
1 

Evaluation of a clinical decision support system for detection of 
patients at risk after kidney transplantation 

 
Roland Roller1,2*, Manuel Mayrdorfer2,3*, Wiebke Duettmann2, Marcel G. Naik2,4, Danilo 
Schmidt2, Fabian Halleck2, Patrik Hummel5, Aljoscha Burchardt1, Sebastian Möller1, Peter 
Dabrock5, Bilgin Osmanodja2#, Klemens Budde2# 
 
1German Research Center for Artificial Intelligence (DFKI), Alt-Moabit 91c, Berlin, 

Germany 

2Department of Nephrology and Medical Intensive Care, Charité – Universitätsmedizin 

Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and 

Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany 

3Division of Nephrology and Dialysis, Department of Internal Medicine III, Medical 

University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria 

4Berlin Institute of Health, Anna-Louisa-Karsch-Str. 2, 10178 Berlin, Germany 

5Institute for Systematic Theology, Friedrich-Alexander University Erlangen-Nürnberg 

(FAU), Kochstraße 6, 91054 Erlangen, Germany 

 
*# These authors contributed equally to this work 
 
Corresponding Author:  
Roland Roller 
Alt-Moabit 91c, 10559 Berlin, Germany 
roland.roller@dfki.de 
 
 
Running Headline: 
Risk prediction after kidney transplantation 
 
 
 
 

 
 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 13, 2022. ; https://doi.org/10.1101/2022.05.12.22275019doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2022.05.12.22275019


2 

 
 
Abstract 

 

Patient care after kidney transplantation requires integration of complex information to make 

informed decisions on risk constellations. Many machine learning models have been 

developed for detecting patient outcomes in the past years. However, performance metrics 

alone do not determine practical utility. Often, the actual performance of medical 

professionals on the given task is not known. We present a newly developed clinical decision 

support system (CDSS) for detection of patients at risk for rejection and death-censored graft 

failure. The CDSS is based on clinical routine data including 1516 kidney transplant 

recipients and more than 100 000 data points. Additionally, we conduct a reader study to 

compare the performance of the system to estimations of physicians at a nephrology 

department with and without the CDSS. Internal validation shows AUC-ROC scores of 0.83 

for rejection, and 0.95 for graft failure. The reader study shows that although the predictions 

by physicians converge towards the suggestions made by the CDSS, performance in terms of 

AUC-ROC does not improve (0.6413 vs. 0.6314 for rejection; 0.8072 vs. 0.7778 for graft 

failure). Finally, the study shows that the CDSS detects partially different patients at risk 

compared to physicians without CDSS. This indicates that the combination of both, medical 

professionals and a CDSS might help detect more patients at risk for graft failure. However, 

the question of how to integrate such a system efficiently into clinical practice remains open. 

 

Keywords: Kidney Transplantation, Rejection, Graft Failure, Machine Learning, Decision 
Support 
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Introduction 

 

Kidney transplantation is the treatment of choice for patients with end-stage kidney disease 

(ESKD) although it requires lifelong post-transplant care1,2. Graft failure is often 

multifactorial3,4, therefore it is important to continuously account for a diverse set of 

potentially detrimental events in clinical care, depending on individual patient risk profiles. 

The heterogeneity of causes leading to graft failure makes it very challenging to predict the 

course of a transplant life and finally graft failure. Given the high number of graft failures 

affected by over-immunosuppression (infections, drug toxicity, cancer) and under-

immunosuppression (rejection), adjustment of immunosuppressive treatment is one of the 

most powerful tools in clinical practice3-5. However, it is often not clear how to interpret the 

current risk profile due to an overwhelming amount of data to be integrated for decision-

making. This dilemma is further enhanced by the lack of time in clinical routine. Therefore, 

clinical decision support systems able to integrate and interpret the often highly complex 

status of a kidney transplant recipient are an interesting option to mitigate this problem. In 

recent years, an increasing number of machine learning (ML) solutions have been developed 

to support medical professionals. However, many publications revolve around novel ML 

models with the goal of outperforming baselines and pushing the boundaries in terms of 

better performance6,7. Only a few approaches go beyond the pure improvement of ML models 

and provide detailed technical analyses or insights about how and what the model has 

learnt8,9. Unfortunately, in most cases the system is not evaluated together with the end user. 

