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Abstract

Depression is one of the most prevalent psychiatric disorders and is one of the leading causes of

health ailment worldwide. It is known to be highly heritable and is frequently comorbid with other

mental and physical traits. This observation motivated us to look deeper into the genetic and phe-

notypic connections between depression and other traits in order to identify correlations as well as

potentially causal connections between them. In this study, we analyzed data from the UK biobank

to systematically evaluate relationships between depression and other heritable traits both from

a phenotypic and a genetic aspect. We compressed a total of 6,300 ICD codes into 412 heritable

phecodes and we constructed a comorbidity network connecting depression and other disorders on

over 300,000 participants of European ancestry. Additionally, we investigated the genetic corre-

lation for each (phenotypic) connection in the resulting network. We also looked into potentially

causal relationships using mendelian randomization for all pairs of significantly correlated disorders

and uncovered horizontal pleiotropic genetic variants and genes contributing to disease etiologies.

We found gastro-oesophageal reflux disease (GORD), body mass index, and osteoarthritis to be

direct causes for depression, with GORD lying at the center of the causal network. Genes broadly

expressed in various tissues, such as NEGR1, TCF4, and BTN2A1 underlie the pathways that lead
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not only to depression but also to other related disorders. Our work highlights the broad connec-

tions between depression and diverse traits, indicating a complex etiology and possible existence of

subtypes for depression. Our findings highlight the value of cross-trait analysis in order to better

understand the neurobiology of complex psychiatric disease.

1 Introduction

As one of the most prevalent psychiatric disorders, depression is a major burden on global health.

Currently, it is affecting approximately 10% of the adult population in the United States (22) and

shows an increasing trend in its incidence rate across the world (57; 69). According to the fifth

edition of Diagnostic and Statistical Manual of Mental Disorders (DSM-V), a diagnosis of a major

depressive episode requires at least one main symptom of depressed mood or anhedonia (defined

as the loss of interest or pleasure), along with some secondary symptoms, including disturbance

in appetite, sleep, or ability to engage in physical activity and cognition (1). However, despite

the existence of precise diagnostic criteria, a high level of heterogeneity has been observed among

depressive patients; this is common in many psychiatric traits that are nevertheless managed as

dichotomous.

Individuals diagnosed with depression often also present with other mental and physical illness.

On the psychiatric side, traits commonly co-occuring with depression include anxiety (97; 48),

substance abuse (16), and post-traumatic stress disorder (PTSD) (28; 46). Meanwhile, depression is

also reported to be highly comorbid with certain clinically distinct phenotypes, such as obesity (19;

4), cardiovascular diseases (41; 75), and even immune disorders including multiple sclerosis (MS)

(30; 60) and inflammatory bowel disease (IBD) (62; 2). Given the wide range of phenotypes

coexisting with depression, it is important to quantify and evaluate these comorbidities in depression

patients systematically. However, perhaps due to lack of resources, such studies for depression are

very limited. Most existing studies focusing on depression’s comorbidity targeted only a small

group of homogeneous diseases rather than a broader spectrum (36; 39; 99; 37; 40). Few studies

aimed at recovering a more general comorbidity network of depression (84; 96; 63) but stopped at

an epidemiological level, without further exploring underlying biological mechanisms. On the other

hand, existing phenome-wide association studies (PheWAS) attempted to evaluate the association
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between various phenotypes and the genetic risk of depression (72). However, using an individual’s

genetic risk score as a proxy may result in limited clinical interpretability.

The emergence of large comprehensive biobanks, as well as the abundance of publicly available

genome-wide association studies (GWAS), allows us to systematically investigate depression and

its comorbidities from both a phenotypic and a genetic perspective. Depression as well as most

of the aforementioned mentioned co-occurring disorders have strong genetic foundations (89; 101;

64; 88; 38), with depression itself showing a heritability of approximately 30%-40% in family-based

studies (32; 65; 91) and a SNP heritability of approximately 10% (55; 43). In this study, we

investigate both the phenotypic and genetic architecture of depression and its comorbid disorders,

leveraging the UK biobank datasets and largest available genomewide association studies (GWAS)

to construct phenotypic and genetic networks. Our results shed light on the epidemiological and

phenotypic relationships between depression and other disorders and help uncover biological insights

that may underlie the clinically observed comorbidities.

2 Methods

2.1 Data

The UK Biobank dataset includes phenotypic and genetic data from approximately 500,000 indi-

viduals and was used to compute phenotypic correlations. As a quality control step, we removed

samples with non-European British ancestry, based on their self-reported ancestry information.

Next, we removed individuals with greater than third degree relatedness based on the kinship co-

efficient. Finally, we ran Principal Component Analysis (PCA) using TeraPCA (11) to remove

individuals who do not overlap with European samples in the 1000 genomes dataset (mean princi-

pal component value on the top six principal components plus/minus three standard deviations).

We further removed individuals with genotype missingness less than 0.98, thus retaining a dataset

of 331,256 participants.

