Laboratory diagnostic of acute kidney injury and its progression: risk

of underdiagnosis in female and elderly patients

- 4 Thea Sophie Kister^{1¶}, Maria Schmidt^{1¶}, Lara Heuft¹, Martin Federbusch¹, Michael Haase², Thorsten
- 5 Kaiser^{1*}

1

2

3

6

12

13

- 7 Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics (ILM), University of
- 8 Leipzig Medical Center, Leipzig, Germany
- 9 ² Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- *Correspondence: Thorsten.Kaiser@medizin.uni-leipzig.de; Tel.: +49 341 9722200
- 11 These authors contributed equally to this work.

Abstract

- 14 **Objective:** Acute kidney injury (AKI) is a common disease, with high morbidity and mortality rates. In
- this study, we investigate the potential influence of sex and age on laboratory diagnostic and outcome.
- 16 It is known that serum creatinine (SCr) has limitations as a laboratory diagnostic parameter for AKI due
- to its dependence on muscle mass, which may lead to incorrect or delayed diagnosis for certain patient
- 18 groups, such as women and the elderly.
- 19 Methods: Overall, 7592 cases with AKI, hospitalized at the University of Leipzig Medical Center (ULMC)
- 20 between 1st January 2017 and 31st December 2019, were retrospectively analyzed. Diagnosis and
- 21 staging of AKI was performed according to the Kidney Disease: Improving Global Outcomes (KDIGO)
- guidelines, based on the level and dynamics of SCr. The impact of sex and age was analyzed by the
- recalculation of a female to male and an old to young SCr using the CKD-EPI equation.
- 24 **Results:** The incidence proportion of AKI in our study cohort was 12.0%, with progressive AKI occurring
- in 19.2% of these cases (n = 1458). Male cases with AKI were overrepresented (59.6%), with a NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
- significantly higher first (+3.5 ml/min) and last eGFR (+2.7 ml/min) (p < 0.001). The highest incidence

proportion of AKI was found in the [61–81) age group in female (49.5%) and male (52.7%) cases. Males with progressive AKI were overrepresented (p = 0.04). By defining and staging AKI on the basis of relative and absolute changes in SCr level, it is more difficult for patients with low muscle mass and thus a lower baseline SCr to be diagnosed by an absolute SCr increase. AKIN1 and AKIN3 can be diagnosed by a relative or absolute change in SCr. In females, both stages were less frequently detected by an absolute criterion alone (AKIN1 $\,^\circ$ 20.2%, $\,^\circ$ 29.5%, p < 0.001; AKIN3 $\,^\circ$ 13.4%, $\,^\circ$ 15.2%, p < 0.001). A recalculated SCr for females (to males) and males (to young males) displayed the expected increase in AKI occurrence and severity with age and in general in females.

Conclusion: Our study illustrates how SCr as the sole parameter for diagnosis and staging of AKI bears the risk of underdiagnosis of patient groups with low muscle mass, such as women and the elderly. A sex- and age-adapted approach might offer advantages.

Introduction

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

Acute kidney injury (AKI) is a life-threatening interdisciplinary disease that remains partly undetected and undertreated. With an incidence proportion ranging from 7.2% to 31.3%, AKI is a common complication and requires timely and professional management [1,2]. Associations with increased short- and long-term mortality rates, longer lengths of hospitalization, and higher rates of renal replacement therapy have been observed in several studies [1,3–5]. In particular, the progression of AKI to a higher stage according to the Kidney Disease: Improving Global Outcomes (KDIGO) guidelines is associated with significantly worse outcomes, such as higher rates of mortality and renal replacement therapy [3]. In recent years, interest in the implementation of electronic information and alert systems to support decision making by physicians has generally increased [6]. A clinical decision support system (CDSS) can support the recognition, monitoring, and timely treatment of AKI and provide an opportunity to improve management and thus clinical outcome [7,8]. However, so far, use of CDSS has shown a minor impact on the outcome of AKI [2,9]. Currently, AKI is defined and staged according to the KDIGO guidelines based on increased serum creatinine (SCr) and/or reduced urine volume [10]. However, this guideline, which is mainly based on the laboratory parameter SCr in daily practice, does not stratify detection by sex or age. It is well known that the concentration of SCr is strongly affected by muscle mass and is therefore not a universal parameter of renal function [11,12]. Patients with a physiologically lower muscle mass, on average more frequently encountered in females and the elderly, might benefit from an age- and sex-specific diagnostic process. It is generally accepted that, for this reason, renal function should not be assessed on the basis of SCr but on the basis of the glomerular filtration rate, the calculation of which includes age and sex [11].