This renders interpretation of the actual impact in clinical routine difficult.  In order to 

improve medical care in the real world, ML models not only have to be accurate and precise, 
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they also need to be embedded in the patient journey and accepted by medical professionals.  

In this work, we present a Clinical Decision Support System aiming to detect in advance 

patients at risk of a) rejection, and b) death-censored graft failure, to occur within the next 90 

days. Additionally, we evaluate the system together with medical professionals.  

 

Methods 

 

For simplicity, we refer to death-censored graft failure as graft failure, physician as MD 

(medical doctor), ML-based clinical decision support system as AI, and physicians with AI 

support as MD+AI. 

 

Data 

Baseline for this work is TBase10, a database designed for kidney transplant recipients (KTR), 

implemented over 20 years ago at Charité. As patients are supposed to receive a follow-up at 

the transplant center 3-4 times a year, TBase includes fine-grained information about the 

patients over many years including demographics, laboratory data, medication, medical notes, 

diagnoses, radiology, and pathology reports. Death-Censored Graft Failure is defined as the 

initiation of renal replacement therapy (dialysis or re-transplantation). Graft loss due to death 

with a functioning graft is not included in the current work. Rejection is defined according to 

the Banff 2017 classification11, as previously described3. 

 

Data Selection, Enrichment and Cohort Generation 

The complete risk prediction scenario is built up around data points (DP), which describe the 

particular moment when new data about a patient is inserted in the database. If one of the 

endpoints occurs within the target prediction window of 90 days, the DP will be labeled as 
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true, otherwise as false. According to those DPs, patient information (features) which are 

available at this moment, are extracted (e.g., the new and the previous lab values, or the 

current diagnoses) and used as input information of our model. Moreover, we enrich the data 

by additional information, such as mean scores or gradients of successive values. Each model 

uses about 300 different features, consisting of structured information (e.g., vital parameters, 

lab values, medication) and bag-of-word features (single word features taken from findings or 

diagnoses). Table 1 provides an overview of the most relevant features for each model. A 

more detailed overview of the features used, is provided in table S6. 

 

Next, data is filtered to generate a meaningful, reliable, valid and realistic dataset: Only data 

points with a follow-up data point within the next 15 to 180 days are used. This filter has 

been implemented to exclude gaps in patient follow-up ensuring reliability of endpoint 

evaluation. The resulting dataset is referred to as “cohort”. The cohort includes 1516 different 

patients, with a mean of 67.89 data points (moments during transplant life with new data 

input) per patient. The cohort is then cleaned and divided into a training, development, and 

test dataset for ML. An overview about additional data characteristics as well as the exclusion 

criteria is provided in the supplementary material. 

 

Clinical Decision Support System 

The ML component relies on Gradient Boosted Regression Trees (GBRTs). In comparison to 

neural methods, GBRTs can be quickly trained, and therefore quickly modified and further 

optimized, without the need of a strong computer cluster. Also, tree-based methods are well 

established in the context of CDSS, and can be also easier understood by non-experts, thus 

exhibiting some sort of transparency.  
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The resulting dataset is strongly unbalanced, as it contains a larger number of negative 

instances compared to positive ones. That means, in most cases an endpoint does not occur in 

the target period for the given data point (Table S3). As a large portion of negative data can 

influence the quality of the classifier, and slows down the training, negative samples are 

randomly down-sampled within the training split. Controlled upsampling (SMOTE)12, and 

controlled downsampling (NCA)13 did not lead to any significant improvements. For the final 

setup, a training ratio of 1:3 was chosen, as it showed the most promising results during the 

initial experiments.  