For the phenotypic data, we included 6,300 ICD-10 diagnoses (data field 41270) with a non-zero

number of patients in our analyses. To reduce the dimensionality and increase the interpretability

of our analyses, we further mapped the ICD-10 codes on PheCodes. Out of all 6,300 ICD10

diagnoses, 4,807 were mapped to at least one valid PheCode, for a total of 505 PheCodes and 1,434
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child PheCodes. We removed PheCodes from categories that are dominated by non-genetic causes

(infectious diseases, injuries, poisonings, pregnancy complications, etc.). This resulted in a total of

4,004 ICD-10 diagnoses mapped onto 411 parent PheCodes. We decided to separate depression from

its parental PheCode 296 (mood disorders), which included bipolar and other mood disorders. We

ended up with 412 phenotypic end points, including 410 parental PheCodes, plus one for depression

and one for other mood disorders. (See Table S1 for the detailed list.)

2.2 Phenotypic network of depression and comorbid disorders

We computed phenotypic correlations between all pairs of PheCodes, a total of 412×411/2 = 84, 666

pairs. Out of all these possible combinations, we observed 77,502 non-zero phenotypic correlations,

where phenotypic correlation is defined as cosine of the angle formed between pairs of phenotype

vectors. We focused our analyses on highly comorbid pairs of disorders that show phenotypic

correlations in the top 1% quantile, i.e., we focused on the top 775 pairs. We extracted depression

and its comorbid disorders from those top 775 pairs and we formed a phenotypic correlation network.

For each trait that was deemed comorbid with depression, we used a hypergeometric test to analyze

its enrichment in cases of depression patients.

2.3 Genetic network across depression and its comorbidities

To study the genetic relationship between depression and its comorbid disorders, we used linkage

disequilibrium (LD) score regression (as implemented in LDSC (14)) to evaluate genetic correlations

between all highly comorbid pairs in our network. For this analysis, we obtained publicly available

summary statistics from GWAS of identical or similar traits (see Table 1). In order to retain

independence between our phenotypic and genetic networks, we selected GWAS summary statistics

that did not involve samples from the UK biobank. However, this was not possible for certain

disorders (see Table 1). For all genetic correlation analyses, only SNPs that were matched with

the HapMap3 SNP list were used. As the GWAS summary statistics are dominated by European

samples, we used LD scores estimated from the European subgroup of the 1000 Genomes phase

3 project as both the independent variable and the regression weights. The significance threshold

for this analysis was corrected by dividing by the number of tested pairs, which corresponds to the

number of highly comorbid pairs within the phenotypic correlation network.
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2.4 Phenome-wide causal inference

For all disorder pairs where a significant genetic correlation was observed, we further investi-

gated their potential causative relationship using bidirectional, generalized, summary-statistic-

based Mendelian randomization (GSMR) (111). For each analysis, we used SNPs that were as-

sociated with the exposure trait (p-value less than 5 × 10−6) as instrument variables; we required

a minimum of five independent SNPs (r2 < 0.05) in this analysis. We excluded pleiotropic SNPs

identified through the heterogeneity in the dependent instrument (HEIDI outlier approach, SNPs

with pHEIDI < 0.01) to guarantee that all instrument SNPs affect the outcome only via expo-

sure. We used Bonferroni correction, correcting for the number of significant genetic correlations

(multiplied by two for bidirectional tests) to determine the significance threshold of this analysis.

2.5 Evaluation of horizontal pleiotropy

We further looked into genetic variants that show horizontal pleiotropy effects between depres-

sion and disorders that appeared to be causally related to depression from the Mendelian ran-

domization analysis. The analysis was carried out using Iterative Mendelian Randomization and

Pleiotropy (IMRP) (110). Using causal effect sizes and standard errors estimated from the afore-

mentioned Mendelian randomization analyses, we ran SNP-based pleiotropic test for depression

and each causal exposure respectively. Similar to mendelian randomization, the test was carried

out in a bi-directional manner. This is equivalent to running a GWAS for two traits: βpleio1 =

βdepression–βexp−dep × βexposure and βpleio2 = βexposure–βdep−exp × βdepression, where βdepression and

βexposure stand, respectively, for GWAS effect sizes for depression and the causal exposure; and

βexp−dep and βdep−exp are the estimated causal effect sizes from the exposure trait to depression and

from depression to the exposure trait, respectively. To identify pleiotropic SNPs between depression

and the exposure trait, we first selected SNPs that were genome-wide significant (p < 5 × 10−8)

in either direction. For a SNP to be considered pleiotropic, it has to satisfy two conditions: first,

it must be genome-wise significant in one direction and, second, it must have a p-value below the

Bonferroni-corrected threshold in the other direction. In more detail, suppose that we identified a

total of n SNPs being genome-wide significant in either direction. Then, the pleiotropic SNPs will

be the ones that have p < 5 × 10−8 in one direction and p < 0.05/n in the other direction.
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On top of the SNP-based pleiotropic test, we also seek to interpret the results at a gene

level. Therefore, to analyze depression-exposure pairs, we first carried out gene-based analyses

using results from SNP-based pleiotropic tests for both directions using MAGMA (24). We subse-

quently performed gene-based pleiotropic screening on the MAGMA results. In this case, significant

pleiotropic genes were defined as ones that are genome-wise significant (p < 0.05 divided by the total

number of genes tested for the trait) in one direction and show p-value lower than a Bonferroni-

corrected significance threshold (< 0.05 divided by the total number of genes satisfying the first

condition) in the other direction.