Study aims and objectives

In this study, we systematically investigated the potential influence of age and sex on the laboratory diagnostic of AKI and its progression by retrospectively comparing the detection and progression of AKI between both sexes stratified by age groups. In addition, we calculated a hypothetical SCr on the basis of the estimated glomerular filtration rate (eGFR), which adjusts original SCr by age and sex and

thus compares the potentially less age- and sex-biased detection process with the original one. Options to achieve appropriate management through an adequate diagnostic procedure that takes into account age and sex, in addition to existing laboratory parameters, were explored.

Methods

For our retrospective cohort study, 63,239 cases at the University of Leipzig Medical Center (ULMC) (1451 beds), hospitalized between 1st January 2017 and 31st December 2019, met the inclusion criteria and were further analyzed. Inclusion criteria consisted of a patient age ≥ 18 years (n = 129,232), ≥ two creatinine measurements (n = 64,833), and the absence of the code N18.5 (dialysis-dependent chronic kidney disease) according to the International Statistical Classification of Diseases and Related Health Problems–German Modification (ICD-10-GM) [13] (n = 63,239). According to the KDIGO guidelines using SCr levels, 7592 cases with potential AKI were detected and staged (Table 1, Fig 1). AKI progression was present if the first AKI stage during hospitalization was lower than the maximum AKI stage per case. AKI was not considered if dialysis was performed up to 72h before SCr measurement.

Table 1. AKI staging according to the KDIGO guidelines [10].

Stage	Serum creatinine	Urine output	
1	1.5–1.9 times baseline, OR	< 0.5 ml/kg/h for 6–12 hours	
	\geq 0.3 mg/dl (\geq 26.5 μ mol/l) increase		
2	2.0–2.9 times baseline	$< 0.5 \text{ ml/kg/h for} \ge 12 \text{ hours}$	
3	3.0 times baseline, OR	$< 0.3 \text{ ml/kg/h for} \ge 24 \text{ hours},$	
	Increase in serum creatinine to ≥ 4.0 mg/dl ($\geq 353.6 \mu mol/L$), OR	OR	
	Initiation of renal replacement therapy, OR	Anuria for ≥ 12 hours	
	In patients < 18 years, decrease in eGFR to < 35 ml/min per 1.73 m ²		

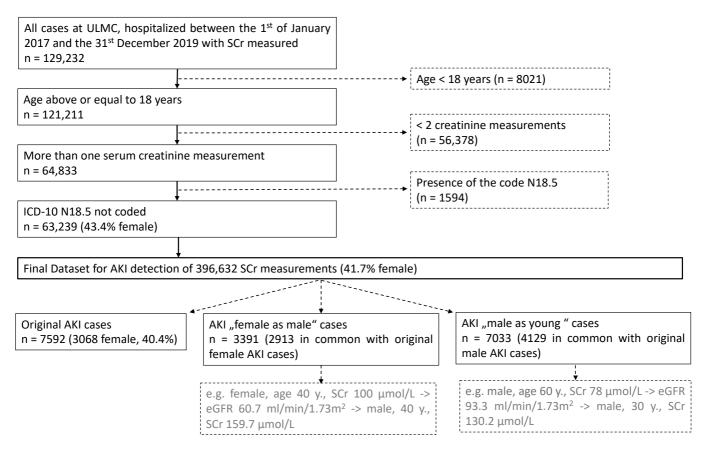


Fig 1. Study cohort with inclusion and exclusion criteria.

Acquisition of data and statistics

SCr measurements were performed in serum on a Cobas 8000 Analyzer module c 701 (Roche, Mannheim, Germany; Creatinine Plus Ver. 2kit, enzymatic method), available from the laboratory information system LabCentre (isolutions health, Version 2022.01 HF 1) at ULMC. Additional clinical data (e.g., ICD-10-GM codes, admission and discharge timestamps, dialysis procedures, mortality) for the included cases were retrieved from the Clinical Information System (SAP Software Solutions, Walldorf, Germany [14]).

A case-based analysis was performed using Microsoft Excel for Office 365 ProPlus (Microsoft Corporation, Redmond, USA); further statistical analysis was performed using R 4.0.2 [15], with the addition of the reshape2 package [16]. A Mann–Whitney U test was used to compare group medians of continuous variables (e.g., between progressive and non-progressive AKI cases, and between males

and females). A chi-square test was used to evaluate categorical variables accordingly. Differences at an alpha level of 0.05 were deemed significant.