 

For the internal validation, we randomly assigned 70% of the patients into the training, 15% 

into the development and 15% into the test split. This step is repeated 50 times for the cross-

validation. That way, patients within training, development and test data always change. 

Therefore, reported mean scores and 95% CI (confidence interval) provide a good 

approximation of our model.  

 

For the reader study instead, data is prepared differently: First, the test set is defined and all 

patients of the test set removed from the cohort. The test set contains 120 patients, which was 

the sample size calculated in the power analysis shown in supplementary item K. As 

endpoints have a low frequency, and to ensure that a sufficient number of events occur, data 

points are selected randomly, but in a controlled way. Each endpoint occurs at least 20 times 

in the reader study test set. Then, the remaining patients with their data points are split into a 

training and development set, using a split of 80% and 20%. Note, as opposed to the AI 

system, the physician can access the complete patient history, including text notes, medical 

reports, and a longer time range than the last two entries (e.g., laboratory tests) of the last 
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year. The physicians in the reader study are informed that the endpoint frequency might not 

reflect real-world conditions but 14are not informed about the exact distribution. 

 

The final ML model relies on GBRTs implemented in python using scikit-learn, with 300 

estimators, a learning rate of 0.1, max-depth of 3, and a random-state of 0. The model is 

trained on a Ubuntu 18.04.3 LTS server with a Intel Core i9-7900X 3.30GHz. The training of 

the model with ca. 10k training examples take about 2.5 minutes. This would describe one 

cross-validation step in our first experiment. The model with technical descriptions can be 

made available on request. 

 

Dashboard 

To provide an informative decision support system, a dashboard was developed including the 

following information: a) current risk score, b) development of the risk score over time 

within a graph, c) categorization of the risk scores into a traffic light system (green, yellow, 

red), as well as d) presentation of relevant features which influence the decision of the risk 

score. For each given data point, two dashboard-graphs (including the additional information) 

are generated, one for each endpoint. 

 

Figure 1 presents an example of the dashboard, presenting the time on the x-axis and the risk 

score on the y-axis. All data points of the last year, including corresponding risk scores, are 

visualized in the graph. The graph itself is divided into different zones, a green zone 

indicating a low risk, a yellow zone which indicates a higher risk, and a red zone which 

indicates the highest risk. Each zone is defined by a threshold, which was generated on the 

development set by identifying the optimal F-Scores - F2 score for the border to the yellow 

zone, and F0.5 to indicate the red zone. 
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Reader Study Design 

Overall, eight physicians, four junior MDs who have not completed their specialization and 

four senior MDs with specialization in internal medicine or nephrology, participate in the 

reader study (for participant demographics see Table S5 in the supplementary material). MDs 

were to examine all information available about the kidney transplant recipient in the 

database and to forecast the two endpoints, once without and once with the help of AI. Each 

MD examines 15 different DPs with the corresponding patient case history without CDSS, 

and then 15 other DPs of different patients with CDSS. The DPs are randomly assigned to the 

physicians in both parts of the study, so that no physician assesses the same patient twice. 

Before starting the second part of the experiment, each physician receives a small tutorial 

(see K1 supplementary material) to understand the dashboard of the CDSS. In the first step, 

the MD receives a data point of the cohort and estimates how likely, in terms of probability 

(0% to 100%), each endpoint might occur in our target period (90 days). In the second part, 

the dashboard with the AI prediction is presented simultaneously with patient data (MD+AI). 

In both rounds, each MD has up to 30 minutes time to study the de-identified medical history 

of the patients. Physicians were provided with the exact endpoint definitions. 

 

Significance Tests 

In order to examine the significance of the different ROC (Receiver Operating Characteristic) 

scores in our study, the implementation of DeLong14 is applied (paired, one-tailed, in case of 

Table 3; and unpaired, one-tailed in case of Table 4). To explore the significance of the 

influence of the AI system, we use a two-tailed t-test implemented in SciPy. 