3 Results

3.1 Phenotypic network of depression and its comorbidities

Among the 331,256 unrelated European samples that we retained from the UK biobank, 18,588

have been diagnosed with depression. Out of the 412 endpoint traits that we defined, we identified

12 frequent comorbidities with depression among the top 1% quantile of all pairwise phenotypic

correlations. The most frequent one is hypertension (parent PheCode 401), with nearly half of

all depression patients having been diagnosed with hypertension (NHypertension|Depression = 9, 196).

The next trait most frequently comorbid to depression, was osteoarthrosis (parent PheCode 740),

which was observed in more than one-third of all depression patients (NOsteoarthrosis|Depression =

6, 902). Interestingly, out of the top 12 comorbidities for depression in the UK Biobank, only two

are psychiatric or behavioral traits: anxiety disorders (parent PheCode 300, NAnxiety|Depression =

5, 666) and suicidal ideation or attempt (parent PheCode 297, NSuicide|Depression = 1, 154). Even

though the number of comorbid cases with depression for either of these two psychiatric traits is not

as high as hypertension or osteoarthrosis, one has to consider anxiety disorders and suicidal ideation

are not as prevalent in the UK biobank. Anxiety disorders and suicidal ideation are highly enriched

within depression patients (pAnxiety = 5.84×10−3711 and pSuicide = 2.56×10−1120). The remaining

eight traits span conditions that affect various organs, including gut, lungs, and processes of the

metabolic system (see Table 2). Moreover, just as expected, all these comorbidities of depression

are also tightly connected to each other (see Figure 1 and Table S2).
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3.2 Genetic network of depression and its comorbidities

We observed a total of 56 connections in the phenotypic network of depression and its 12 comorbid

traits discussed above. We further proceeded to examine the potential genetic relationships between

disorder pairs. Focusing on the 13 traits in the phenotypic network, we were able to find publicly

available GWAS summary statistics for all of them (see Table 1). For lipid metabolism disorders

(parent PheCode 277), we used two sets of summary statistics, one corresponding to low-density

lipoprotein levels and one corresponding to high-density lipoprotein levels. Similarly, for fluid

and electrolyte disorders (parent PheCode 276), we also used two sets of summary statistics as

proxies, one corresponding to sodium level measurements and one corresponding to potassium

level measurements. These resulted in a total of 76 independent tests for genetic correlations

and a Bonferroni-corrected significance threshold less than 6.58 × 10−4. Using this threshold, we

identified 18 genetically correlated pairs of disorders, resulting to a fully connected genetic network

(see Table 3 and Figure 2). We found that even though at the phenotypic level all 12 traits are

highly comorbid with depression, only six out of the 12 actually share a genetic basis with depression

(see Table 3). More interestingly, these six traits are not always the most comorbid or enriched ones

with depression. For example, surprisingly, hypertension (enrichment pHypertension = 7.48×10−833)

was not found genetically correlated with depression. In the resulting genetic network, we noticed

that gastro-oesophageal reflux disease (GORD) had the highest number of connections with all

other traits. More precisely, GORD was genetically correlated with eight other traits in the genetic

network, thus forming a “hub” in our network (Figure 2).

3.3 Phenome-wide causal inference

For the 18 genetically correlated pairs of disorders discussed in the previous section, we used-

Mendelian randomization as implemented in the bidirectional GSMR to test for the existence of

putative causal association for each pair. Using a Bonferroni-corrected significance threshold equal

to 1.39 × 10−3, we identified 18 traits as being potential causal exposures for an outcome, while

using (nearly independent) associated SNPs as instrumental variables. Among the six traits genet-

ically correlated with depression, we identified three causal risk factors for depression: GORD (169

independently associated SNPs with bxy = 0.25 and p = 1.34 × 10−30); body mass index (BMI)
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(541 independently associated SNPs with bxy = 0.17 and p = 4.08 × 10−14); and osteoarthritis (16

independently associated SNPs, bxy = 0.10 and p = 7.98 × 10−4). Depression itself also appeared

to have causal effects on both anxiety (bxy = 0.62, p = 2.99 × 10−09, and NSNP = 50) and GORD

(bxy = 0.11, p = 2.66 × 10−11, and NSNP = 64). Recall that GORD was a hub in our genetic

network and GORD is again a hub in the causality network (see Figure 3 and Table 4).