The eGFR was determined using the Chronic Kidney Disease Epidemiology Collaboration equation (CKD-EPI) [17] for our predominantly Caucasian cohort. Staging of AKI holds that the intensity of SCr increases over a given timeframe and can be absolute or relative. AKIN1 and AKIN3 can be reached by relative and absolute criteria, whereas AKIN2 requires only a relative increase. The mode of AKI staging (relative, absolute, both) for each AKI instance was flagged, and the proportion of each mode per stage

Hypothetical recalculation of SCr

was compared between males and females.

The impact of sex on the detection of AKI was analyzed as follows using all data points of female cases (n = 165 267): eGFR values (determined on the basis of original creatinine, female sex, and age using the CKD-EPI equation [17]) were back-calculated into creatinine using the male factor for sex, thus yielding a "male" creatinine value for a person of the same age and eGFR as the original (e.g., female, age 40 years, SCr 100 µmol/L -> eGFR 60.7 ml/min/1.73m² -> male, 40 years, SCr 159.7 µmol/L). This corresponds to a hypothetical value, as if the patient with a certain eGFR were male instead of female (female-as-male cohort) (Text S1 Recalculation of creatinine).

The impact of age on the detection of AKI was analyzed using all data points of male cases (n = 231,365) and the same approach as above: eGFR values (determined on the basis of original creatinine, male sex, and age) were back-calculated into creatinine using a fixed age of 30 years, thus yielding a "young" creatinine for a male person with the same eGFR as the original (males-as-young cohort). Both cohorts with recalculated creatinine were used for AKI detection and staging as with the original creatinine input.

Results

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

Study cohort characteristics of females (\mathcal{Q}) and males (\mathcal{O}) regarding non-progressive and

progressive AKI

From our cohort of 63,239 investigated inpatient cases, AKI was diagnosed in 7592 cases (12.0%), which defined our final study cohort (Fig 1). For all the AKI cases, sex-specific differences were present: Males with AKI were on average 4.3 years younger than females (p < 0.001), had 1.4 days longer length of hospitalization (p = 0.04), and a higher first (+3.5 ml/min) and last eGFR (+2.7 ml/min) (p < 0.001). 4.7 days, O' 4.5 days, p = 0.07) and the mortality The time to first AKI during hospitalization (Qrate (♀ 23%, p = 0.31) did not differ significantly. Considering only the progressive AKI cases, males were on average 4.4 years younger than females (p < 0.001) and had a shorter time to first AKI during hospitalization (\mathcal{Q} 4.9 days, \mathcal{O} 4.5 days, p = 0.04). The first eGFR (+3.9 ml/min, p =0.18), last eGFR (-1.1 ml/min, p = 0.50), length of hospitalization (Q24.7 days, ♂ 26.3 days p =0.49), and mortality rate (Q 45.5%, Q 45.0%, p = 0.91) did not differ significantly (Table 2). Progressive AKI (AKIN1 \rightarrow 2, AKIN1 \rightarrow 3, AKIN2 \rightarrow 3) was found in 1458 cases (19.2% of AKI cases), with the incidence proportion significantly higher in male (20.0%) than female cases (18.1%) (p = 0.04) (Table 2, Table S1). Comparing progressive AKI with non-progressive AKI, there were no sex-related differences. The outcome of progressive AKI cases was significantly worse in both sexes. For example, female cases with progressive AKI were on average younger at first AKI detection during hospitalization and showed a higher mortality rate and longer hospital stays than cases without progression (p < 0.001). The last eGFR was significantly lower in cases with progressive AKI (p < 0.001), whereas the first eGFR was not significantly different. In addition, the time to first AKI was comparable between progressive and non-progressive cases and showed no significant differences. The observation of associated comorbidities showed a significantly higher proportion of myocardial infarction, cardiac insufficiency, sepsis, shock, and liver cirrhosis in progressive AKI cases than in non-progressive AKI cases. Similar results were obtained for male cases (Table S1).

Table 2. Comparison of female and male patient characteristics considering all AKI cases and progressive AKI cases. Variables given as medians [interquartile range] or percentages.