 

Results 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 13, 2022. ; https://doi.org/10.1101/2022.05.12.22275019doi: medRxiv preprint 

https://doi.org/10.1101/2022.05.12.22275019


9 

Internal Validation 

The results of the internal validation are presented in Table 2. Considering the prediction 

period of 90 days, our model shows an AUC-ROC (Area Under the Curve of the Receiver 

Operating Characteristic) score of 0.83 and 0.95 for rejection and graft failure, respectively. 

The results also show that model performance shows only slight changes when extending the 

prediction period to 180 or 360 days.  

Reader Study 

For the reader study, a new ML model is trained from scratch, using the configuration of the 

internal validation, but using a new split of training, development, and test data, as described 

above. The predictions of the ML model on the test set are used as CDSS for the physicians 

(MD+AI). 

AI vs MD vs AI+MD 

The results of the reader study are presented in Table 3 and Figure 2.  The results show that 

AI outperforms MDs (graft failure 0.9415 vs. 0.8072, p = 0.005; rejection 0.7465 vs. 0.6413, 

p = 0.063). Moreover, MDs achieve slightly better results without CDSS. Finally, the table 

shows that using our cut-off (F2 for AI and > 0.5 for MDs) AI has got a higher sensitivity in 

comparison to MDs alone.  

 

Comparison of the results of junior MDs and senior MDs are presented in table 4. Without 

AI, senior MDs tend to score higher than junior MDs (graft failure 0.8108 vs. 0.8067; 

rejection 0.7134 vs. 0.5714). Moreover, junior MDs achieve higher results with CDSS for 

rejection (0.5714 vs. 0.7553, p = 0.075). Also, junior MDs with AI score higher than senior 

MDs with AI. And finally, senior MDs achieve a better score without AI. 

 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 13, 2022. ; https://doi.org/10.1101/2022.05.12.22275019doi: medRxiv preprint 

https://doi.org/10.1101/2022.05.12.22275019


10 

Influence of the Clinical Decision Support System 

To explore the influence of the CDSS on physicians, we calculate the difference of each 

prediction to the prediction made by the AI. MDs make a prediction in terms of probability 

(0-100%) and AI in terms of regression (0-100). Table 5 shows the mean difference scores, 

for all MDs as well as for junior and senior MDs separately. An additional box plot of the 

mean distance is presented in Figure 3. The table shows that in all cases the mean distance 

decreases if the physicians have access to the CDSS, and so does the standard deviation. 

Without the CDSS, physicians have on average a mean distance of 6 (overestimation of risk 

in comparison to AI). With the CDSS, the mean distance decreases in all cases, notably 

strong for junior MDs. Moreover, in the case of junior MD+AI, the mean distance to AI is 

below zero, which means that predictions are on average slightly below the score of the AI. 

In case of all MDs and junior MDs, the differences between MD and MD+AI are significant 

(p < 0.001). In the case of senior MDs we do not observe a significant difference. In addition 

to this, Figure 3 indicates that the variation of the predictions decreases with CDSS. In all 

three cases (MD+AI, junior MD+AI and senior MD+AI), more predictions are located closer 

to the prediction of the AI (located closer to the mean). 

 

Accuracy of the predictions 

The probability score of the physicians (cutoff = 50%) and the regression risk score (cutoff = 

F2-score; yellow and red zone in dashboard) were transformed into binary predictions: 

endpoint occurs, and endpoint does not occur (1/0).  

 

Figure 4 presents the true/false positive predictions of the AI, as well as the physicians with 

and without CDSS. The figures show that in all cases some true positives (TPs) are not 

identified either by MD, AI, or MD+AI. Moreover, the figures present a large overlap, 
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particularly for graft failure. Considering only MD and AI, the figure also shows that both 

make important contributions towards detecting many TPs. Even though AI scores higher in 

terms of ROC, it is not capable of detecting all critical cases, similar to MDs. Conversely, 

both together can detect more patients at risk beforehand, in comparison to MD or AI alone. 