3.4 Pleiotropic variants underlying depression and potential causal exposures

For the three disorders that were found as potential immediate causal exposures of depression based

on our Mendelian randomization analysis (GORD, BMI, and osteoarthrosis), we further looked for

evidence of horizontal pleiotropy (see Table S3 for SNP-based pleiotropic results). We identified

522 SNPs showing genome-wide significant pleiotropic effects in either of the tested directions

between depression and GORD. Only one of them also surpassed the Bonferroni-corrected threshold

(p < 0.05/522 = 9.58×10−5) in the other direction and was therefore identified as pleiotropic. SNP

rs11040813 (ppleio1 = 3.70× 10−05, ppleio2 = 3.80× 10−08) is located in region 11p15.4 close to gene

CNGA4. For BMI, we identified a total of 10,667 SNPs showing genome-wide significant pleiotropic

effects with depression in at least one of the tested directions. 103 of these SNPs were identified

as pleiotropic (ppleio1 < 5.00 × 10−08 and ppleio2 < 4.69 × 10−06, or ppleio2 < 5.00 × 10−08 and

ppleio1 < 4.69 × 10−06). The SNPs span regions 1p31.1, 10q25.1 and 16q12.2. 13 of the 103 SNPs

showed genome-wide significant pleiotropic effects in both directions and all of them are located

in region 1p31.1 (gene LOC105378797 ). For depression and osteoarthritis, 472 SNPs were picked

up as genome-wide significant for one of the tested directions. However, none of them satisfied the

necessary requirements to be a bidirectional pleiotropic SNP.

To seek higher power and better interpretability, we also carried out pleiotropic screening at a

gene level by performing gene-based analyses in addition to SNP-based analyses (see Table 5 for

gene-based pleiotropic analyses). For depression and GORD, a total of 18,172 protein coding genes

were tested, making the genome-wide significance threshold less than 2.75 × 10−06. 58 genes were

found significant at this threshold in at least one direction and eight were identified as pleiotropic

(p < 0.05/58 = 8.62×10−4 in the other tested direction). Among these eight genes, the one that was

most strongly associated with both directions was TCF4 (ppleio1 = 4.18 × 10−6andppleio2 = 1.67 ×

10−9), followed by HIST1H2BN (ppleio1 = 7.34×10−7 and ppleio2 = 2.73×10−6). For the trait pair
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depression and BMI, we tested a total of 18,292 genes, resulting in a genome-wide gene significance

threshold less than 2.73× 10−06. Using this threshold, 391 genes showed pleiotropic effect in either

direction. Five of them also showed a p-value smaller than 0.05/391 = 1.28 × 10−4 in the other

direction and were identified as pleiotropic genes for the two traits. The list included NEGR1

(ppleio1 = 1.29 × 10−20 and ppleio2 = 6.30 × 10−6) and RAB27B (ppleio1 = 7.44 × 10−7 and ppleio2 =

9.47 × 10−8). Finally, for the trait pair depression and osteoarthritis, 18,230 protein coding genes

were tested and 31 were found significant (p value below 2.74×10−06 in one of the tested directions).

However, similar to the SNP-based analysis, none of the genes satisfied the necessary requirements

to be classified as bidirectional pleiotropic genes.

4 Discussion

Motivated by the highly heterogeneous nature of the phenotypic manifestations and genetic basis

of depression and its many co-occuring disorders we embarked on a systematic evaluation of their

phenotypic and genetic relationships seeking to gain insights into the biological mechanisms that

may underlie comorbidities in depression. We uncovered intriguing phenotypic and genetic rela-

tionships between depression and GORD and BMI, as well as genes that could play a central role

in governing the links between mental disorders and disorders that are not immediately thought of

as relating to the nervous system.

Using ICD-10 records of the European samples in the UK Biobank, we began by constructing

a (phenotypic) comorbidity network of depression. We mapped over six thousands ICD codes onto

approximately four hundreds PheCodes of heritable traits. We discovered 12 traits that are often

comorbid with depression, including mental disorders (for instance suicidal ideation and anxiety) we

well as traits affecting the digestive system (abdominal hernia, gastritis and duodenitis, functional

digestive disorders, diseases of esophagus), metabolic disorders (fluid and electrolyte disorders, lipid

metabolism, obesity, etc.), asthma, hypertension, and osteoarthrosis. Many of these comorbidities

have been previously observed in epidemiological studies, i.e., such as GORD (20), obesity (17),

asthma (47), hypertension condition (34), and the more well-studied anxiety disorders (98) and

suicidal ideation (29; 73).

Next, using GWAS summary statisitcs, we explored the genetic correlation between all highly
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comorbid pairs of disorders in the phenotypic network. This analysis resulted in a, somewhat less

well-connected network (compared to the phenotype-based one), where we observed that traits that

are phenotypically connected with depression do not necessarily share a common genetic basis with

it. Interestingly, hypertension, one of the most enriched conditions among depression patients,

did not show significant genetic correlation with depression. This implies that high comorbidity

rates between depression and hypertension (or even other cardiovascular traits), may not be due

to a shared heritable etiology. Instead, such phenotypic commorbidities may be mediated by other

factors (18), such as drug effects of antidepressants (95; 45). This lack of genetic connections

between depression and hypertension is concordant with the observation that these two traits show

unique, although interactive, effects on cognitive functions and brain volumes as has been previously

described (87; 67).