	All AKI cases, n = 7592			Progressive AKI cases, n = 1458		
	Female	Male	p-value	Female progression	Male progression	p-value
Incidence proportion, n, %	3068, 40.4	4524, 59.6		554, 18.1	904, 20.0	0.039
Basic Patient characteristics						
Age (years)	72.0 [60.4–80.9]	67.7 [57.9–77.8]	< 0.001	70.7 [59.0–79.5]	66.0 [57.0–75.9]	< 0.001
Total length of hospitalization (days)	16.2 [9.1–29.6]	17.6 [9.1–31.6]	0.038	24.7 [14.2 -43.1]	26.3 [14.9–42.6]	0.491
First eGFR (ml/min/1.73m²)	59.9 [36–85.4]	63.4 [39.3–88.2]	< 0.001	58.0 [36.1–85.1]	61.9 [37.7–88.1]	0.177
Last eGFR (ml/min/1.73m ²)	53.2 [32.7–82.2]	55.9 [35.7–84.5]	< 0.001	44.9 [25.2–74.4]	46.0 [25.7–75.7]	0.502
Time to first AKI during hospitalization (days)	4.7 [1.9–10.8]	4.5 [1.8–9.9]	0.073	4.9 [1.9–11.9]	4.5 [1.8–9.4]	0.037
In-hospital mortality	22.0	23.0	0.310	45.5	45.0	0.905
Comorbidities						
I10 Hypertension	48.2	46.4	0.129	47.7	46.9	0.822
E11 Diabetes mellitus	31.8	34.4	0.022	31.4	35.2	0.156
E86 Exsiccosis	4.8	4.4	0.466	6.0	3.4	0.031
R57 Shock	17.2	22.3	< 0.001	37.9	44.3	0.020
I25 Coronary heart disease	13.5	23.4	< 0.001	11.2	23.5	< 0.001
I21 Myocardial infarction	3.2	4.9	0.001	3.4	6.2	0.028
I50 Cardiac insufficiency	28.9	28.0	0.435	33.9	34.6	0.832
A41 Sepsis	19.9	24.9	< 0.001	38.8	41.9	0.263
K74 Liver cirrhosis, %	5.1	5.1	0.993	8.7	9.0	0.865

Adding age to AKI detection

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

Cases were divided into four different age groups ([18–41), [41–61), [61–81), [81–max]). The incidence proportion of AKI increased with age, with the [61-81) age group contributing the most cases of AKI to the study cohort in male (52.7%) and female (49.5%) cases. The same age group contained the most progressive AKI cases in both sexes. The incidence proportion of AKI was significantly lower in females than in males for the [18–41) (\bigcirc 4.7%, \bigcirc 5.8%, p = 0.02), [41–61) (\bigcirc 9.0%, ♂ 11.2%, p < 0.001) and [81–max] (Q 14.3%, Q 17.4%, p < 0.001) age groups (Table 3). Progressive AKI cases per age group did not show the same trend as the incidence proportion, but there was a trend for lower proportions in females in each age group (Table 4). With regard to the definition of the three AKI stages according to the KDIGO guidelines, AKIN1 and AKIN3 were reached through a relative or absolute increase of SCr (Table 1). Female cases reached 20.2%, σ 29.5%, p < 0.001) and AKIN 3 (φ 13.4%, σ 15.2%, p < 0.001) at a smaller AKIN1(♀ proportion through the absolute staging criterion alone than did male cases (Table 5). The number of undetected AKI cases according to KDIGO criteria remained unknown however; consequently, an assessment of whether the relative criterion thoroughly detects females was not possible without detailed inspection of all health records. Considering the distribution of AKI stages within the age groups, a shift of female-as-male cases toward male cases could be observed in cases with AKIN3 (Fig 2, Table S2).

Table 3. Comparison of AKI in different age groups with regard to sex. A total of 63,239 cases were considered for the detection of AKI.

Age group	All AKI	Female (n = 3068, 11.2%)	Male (n = 4524, 12.6%)	
	(n = 7592, 12.0%)			
[18-41) *	470, 5.2%	202, 4.7%	268, 5.8%	
[41–61) ***	1765, 10.4%	596, 9.0%	1169, 11.2%	
[61–81) n.s.	3902, 14.0%	1519, 13.5%	2383, 14.3%	
[81-max] ***	1455, 15.6%	751, 14.3%	704, 17.4%	

Asterisks indicate significant differences between female and male AKI cases (p-value n.s. ≥ 0.05 , *< 0.05, *< 0.01, *** < 0.001).

Table 4. Comparison of the proportions of progressive AKI cases within different age groups, stratified by sex. A total of 7592 AKI cases were considered for detection of progression.

Age group	Total progressive AKI	Female (n = 554, 7.3%)	Male (n = 904, 11.9%)	
	(n = 1458, 19.2%)*			
[18–41) n.s	85, 18.1%	36, 17.8%	49, 18.3%	
[41–61) n.s	389, 22.0%	124, 20.8%	265, 22.7%	
[61–81) n.s	748, 19.2%	281, 18.5%	467, 19.6%	
[81–max] n.s	236, 16.2%	113, 15.0%	123, 17.5%	

Asterisks indicate significant differences between female and male AKI cases (p-value n.s. ≥ 0.05 , * < 0.05, * < 0.01, *** < 0.001).