For example, 7 Rejections were accurately predicted by both MD and AI, and additionally 

MD detected 5 rejections not detected by AI, and AI 7 rejections not detected by MD alone. 

 

The results indicate that MD+AI is oriented towards the AI system. Therefore, we can see a 

larger overlap between those two, and a smaller overlap to MD. AI was able to detect TPs 

that have not been identified by MD, and a reasonable amount of these is included in 

MD+AI. Yet, there are some TPs that have only been detected by AI alone. MD+AI did not 

lead to new TPs that had not been identified beforehand by either AI or MD.  

 

As for false positives (FPs), AI has, except for graft failure, always the highest number of 

FPs. In case of rejection, AI makes 29 FP predictions, while the MDs makes only 16 and 

MD+AI only 12 FPs, respectively.  

 

Table 6 shows positive predictive values (PPV) and sensitivity. The table shows that 

physicians alone can detect 48% of rejections and 63% of graft failures, while the PPV 

(precision) is 41% and 53%. The combination of both, MD and AI (MD U AI, not MD+AI), 

leads to an increased sensitivity, with a similar PPV level, in comparison to MD and MD+AI. 

For graft failure, 80% of the patients at risk can be detected, while only every second 

prediction is a FP - which is similar to the PPV of MD alone.  

 

Interpretation of false positives and false negatives 
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From a medical perspective, we observe that in case of FPs certain risk factors were present, 

and additionally that some endpoints occurred shortly after the target period of 90 days. 

Regarding FNs the retrospective second analysis revealed that no obvious known risk factors 

were present making it difficult to detect the endpoints for medical professionals.  

 

Endpoints predicted only by AI 

Six endpoints are accurately predicted by AI but neither by MDs alone, nor by MD+AI. 

These data points are particularly interesting, as preventive measures, such as a closer 

monitoring could have avoided their occurrence if MDs would trust the CDSS enough to 

adjust the measures. Although difficult to objectively evaluate, from a medical perspective 

most of these cases are not obvious at first sight suggesting the potential for AI to detect 

additional kidney transplant recipients at risk. 

 

 

Discussion 

 

Given the complexity of care after kidney transplantation and the diverse amount of 

potentially harming events, we evaluated a newly developed clinical decision support system 

(CDSS) for detection of patients at risk for rejection and graft failure in a reader study, in 

order to analyze assumptions made by physicians with and without the CDSS. First, our 

results shows that AI achieves better scores compared to physicians on our prediction tasks. 

Senior MDs perform better than junior MDs, but do not improve with the CDSS. Junior MDs 

with CDSS instead improve their capability to detect patients at risk. The fact that senior 

MDs alone perform better than junior MDs alone, might not be surprising. However, the 

reason why senior physicians have problems with the CDSS contrary to junior physicians 
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remains unclear. One possible explanation is that junior MDs might be more open to new 

technologies. Also, as senior MDs have much more experience, they might have a stronger 

confidence in their opinion. This assumption might be supported by the fact that junior MDs 

converge stronger towards the suggestion of the CDSS. More studies are needed, to fully 

explore the reasons for these observations. 

 

Another important result is that physicians and AI are able to detect different patients at risk. 

This highlights the potential benefit of a CDSS and provides strong arguments for its 

integration into clinical practice. At the same time, more research is needed on the 

appropriate mode of integration, given that AI resulted in many FPs and its recommendation 

did not improve senior MDs capabilities. Ultimately, multiple forms of explanations in a 

CDSS need to be explored and possibly adapted to the experience, the self-confidence and 

the affinity for technology of the different users. 