Significant genetic correlations have been validated by our results between depression and psy-

chiatric traits (anxiety and suicidal ideation) (70; 27) We also identified links connecting depression

with GORD, BMI, chronic gastritis, and osteoarthrosis, reinforcing the complexity of depression’s

etiology. Strong clinical relationships between the digestive system and psychiatric conditions have

been known for over 35 years (31; 100). Recent studies also provided further evidence supporting

genetic commonalities between depression and various digestive traits (107), including GORD (79)

and chronic gastritis (3). GORD was a “hub” in our genetic network and appears significantly cor-

related with BMI and osteoarthrosis, two traits that share a direct genetic basis with depression.

GORD also creates connections between depression and hypertension, asthma, and IBD.

For all pairs of disorders that we found to be (significantly) genetically correlated we looked

into potential causal relationships using Mendelian randomization. All the traits in the connected

component of the genetic network (except suicidal ideation) remained connected in the causality

network. We found three immediate risk factors for depression: GORD, BMI, and osteoarthrosis.

Additionally, depression arose as a significant risk factor for anxiety and GORD. The other traits,

although not directly linked to depression, appeared to be connected via intermediate nodes. GORD

appeared as a hub and, along with BMI, could be acting to connect depression to all other digestive

traits. Interestingly, the asthma node also pointed towards depression via GORD. Phenotypic

comorbidity between asthma and GORD has been widely reported (12; 7), whereas, to the best

of our knowledge, evidence for a causal link between these two disorders has not been suggested
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until now. We used SNP effects as instruments and we provided insights into possible relationships

between asthma and GORD; biological explanations explaining such causal relationships might

be due to the epithelial dysfunction in asthma, since such patients are more vulnerable to acid

reflux (81). Our results also point towards a uni-directional causality from BMI to depression.

This observation is supported by longitudinal studies, where obesity was found to increase the

risk of depression (59). Many studies found that the distribution of depression incidence as a

function of BMI is a U-shaped curve (61; 25; 109), indicating that not only obesity, but also any

BMI abnormalities could result in a higher risk of depressive conditions. On the other hand, the

relationship between depression and osteoarthrosis has not received as much attention as the other

trait pairs, perhaps due to the fact that the latter is strongly age-dependent; a relatively recent

PheWAS discovered an association between the genetic risk score for depression and osteoarthrosis

in the UK biobank samples (72). On the clinical side, links between osteoarthrosis/arthrosis and

depressive traits are more frequently explained by the pain caused by such conditions (58; 104;

94), which is also in concordance with our finding that osteoarthrosis indicated a causal effect on

depression, but not the other way around.

In order to further explore the biological mechanisms underlying connections between the afore-

mentioned traits and depression, we investigated genetic horizontal pleiotropic effects at the SNP

and gene levels for depression and its three most closely correlated traits: GORD, BMI, and os-

teoarthrosis. We identified several multi-functional genetic regions and genes that play a role in the

etiology of depression and its comorbidities. Our gene-based pleiotropy analysis of depression and

GORD highlighted the role of transcription factor 4 (TCF4 ), which regulates the differentiation

of various cell types and underlies the etiology of both diseases. This gene has also been reported

to have an impact in depression and insomnia (15). Beyond depression and GORD, associations

between TCF4 and many other mental and physical conditions have been widely studied; such

conditions include cognitive ability, autism, the development of certain cancer types, as well as

rare diseases such as Pitt-Hopkins syndrome (33; 74; 51; 56; 5). Moreover, TCF4 has been identi-

fied as one of the strongest genetic biomarkers for schizophrenia susceptibility in multiple genetic

studies (44; 90; 52). Animal experiments suggest that the over-expression of this gene in the brain

results in functional impairments that constitute schizophrenic symptoms (13) and that such effects

further interact with different exposure conditions (8). Interestingly, in patients with depression,
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a decreased TCF4 expression at the mRNA and protein level was observed when compared to

healthy controls (71). Our results indicate that, beyond schizophrenia, it may also be worthwhile

to further investigate the pathology of TCF4 in depressive conditions.

One of the top genes that was uncovered from the pleiotropic analysis between depression

and BMI was NEGR1 (Neuronal Growth Regulator 1). This is a known obesity-associated gene,

whose effect has been verified in multiple populations (66; 76; 83; 85). NEGR1 regulates neuronal

control of food intake (9; 53) and along with FTO, which was also picked up in the SNP-based

pleiotropic analysis, have been reported as having an impact on eating disorders (68; 35). Given

its high expression level in the brain, its connections with psychiatric traits has been recently

investigated and NEGR1 has been associated with a wide range of mental traits. Apart from

eating related disorders, it also plays a role in depression (43), cognitive performance (54), and

Alzheimer’s disease (77). As a functional validation, increased depressive, anxiety- and autistic-like

behaviors were observed in NEGR1 -deficient mice, along with reduced hippocampal neurogenesis

and disruption in cortical development (78; 92). Finally, as a putative tumor suppressor, NEGR1

has also been identified to be a down-regulated gene in various cancer cells (50; 93), including

ovarian cancer (86; 21) and breast cancer (10; 82).

Regarding limitations for our study, first, our results are based on analysis of the UK Biobank

and sample inclusion in the UK biobank is volunteer-based so might not represent the true under-

lying population distribution. However, most of the connections observed in our work have also

been previously reported in epidemiological studies which provides further support for our findings.