Table 5. Comparison of fulfilled criteria in the detection of AKIN1 and AKIN3 for females and males according to KDIGO [10]. Multiple instances of AKI are considered per case.

Criteria feature	AKIN1, n, %			Al	AIN3, n, %	
•	Female (n = 6011)	Male $(n = 9365)$	p-value	Female $(n = 1032)$	Male $(n = 1984)$	p-value
Absolute	1214, 20.2%	2750, 29.4%	< 0.001	138, 13.4%	302, 15.2%	0.190
Both	1450, 24.1%	2510, 26.8%	< 0.001	294, 28.5%	936, 47.2%	< 0.001
Relative	3347, 55.7%	4105, 43.8%	< 0.001	600, 58.1%	746, 37.6%	< 0.001

According to the KDIGO guidelines, three criteria for the detection of AKI are possible: 1) Increase in the last seven days by at least 1.5 times baseline, 2) Absolute increase in the last two days, 3) Creatinine limits exceeded (if also relative/absolute increase according to 1) or 2). In particular, criterion 2 should be more difficult to achieve in people with less muscle mass. Hypothetically, women and older people on average would feature proportionately less under criterion 2. AKIN1 and 3 are staged as above criterion 1 or 2. AKIN2 is detected exclusively via criterion 1 and thus remains irrelevant for sex differences.

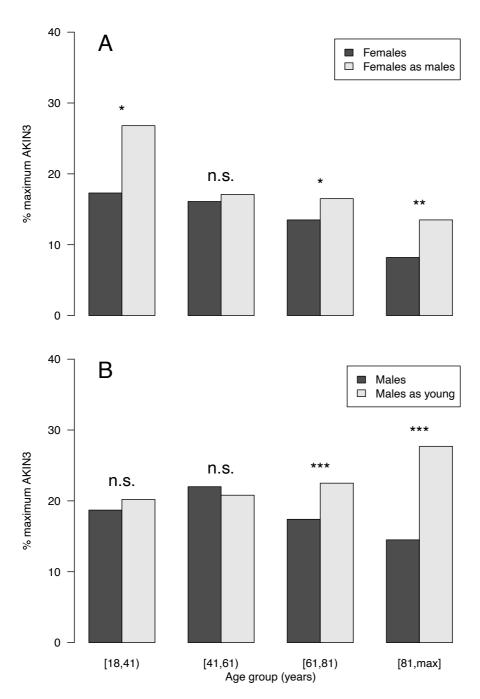


Fig 2. Proportion of AKI cases reaching AKIN3 during hospitalization per age group. Panel (A) compares females to the recalculation cohort females-as-males. Proportions decline with age group but are consistently higher in the recalculated cohort. Panel (B) compares males to the recalculation cohort males-as-young. Differences in proportions increase with age (p-value n.s. ≥ 0.05 , *< 0.05, *< 0.01, *** < 0.001).

Impact of SCr recalculation

We were able to compare the original laboratory diagnosis of AKI with a modified one by calculating a hypothetical SCr from the originally obtained eGFR (via CKD-EPI [17]) and staging AKI, as previously stated. Figure 2 gives the proportion of initial and maximum AKIN3 in these recalculated cohorts and

the original ones for females and males (see Tables S2 and S3 for the proportions of all AKI stages). The percentage of initial and maximum AKIN3 in the original cohorts generally decreased with age. The same held true for the recalculated female-as-male cohort. Recalculated males-as-young demonstrated an increase in these percentages with age. With the exception of the [18–41) age group, the female-as-male cohort shifted toward a pattern observed for males (Fig 2).

Discussion

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

AKI is a common disease associated with high mortality and morbidity rates [1,4,5,18-20]. In particular, progressive AKI, to date a less studied phenomenon, has a strong prognostic value and negative clinical course. The general importance of timely detection and adequate treatment of progression has already been described in a previous study [3]. To the best of our knowledge, this study is the first to analyze sex and age differences in the laboratory-based diagnosis of progressive AKI using a recalculation based on the eGFR to convert SCr for opposite sex and age groups, clearly illustrating the risk of underdiagnosis in female and elderly patients. It is well known that the SCr is influenced by several parameters besides kidney function (muscle mass, diet, physical activity, medications) and decreases constantly from the third to the ninth decade of life [11,21,22]. Several equations for the calculation of an eGFR have been proposed that consider SCr and various additional parameters [23]. The CKD-EPI equation, developed in 2009 and applied in this study, uses age, sex, and race in addition to SCr [17] to compensate for the limitations of SCr alone. We saw an overall smaller incidence proportion of AKI and its progression in females and a tendency for a decrease in these endpoints with increased age. This could be explained by biological and lifestyle factors [24] but also by sex bias in laboratory AKI diagnostics. Our study also investigated sex and age bias in AKI detection and its progression by using a calculation of an adjusted SCr. We were thereby able to demonstrate a shift in AKI detection in females toward a laboratory-based diagnosis more similar to men. Additional circumstantial evidence comes from the different ways in which AKI stages are reached (by relative or absolute SCr increase or both) in females and males. This raises the question