 

Even though AI tends to outperform MDs, we need to keep in mind that ROC is just a score, 

which does not easily translate into a clinical benefit. When regarding sensitivity, specificity, 

and positive predictive value on the given task, we observe that physicians achieve higher 

sensitivity at the price of low specificity. One could conclude that MDs are more “cautious” 

than the AI used in this experiment. However, how can we benefit from such a system? The 

union of AI and MD could detect more critical patients - possibly by notifying the physician 

at the end of the treatment in case of a risk. Conversely, too many false alarms might also 

decrease the trust in such a system and might require too many resources15. To integrate such 

a risk prediction model into clinical care, more extensive studies are required. More reliable 

results might increase the trust in the new technology and lead to a better efficiency.  
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Our results are also relevant to a number of ethical issues surrounding AI-driven clinical 

decision support systems16. Besides debates on what it takes to trust medical AI and 

institutions deploying them17, and who bears moral and/or legal responsibilities for 

outcomes18, there are also opportunities: AI could play a part in empowering health systems, 

health institutions, and clinicians by making capacities widely accessible19. Our result that 

less experienced MDs improve their accuracy with the CDSS at hand provides a concrete 

example for such visions. 

Similar to well-established diagnostic tests, or medical guidelines that are part of clinical 

routine, it might be possible that AI becomes an important part of evidence-based medicine in 

future. Thus, systems with high predictive power can even be perceived as having epistemic 

authority in their own right20: instead of AI being a mere decision aid, burdens of proof in 

case of deviation from system recommendations might shift to MDs, and individuals and 

institutions might systematically defer to them. Our results indicate that reality will likely be 

more fragmented for at least two reasons. First, since our system and MDs have different 

strengths, system-, user-, and context-specific understanding of these strengths will be 

essential towards potentially reaping the benefits of a “convergence of human and artificial 

intelligence”21 when seeking to optimize health outcomes. Second, the normative significance 

of various performance metrics is not definite and self-explanatory but requires continuous 

context-sensitive reflection and weighing involving different stakeholders. Besides, 

investigating the retrospective question, which factors caused false predictions, the 

prospective issue of what consequences a false prediction has for the patient will play a role 

in these discourses. For example, when predicting graft failure or rejection, the harms from 

FPs differ from those of FNs. Each way of privileging and weighing the metrics discussed 

reflects slightly different risk-benefit-tradeoffs, and high predictive power along one 
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dimension, while promising and desirable, does not necessarily render the tool a gold 

standard for the task at hand. 

While we use a large fine-grained German database collecting all routine clinical data for 

more than 20 years this approach has also some limitations. Ideally the model should be 

externally validated and may be adopted to a different data structure. It is important to 

highlight that the model should not be seen as an universal “out of the box” model. Instead, it 

provides a good “baseline” model, which can be improved or may provide the basis for a lean 

model that is easy to implement in different contexts. However, these issues are beyond the 

scope of this article, where we focused on the human-machine interaction that can influence 

future design and implementation of ML-models in kidney transplant care. 
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Tables: 
 

 

Rejection Graft Loss 

Feature Imp. Feature Imp. 

Serum creatinine (lab value) 12.78 last transplantation (months) 35.12 

last transplantation (months) 7.66 # of transplantations 23.76 

rejections in last 180 days 7.26 Serum creatinine (lab value) 8.99 

last transplantation (days) 6.69 last transplantation (days) 3.04 

# of lab values last 60 days 3.18 eGFR (lab value) 2.26 
 

 
Table 1: Overview of the most relevant features (top 5) of each model (global features), 
including its importance (Imp.) 
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Endpoint days AUC-ROC 

 90 0.832 (0.04), 95% CI [0.771, 0.903] 

Rejection 180 0.824 (0.03), 95% CI [0.769, 0.892] 

 360 0.811 (0.04), 95% CI [0.736, 0.868] 

 90 0.945 (0.02), 95% CI [0.901, 0.970] 

Graft Failure 180 0.947 (0.01), 95% CI [0.924, 0.969] 

 360 0.953 (0.01), 95% CI [0.934, 0.972] 
 