Second, our results used GWAS summary statistics, which exhibit some variance in their respective

power. Additionally, while most of the GWAS that we used were performed on European popula-

tions, the GWAS for electrolyte disorders (GWAS of sodium and potassium Levels) was based on

the Qatar population.

5 Conclusion

In this paper we systematically evaluated phenotypic and genetic connections between depression

and other disorders and looked into their causality relationships. We also sought to uncover genes

with potentially pleiotropic effects across depression and highly correlated disorders. Our results
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suggest that beyond phenotypic comorbidities, depression shows genetic connections with multiple

psychiatric and non-psychiatric traits and we identify multiple genetic variants that could be linking

mental health disorders to disorders of other systems. Such common genetic background may

help explain the heterogeneity of the symptoms of depressive patients and help further sub-typing

of depression. Our work highlights the value of trans-diagnostic approaches towards uncovering

insights into the the etiology of psychiatric disease.
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Figure 1: Phenotypic disease network of depression. The disease network of depression was
obtained from the fully connected phenotypic network using phenoytpic correlations as edge weights,
by reducing the dense graph to a sparse network by keeping only the top 1% of the connections
and extracting depression and its immediate neighbour nodes.
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Figure 2: Genetic disease network of depression. For all connections observed in the pheno-
typic network of depression (figure 1), we evaluated the pairwise genetic correlation using LDSC(14).
Edges in the graph show all significant genetic correlations between traits after correcting for mul-
tiple hypothesis testing.
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Figure 3: Causal relationships between traits that are comorbid with depression. We
tested causal relationships between traits and depression using bidirectional Mendelian randomiza-
tion for all genetically correlated pairs of disorders. Using SNP effects as instrumental variables,
the resulting directed graph shows significant causalities between traits after correcting for multiple
hypothesis testing.
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Trait Reference Sample Size comment

asthma (26) 23,948 cases, 118,538 controls
body mass index (42) 100,418 samples

gastro-oesophageal reflux (6) 80,265 cases, 305,011 controls
hypertension (105) 27,123 cases, 22,018 controls diverse population
osteoarthritis (108) 30,727 cases and 297,191 controls

depression (106) 59,851 cases and 113,154 controls
hernia (102) 14,278 cases, 286,513 controls
anxiety (80) 7,016 cases, 14,745 controls

low-density lipoprotein
(103)

94,595 samples
high-density lipoprotein 94,595 samples

sodium levels
(49)

6,018 samples
Qatar population

potassium levels 6,017 samples
inflammatory bowel disease (23) 25,042 cases, 34,915 controls

suicide attempt (102) 125,844 samples
chronic gastritis (102) 15,492 cases, 229,398 controls

Table 1: Sources for GWAS summary statistics. Summary statistics are dominated by samples
of European ancestry, with two exceptions (hypertesion and sodium/potassium levels).
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Trait total Nsample Nsample in depression Enrichment P

All Sample 331,256 18,588 -
Depresssion 18,588 18,588 -

Disorder of lipoid metabolism 46,738 5,394 1.84× 10−644

Osteoarthrosis 59,572 6,902 1.99× 10−887

Diseases of esophagus 47,027 5,664 2.09× 10−764

Suicidal ideation or attempt 1,495 1,154 2.56× 10−1120

Asthma 29,737 3,892 3.10× 10−578

Abdominal hernia 54,605 5,297 3.34× 10−391

Functional digestive disorders (IBD) 31,818 4,342 4.09× 10−711

Gastritis and duodenitis (ChronicGastritis) 34,101 4,188 4.16× 10−550

Fluid and electrolyte disorders 16,418 2,879 4.25× 10−685

Overweight obesity and other hyperalimentation 21,266 3,529 4.26× 10−787

Anxiety disorders 13,186 5,666 5.84× 10−3711

Hypertension 94,738 9,196 7.48× 10−833

Table 2: Enrichment of comorbidities in depression patients. For all traits phenotypically
correlated with depression (Figure 1), we tested the enrichment of cases in depression patients
using a hyper-geometric test. Enrichment P denotes the hyper-geometric test p-value; total Nsample

denotes the total number of cases of the trait in the UK biobank samples; Nsample in depression
denotes the number of the cases having the respective trait and depression.
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Trait 1 Trait 2 Rg SE P