of whether more female cases are at risk for AKI and its progression than are currently detected by following the KDIGO guidelines. It seems reasonable that women and older patients might be disadvantaged under the KDIGO guidelines due to lower muscle mass on average and, therefore, lower baseline SCr levels and potential for SCr increase. With a surplus of women in the elderly population, both in Saxony and globally [24-26], as well as a general increase in lifespan, these disadvantages are becoming more relevant. Muscle mass decreases with age, so-called senile muscular atrophy [27], which is a consequence of numerous aging processes, including hormonal changes, reduced physical activity, oxidative stress, and malnutrition. The sex hormone testosterone, in particular, has an essential impact on the development of sarcopenia and hence progressive loss of function of muscle mass or muscle mass wasting in the elderly [28]. As Yoo et al. also note, testosterone reduction with aging could be a reason and a risk factor for the overestimation of kidney function in older men [12]. This could explain the decrease in differences in endpoints between males and females with increasing age. Cobo et al. discussed sex differences, which may have an impact on the epidemiology and progression of renal dysfunction. Estrogen appears to act nephroprotectively through several mechanisms [29]. Obviously, this must also be considered with regard to our results. Despite this, by recalculation of female creatinine to female-as-male creatinine, we were able to show that not every woman is detected with AKI according to KDIGO guidelines and that physiological differences are not solely responsible for the sex imbalance in AKI patients. The diagnosis based on unadjusted SCr alone accounts, in part, for the differences. Recommendations for improved AKI diagnostics include the use of calculated reference change values of SCr, adjusted to the respective baseline creatinine. This could increase the sensitivity of laboratory AKI diagnostics, both for patients with high and low baseline creatinine levels [30]. The inclusion of the biomarker cystatin C also seems useful because it represents renal function in real time, independent of muscle mass or diet [31]. However, clinical standardization and evaluation in the context of AKI still need to be established.

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

A known complication of AKI is an increased risk of developing CKD [32,33]. Underdiagnosis of AKI episodes in women might lead to an increased incidence of CKD. This hypothesis is supported by several studies [34,35]. A systematic review by Carrero et al. revealed a higher incidence proportion of CKD in women than in men. James et al. showed an independent association of, among other factors, age and female sex with CKD [36]. A higher risk of progression from CKD to end-stage renal disease (ESRD) for men (i.e., fewer women receiving renal replacement therapy [RRT]), might in part be attributed to societal factors [35,37]. These aspects should be considered when defining and staging AKI according to the KDIGO guidelines, which mainly use SCr as a single laboratory parameter. Currently, sex and age are not taken into account by the KDIGO guidelines when interpreting SCr kinetics [10], which results in a disadvantage for women and the elderly. We recommend the amendment of the guidelines to incorporate age and sex for the interpretation of creatinine kinetics and based on thorough systematic evidence of the matter. Further additions might include eGFR-based diagnostics or markers as mentioned above. The limitations of this study are its exclusively retrospective analysis and the non-inclusion of urine excretion as an AKI criterion. Furthermore, we only considered inpatient cases, and long-term outcomes were not analyzed. Patients initially hospitalized for AKI were unlikely to be detected by our AKI algorithm and were therefore not part of our cohort. To date, AKI seems to have been an underrated clinical condition [3]. Its definition and staging are complex, and using a CDSS for the detection of AKI would provide automatic detection and staging as well as recommendations for management and timely intervention [3,6]. Our study supports the hypothesis of the underdiagnosis of AKI in females and the elderly. To the best of our knowledge, our study is the first to recalculate SCr to the opposite sex and lower age vie eGFR, providing a feasible recalculation tool. The method we used could be a first step toward a consideration of sex- and age-specific SCr increases in AKI detection and staging, pending evaluation in the clinical routine. We can show that the exclusive consideration of SCr as a parameter and the use of static absolute criteria to define an AKI may result in a biased diagnosis. These findings should be integrated into the clinical management of AKI to ensure that patients with an increased risk of kidney

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

- 259 injury underestimation receive a more equitable diagnosis through additional laboratory parameters
- 260 (e.g., CysC) and to provide adequate therapy.