 
Table 2: Risk prediction results in terms of AUC-ROC including 95% CI during internal 
validation, using a resampling approach with 50-fold cross validation on retrospective data. 
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Endpoint Subject ROC SEN SPE 

 AI 0.7465 0.5600 0.6947 

Rejection MD 0.6413 0.4800 0.8316 

 MD+AI 0.6314 0.3200 0.8737 

 AI 0.9415 0.6667 0.9247 

Graft Loss MD 0.8072 0.5926 0.8387 

 MD+AI 0.7778 0.5926 0.8817 
 

 
Table 3: AUC-ROC results on the reader study test set of AI, MD, and MD+AI for the endpoints 
death-censored graft failure and rejection. On the right side the table shows sensitivity (SEN) 
and specificity (SPE) with a cut-off of > 0.5 for MDs and F2 for AI. 
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Endpoint  Subject Groups 

  Junior MDs Senior MDs 
 

Rejection 
MD 0.5714 0.7134 

MD+AI 0.7553 0.4870 
 

Graft Loss 
MD 0.8067 0.8108 

MD+AI 0.8276 0.7320 
 

 
Table 4: AUC-ROC performance of junior and senior physician groups in both parts of the study 
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 All MDs Junior MDs Senior MDs 

MD 6.26 (31.35) 7.99 (31.72) 4.53 (31.02) 

MD+AI -0.06 (23.83) -1.84 (24.05) 1.73 (23.57) 

95% CI [1.75, 10.87] [3.54, 16.12] [-3.84, 9.44] 

 
Table 5: Mean distance with standard deviation of estimation made by MD and MD+AI, to the 
prediction of the AI system. Distance score is calculated by subtracting the AI prediction from 
the human prediction. The lower line shows the 95% confidence interval (CI). 
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Endpoint Rejection Graft Loss 

 PPV SEN PPV SEN 

MD 0.41 0.48 0.53 0.63 

AI 0.33 0.56 0.72 0.67 

MD U AI 0.33 0.76 0.52 0.81 

 
Table 6: Positive predictive value (PPV) and sensitivity (SEN) of MD and AI. The lower part of 
the table shows the union between MD and AI. Aligning the risk score to either zero or one, 
union means that we set the risk of a patient to one, if one of both identifies a potential risk. 
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Figures: 
 

 
 

Figure 1: Visualization of the dashboard, including historic risk scores, a traffic light system, as
well as a model and a decision-based explanation. 
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Figure 2: Performance of MD in comparison to AI and MD+AI, in terms of AUC-ROC on all
three endpoints 
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Figure 3: Box plot shows the distance of the estimations of medical doctors as well as medical 
doctors with clinical decision support system (CDSS), to the estimations of the CDSS alone. 
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Figure 4: Overview of True Positives (TP) and False Positives (FP). The outer white rim 
describes the number of positives/negatives for each endpoint. The inner side of each circle 
indicates the number of true/false positives of AI, MD, and MD+AI. Moreover, the overlapping 
circles show the overlaps of true/false positive predictions between the different participants. 
The yellow circle of the AI system represents data points which were flagged with a yellow or 
red traffic light in the dashboard. To understand the example, take for instance TPs-Rejection: 
Overall 25 rejections (25 positives of 120 data points) occurred, from which 6 have not been 
detected by anyone in the study. AI predicted 14 (5+2+5+2) correctly, while MD predicted 12 
(4+1+5+2), and MD+AI predicted 8 (1+5+2) correctly. 5 TPs are predicted by all (see 
intersection of all three circles). Moreover, two TPs are predicted only by MD and AI, and two 
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other TPs only by MD+AI and AI. Only one TP is identified by MD and MD+AI. Finally, 4 TPs 
are predicted correctly only by MD, and 5 other TPs only by AI. MD+AI does not predict any 
additional TP which is already found by MD or AI. The lower row presents the same scenario 
for falsely predicted data points. A more detailed overview including also the results for the red 
and yellow warning of the traffic light system is included in the supplementary material.  
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