Anxiety Depression 0.8739 0.1678 1.90 ×10−07

Anxiety Gastro-oesophageal Reflux 0.4876 0.1190 4.17 ×10−05

Asthma Gastro-oesophageal Reflux 0.2047 0.0358 1.12 ×10−08

Asthma Osteoarthritis 0.2643 0.0668 7.65 ×10−05

Body Mass Index Depression 0.1140 0.0234 1.11×10−06

Body Mass Index Gastro-oesophageal Reflux 0.3007 0.0201 2.18 ×10−50

Body Mass Index Inguinal Hernia -0.2361 0.0302 5.35 ×10−15

Body Mass Index Lipoprotein HDL -0.2898 0.0300 4.71 ×10−22

Body Mass Index Osteoarthritis 0.4385 0.0437 1.17 ×10−23

Chronic Gastritis Depression 0.3735 0.0790 2.28 ×10−06

Chronic Gastritis Gastro-oesophageal Reflux 0.8434 0.0975 5.18 ×10−18

Depression Gastro-oesophageal Reflux 0.5221 0.0271 1.48 ×10−82

Depression Osteoarthritis 0.3556 0.0519 7.19 ×10−12

Depression Suicidal Ideation Self Harm 0.9687 0.1904 3.65 ×10−07

Gastro-oesophageal Reflux Inflammatory Bowel Disease -0.1065 0.0293 2.84 ×10−04

Gastro-oesophageal Reflux Lipoprotein HDL -0.1954 0.0246 1.72 ×10−15

Gastro-oesophageal Reflux Osteoarthritis 0.5348 0.0446 3.50 ×10−33

Hypertension Lipoprotein HDL -0.2728 0.0712 10−04

Table 3: Pairwise significant genetic correlations. Rg denotes the genetic correlation coef-
ficient; SE and P denote the standard error and test p-value for Rg respectively. The genetic
correlation was computed using LDSC (14). See also Figure 2.
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Exposure Outcome βxy SE P NSNPs

Depression Anxiety 0.6175 0.1041 2.99 ×10−09 50
Asthma Gastro-oesophageal Reflux -0.0384 0.0099 1.07 ×10−04 66

Body Mass Index Depression 0.1678 0.0222 4.08 ×10−14 541
Gastro-oesophageal Reflux Body Mass Index 0.0815 0.0076 1.12 ×10−26 166

Body Mass Index Gastro-oesophageal Reflux 0.2204 0.0163 1.35 ×10−41 526
Inguinal Hernia Body Mass Index -0.0147 0.0045 1.10 ×10−03 80
Body Mass Index Inguinal Hernia -0.3566 0.0345 5.61 ×10−25 525
Body Mass Index Lipoprotein HDL -0.2668 0.0115 3.67 ×10−119 473
Body Mass Index Osteoarthritis 0.5141 0.0420 1.99 ×10−34 549

Gastro-oesophageal Reflux Chronic Gastritis 0.4523 0.0331 1.79 ×10−42 157
Chronic Gastritis Gastro-oesophageal Reflux 0.1604 0.0353 5.60 ×10−06 10

Gastro-oesophageal Reflux Depression 0.2524 0.0220 1.34 ×10−30 169
Depression Gastro-oesophageal Reflux 0.1098 0.0165 2.66 ×10−11 64

Osteoarthritis Depression 0.1008 0.0301 7.98 ×10−04 16
Inflammatory Bowel Disease Gastro-oesophageal Reflux -0.0145 0.0036 4.80 ×10−05 443
Gastro-oesophageal Reflux Lipoprotein HDL -0.0669 0.0148 6.49 ×10−06 119
Gastro-oesophageal Reflux Osteoarthritis 0.2969 0.0408 3.46 ×10−13 176

Lipoprotein HDL Hypertension -0.1298 0.0310 2.90 ×10−05 216

Table 4: Causalities between exposures and outcomes from the Mendelian randomiza-
tion analysis. βxy, SE, and P are effect size, corresponding standard error, and test p-value,
respectively. NSNPs is the number of independent SNPs used as instruments in the analyses.
Mendelian randomization was carried out using the GSMR tool implemented in GCTA (111). See
Figure 3 as well.
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GeneName CHR START STOP NSNPs Zpleio1 Ppleio1 Zpleio2 Ppleio2

Depression - GORD
CCKBR 11 6280841 6293363 67 4.10 2.09 ×10−05 5.18 1.14 ×10−07

PGBD1 6 28249314 28270326 59 4.85 6.30 ×10−07 4.06 2.41 ×10−05

HIST1H2BN 6 27805544 27821533 32 4.82 7.34 ×10−07 4.55 2.73 ×10−06

ZSCAN26 6 28234788 28246001 18 4.87 5.56 ×10−07 3.40 3.32 ×10−04

TCF4 18 52889562 53303252 677 4.46 4.18 ×10−06 5.91 1.67 ×10−09

ZKSCAN4 6 28212404 28227030 33 4.99 2.94 ×10−07 4.07 2.34 ×10−05

BTN2A1 6 26458132 26476849 79 4.56 2.58 ×10−06 4.67 1.54 ×10−06

BTN3A2 6 26365387 26378548 97 5.03 2.49 ×10−07 3.85 5.93 ×10−05

Depression - BMI
IP6K1 3 49761728 49823973 137 5.73 5.07 ×10−09 3.70 1.07 ×10−04

RAB27B 18 52385097 52562747 681 4.81 7.44 ×10−07 5.21 9.47 ×10−08

DENND1A 9 126141933 126692423 1825 8.32 4.51 ×10−17 3.70 1.08 ×10−04

DNAJC11 1 6694228 6761966 201 4.74 1.07 ×10−06 3.75 8.84 ×10−05

NEGR1 1 71868625 72748533 2550 9.24 1.29 ×10−20 4.37 6.30 ×10−06

Table 5: Pleiotropic genes between depression and its immediate risk factors. For all
three immediate risk factors of depression, we looked into horizontal pleiotropic genetic variants
shared between depression and the risk factor using IMRP (110). The analysis was done at both
the SNP and the gene level. (See table S3 for SNP-based results.) GeneName, CHR, START,
and STOP denote the gene and its genomic location; NSNPs is number of SNPs analyzed for the
respective gene; Z and P denote standardized pleiotropic effect sizes and test p-values; pleio1 stands
for the SNP’s effect on depression, excluding the causality effect of the risk factor, and pleio1 stands
for the SNP effect on the risk factor taking into account any causal effects from depression to the
risk factor trait.
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6 Supplementary table legends