References

- 262 1 Khadzhynov D, Schmidt D, Hardt J, et al. The incidence of acute kidney injury and associated
- 263 hospital mortality. Deutsches Aerzteblatt Online Published Online First: 31 May 2019.
- 264 doi:10.3238/arztebl.2019.0397
- 265 2 Zhao Y, Zheng X, Wang J, et al. Effect of clinical decision support systems on clinical outcome
- for acute kidney injury: a systematic review and meta-analysis. BMC Nephrol 2021;22:271.
- 267 doi:10.1186/s12882-021-02459-y
- 268 3 Kister TS, Remmler J, Schmidt M, et al. Acute kidney injury and its progression in hospitalized
- 269 patients—results from a retrospective multicentre cohort study with a digital decision support
- 270 system. *PLoS ONE* 2021;16:e0254608. doi:10.1371/journal.pone.0254608
- 271 4 Bedford M, Stevens PE, Wheeler TW, et al. What is the real impact of acute kidney injury?
- 272 *BMC Nephrol* 2014;15:95. doi:10.1186/1471-2369-15-95
- 273 Bihorac A, Yavas S, Subbiah S, et al. Long-term risk of mortality and acute kidney injury during
- 274 hospitalization after major surgery. *Annals of Surgery* 2009;249:851–8.
- 275 doi:10.1097/SLA.0b013e3181a40a0b
- 276 6 Eckelt F, Remmler J, Kister T, et al. Verbesserte Patientensicherheit durch "clinical decision
- support systems" in der Labormedizin. *Internist* 2020;61:452–9. doi:10.1007/s00108-020-00775-3
- 278 7 Menon S, Tarrago R, Carlin K, et al. Impact of integrated clinical decision support systems in
- the management of pediatric acute kidney injury: a pilot study. *Pediatr Res* Published Online First: 3
- 280 July 2020. doi:10.1038/s41390-020-1046-8
- 281 8 Selby NM. Electronic alerts for acute kidney injury. Current Opinion in Nephrology &
- 282 *Hypertension* 2013;22:637–42. doi:10.1097/MNH.0b013e328365ae84
- Haase M, Kribben A, Zidek W, et al. Electronic alerts for acute kidney injury. *Deutsches*
- 284 Aerzteblatt Online Published Online First: 9 January 2017. doi:10.3238/arztebl.2017.0001
- 285 10 KDIGO. Clinical practice guideline for acute kidney injury. *Kidney International Supplements*
- 286 2012;2:1. doi:10.1038/kisup.2012.1
- 287 11 Swedko PJ, Clark HD, Paramsothy K, et al. Serum creatinine is an inadequate screening test
- for renal failure in elderly patients. Arch Intern Med 2003;163:356. doi:10.1001/archinte.163.3.356
- 289 12 Yoo J-J, Kim SG, Kim YS, et al. Estimation of renal function in patients with liver cirrhosis:
- 290 Impact of muscle mass and sex. *Journal of Hepatology* 2019;70:847–54.
- 291 doi:10.1016/j.jhep.2018.12.030
- 292 13 World Health Organization, editor. International statistical classification of diseases and
- 293 related health problems. 10th revision, 2nd edition. Geneva: World Health Organization 2004.
- 294 14 SAP Software Solutions. https://www.sap.com/index.html (accessed 3 May 2022).

