenses/by-nc/4.0/


computational pathology, both are key requirements for enabling a wider use of algorithms
and eventually a clinical application.

In our survey of recently published computational pathology deep learning approaches
however, we found that there is still a long way to go. For stain color normalization for
example, techniques to reduce the color and intensity variations in histological images from
different laboratories can render a downstream task algorithm more generalizable. Although
neural network-based stain normalization techniques have evolved considerably in recent
years (Section 2.1), their use in downstream applications is still limited, probably because
pre-trained stain normalization models are rarely available and in most cases code is not
shared. Instead, we observe that easy-to-use algorithms without further model training are
typically applied. The lack of reusability hinders the practical application of innovative
network-based methods.

Even if the code is shared, supporting documentation or convincing experiments on external
cohorts are often missing, hence lowering the chances of a successful reuse and translation.
Most state-of-the-art methods in computational pathology are based on deep learning
algorithms, and typically require large amounts of labeled training data. Making this data
available is as crucial as providing well documented code. We acknowledge that in some
cases, data and appropriate annotations cannot be publicly shared, e.g. due to legal or
ethical constraints. Here, reasonable compromises like partial data sharing or evaluation
using public datasets (Haibe-Kains et al., 2020) should be considered.

Despite the lack of reproducibility and reusability in many computational pathology
approches, we hope that the field will profit from the surging discussions, e.g. computer
vision (Pineau et al., 2020). As a step in this direction, large conferences, such as MICCAI
since 2021, started to employ reproducibility checklists for authors in their submission form
that will be publicly available upon acceptance of the paper. We encourage the scientific
community to recognize the long term value of reproducibility and reusability and to foster
their realization in computational pathology.
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