Table S1. Parent phecodes and number of cases in our analysis. After pre-processing,

we mapped 6,300 ICD-10 codes onto 412 parent phenodes, including depression. The table is a

detailed list of final phecodes used in the analyses and the number of cases after quality control.

Table S2. Edges in the phenotypic network. We computed pairwise phenotypic correla-

tion between all phecodes included in our study. We extracted the top 1% highly-correlated pairs.

We further filtered out all immediate neighbour nodes of depression and the network spanning

these nodes. This network includes a total of 56 edges (listed in the table). Edge weights are the

phenotypic correlations between two nodes, defined as the cosine of the angle formed by the two

phenotype vectors.

Table S3. SNP-based pleiotropic results for depression and GORD, and depression

and BMI. Pleiotropic SNPs identified between depression and its immediate risk factors (GORD

and BMI) were identified by the Mendelian randomization analysis.
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[104] Jolanta Wilmańska and Ewa Gu laj. Coincidence of arthrosis and depression in elderly

patients-therapeutic implications. Ortopedia, traumatologia, rehabilitacja, 8(6):686–692, 2006.

[105] Genevieve L Wojcik, Mariaelisa Graff, Katherine K Nishimura, Ran Tao, Jeffrey Haessler,

Christopher R Gignoux, Heather M Highland, Yesha M Patel, Elena P Sorokin, Christy L

Avery, et al. Genetic analyses of diverse populations improves discovery for complex traits.

Nature, 570(7762):514–518, 2019.

35

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 16, 2022. ; https://doi.org/10.1101/2022.05.13.22275045doi: medRxiv preprint 

https://doi.org/10.1101/2022.05.13.22275045
http://creativecommons.org/licenses/by-nc-nd/4.0/


[106] Naomi R Wray, Stephan Ripke, Manuel Mattheisen, Maciej Trzaskowski, Enda M Byrne,

Abdel Abdellaoui, Mark J Adams, Esben Agerbo, Tracy M Air, Till MF Andlauer, et al.

Genome-wide association analyses identify 44 risk variants and refine the genetic architecture

of major depression. Nature genetics, 50(5):668–681, 2018.

[107] Yeda Wu, Graham K Murray, Enda M Byrne, Julia Sidorenko, Peter M Visscher, and Naomi R

Wray. Gwas of peptic ulcer disease implicates helicobacter pylori infection, other gastroin-

testinal disorders and depression. Nature communications, 12(1):1–17, 2021.

[108] Eleni Zengini, Konstantinos Hatzikotoulas, Ioanna Tachmazidou, Julia Steinberg, Fernando P

Hartwig, Lorraine Southam, Sophie Hackinger, Cindy G Boer, Unnur Styrkarsdottir, Arthur

Gilly, et al. Genome-wide analyses using uk biobank data provide insights into the genetic

architecture of osteoarthritis. Nature genetics, 50(4):549–558, 2018.

[109] G Zhao, Earl S Ford, Satvinder Dhingra, Chaoyang Li, Tara W Strine, and AH Mokdad.

Depression and anxiety among us adults: associations with body mass index. International

journal of obesity, 33(2):257–266, 2009.

[110] Xiaofeng Zhu, Xiaoyin Li, Rong Xu, and Tao Wang. An iterative approach to detect pleiotropy

and perform mendelian randomization analysis using gwas summary statistics. Bioinformat-

ics, 37(10):1390–1400, 2021.

[111] Zhihong Zhu, Zhili Zheng, Futao Zhang, Yang Wu, Maciej Trzaskowski, Robert Maier,

Matthew R Robinson, John J McGrath, Peter M Visscher, Naomi R Wray, et al. Causal

associations between risk factors and common diseases inferred from gwas summary data.

Nature communications, 9(1):1–12, 2018.

36

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 16, 2022. ; https://doi.org/10.1101/2022.05.13.22275045doi: medRxiv preprint 

https://doi.org/10.1101/2022.05.13.22275045
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Introduction
	Methods
	Data
	Phenotypic network of depression and comorbid disorders
	Genetic network across depression and its comorbidities
	Phenome-wide causal inference
	Evaluation of horizontal pleiotropy

	Results
	Phenotypic network of depression and its comorbidities
	Genetic network of depression and its comorbidities
	Phenome-wide causal inference
	Pleiotropic variants underlying depression and potential causal exposures

	Discussion
	Conclusion
	Supplementary table legends