- 295 15 R Core Team. R: A Language and Environment for Statistical Computing. Vienna, Austria: R
- 296 Foundation for Statistical Computing 2020. https://www.R-project.org/
- 297 16 Wickham H. Reshaping data with the reshape package. Journal of Statistical Software
- 298 2007;21:1–20.
- 299 17 Levey AS, Stevens LA, Schmid CH, et al. A new equation to estimate glomerular filtration
- 300 Rate. Ann Intern Med 2009;150:604. doi:10.7326/0003-4819-150-9-200905050-00006
- 301 18 Wang HE, Muntner P, Chertow GM, et al. Acute kidney injury and mortality in hospitalized
- 302 patients. Am J Nephrol 2012;35:349–55. doi:10.1159/000337487
- 303 19 Susantitaphong P, Cruz DN, Cerda J, et al. World incidence of AKI: a meta-analysis. CJASN
- 304 2013;8:1482–93. doi:10.2215/CJN.00710113
- Chertow GM, Burdick E, Honour M, et al. Acute kidney injury, mortality, length of stay, and
- 306 costs in hospitalized patients. JASN 2005;16:3365–70. doi:10.1681/ASN.2004090740
- 307 21 Cockcroft DW, Gault H. Prediction of creatinine clearance from serum creatinine. *Nephron*
- 308 1976;16:31–41. doi:10.1159/000180580
- Perrone RD, Madias NE, Levey AS. Serum creatinine as an index of renal function: new
- insights into old concepts. Clin Chem 1992;38:1933–53.
- 311 23 Inker L, Levey A. Frequently Asked Questions about GFR Estimates.
- 312 2014.https://www.kidney.org/sites/default/files/docs/12-10-
- 313 4004_abe_faqs_aboutgfrrev1b_singleb.pdf
- Oksuzyan A, Juel K, Vaupel JW, et al. Men: good health and high mortality. sex differences in
- 315 health and aging. *Aging Clin Exp Res* 2008;20:91–102. doi:10.1007/BF03324754
- 316 25 Sächsische Staatskanzlei, Freistaat Sachsen. Bevölkerung nach Geschlecht 1990 bis 2015.
- 26 Christensen K, Doblhammer G, Rau R, et al. Ageing populations: the challenges ahead. *Lancet*
- 318 2009;374:1196–208. doi:10.1016/S0140-6736(09)61460-4
- 319 27 Tomlinson BE, Walton JN, Rebeiz JJ. The effects of ageing and of cachexia upon skeletal
- muscle: a histopathological study. *Journal of the Neurological Sciences* 1969;9:321–46.
- 321 doi:10.1016/0022-510X(69)90079-3
- 322 28 Sakuma K, Yamaguchi A. Sarcopenia and Age-related endocrine function. *International*
- 323 *Journal of Endocrinology* 2012;2012:1–10. doi:10.1155/2012/127362
- 29 Cobo G, Hecking M, Port FK, et al. Sex and gender differences in chronic kidney disease:
- progression to end-stage renal disease and haemodialysis. *Clinical Science* 2016;130:1147–63.
- 326 doi:10.1042/CS20160047
- 327 30 El-Khoury JM, Hoenig MP, Jones GRD, et al. AACC Guidance document on laboratory
- investigation of acute kidney injury. *The Journal of Applied Laboratory Medicine* 2021;6:1316–37.
- 329 doi:10.1093/jalm/jfab020

- 330 31 Villa P, Jiménez M, Soriano M-C, et al. Serum cystatin C concentration as a marker of acute
- renal dysfunction in critically ill patients. Crit Care 2005;9:R139. doi:10.1186/cc3044
- 332 Coca SG, Singanamala S, Parikh CR. Chronic kidney disease after acute kidney injury: a
- 333 systematic review and meta-analysis. *Kidney International* 2012;81:442–8. doi:10.1038/ki.2011.379
- 334 Kurzhagen JT, Dellepiane S, Cantaluppi V, et al. AKI: an increasingly recognized risk factor for
- 335 CKD development and progression. J Nephrol 2020;33:1171–87. doi:10.1007/s40620-020-00793-2
- 336 34 Brar A, Markell M. Impact of gender and gender disparities in patients with kidney disease.
- 337 Current Opinion in Nephrology & Hypertension 2019;28:178–82.
- 338 doi:10.1097/MNH.0000000000000482
- 339 Sarrero JJ, Hecking M, Chesnaye NC, et al. Sex and gender disparities in the epidemiology and
- outcomes of chronic kidney disease. *Nat Rev Nephrol* 2018;14:151–64. doi:10.1038/nrneph.2017.181
- 341 36 James MT, Pannu N, Hemmelgarn BR, et al. Derivation and external validation of prediction
- models for advanced chronic kidney disease following acute kidney injury. JAMA 2017;318:1787.
- 343 doi:10.1001/jama.2017.16326

- 34 37 Albertus P, Morgenstern H, Robinson B, et al. Risk of ESRD in the United States. American
- *Journal of Kidney Diseases* 2016;68:862–72. doi:10.1053/j.ajkd.2016.05.030

347	Supporting Information
348	Text S1. Recalculation of Creatinine
349	Table S1. Comparison of progressive and non-progressive cases at first AKI detection during
350	hospitalization in females and males. Variables are given as medians [interquartile range] or
351	percentages.
352	Table S2. Comparison of age groups with regard to AKI stages and sex. Based on common AKI cases
353	for females and females as male.
354	Table S3. Comparison of age groups regarding AKI stages and sex. Based on common AKI cases for

males and males as young.