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Background 

Elderly patients with COVID-19 are among the most numerous populations being admitted in 

the ICU due to its high mortality rate and high comorbidity incidence. An early severity risk 

stratification at hospital admission could help optimize ICU usage towards those more 

vulnerable and critically ill patients. 

Methods 

Of 503 Spanish patients aged>64 years admitted in the ICU between 26 Feb and 02 Nov 2020 in 

two Spanish hospitals, we included 193 quality-controlled patients. The subphenotyping 

combined PCA and t-SNE dimensionality reduction methods to maximize non-linear correlation 

and reduce noise among age and full blood count tests (FBC) at hospital admission, followed by 

hierarchical clustering. 

Findings 

We identified five subphenotypes (Eld-ICU-COV19 clusters) with heterogeneous FBC patterns 

associated to significantly disparate 30-day ICU mortality rates ranging from 2% in a healthy 

cluster to 44% in a severe cluster, along three moderate clusters. 

Interpretations 

To our knowledge, this is the first study using age and FBC at hospital admission to early stratify 

the risk of death in ICU at 30 days in elderly patients. Our results provide guidance to 

comprehend the phenotypic classification and disparate severity patterns among elderly ICU 

patients with COVID-19, based only on age and FBC, that have the potential to establish target 

groups for early risk stratification or early triage systems to provide personalized treatments or 

aid the decision-making during resource allocation process for each target Eld-ICU-COV19 

cluster, especially in those circumstances with resource scarcity problem. 
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 Introduction 
Despite the promising vaccines and efforts, the coronavirus disease 2019 (COVID-19) outbreak 

is still outspread across the countries, exacerbating the burden on healthcare systems, depleting 

the limited resources, and taking away patients' lives. Identifying distinct subphenotypes with 

disparate characterizations can help address such challenge. Disease subphenotyping plays a 

crucial role in personalized medicine, precision medicine, enrichment of clinical trials, better 

prognosis, and delivering tailored treatments to well-defined homogeneous patient subgroups, 

as demonstrated in recent years in many clinical settings1,2.  

Patients with SARS-CoV-2 infection and associated COVID-19, frequently developed acute 

respiratory failure, requiring Intensive Care Unit (ICU) admission, with higher mortality rate and 

resource utilization –e.g., invasive ventilation, medication intake. Of which, elderly patients are 

among the most numerous populations being admitted in the ICU due to its high mortality rate 

and high comorbidity incidence3,4, where a reliable early risk stratification could help optimize 

ICU usage towards those more vulnerable and critically ill patients.   

This study aims to uncover patterns in full-blood-count (FBC) tests measured at hospital 

admission in combination with the age that could early discern discrepancies in ICU mortality 

rates associated with distinct subphenotypes in Eld-ICU-COV19 patients. 

 

Research in context 
Evidence before this study 
We searched on PubMed and Google Scholar using the search terms “COVID-19”, “SARS-
CoV2”, “phenotypes” for research published between 2020 to 2022, with no language 
restriction, to detect any published study identifying and characterizing phenotypes among 
ICU COVID-19 patients. A previous COVID-19 phenotyping study found three phenotypes from 
hospitalized patients associated with significantly disparate 30-day mortality rates (ranging 
from 2·5 to 60·7%). However, it seems to become harder to find phenotypes with 
discriminative mortality rates among ICU COVID-19 patients. For example, we found one 
study that uncovered two phenotypes from 39 ICU COVID-19 patients based on biomarkers 
with 39% and 63% mortality rates, but such difference was not statistically significant. We 
also found another study with more success that uncovered two ICU COVID-19 phenotypes 
using two different trajectories with somehow disparate 28-day mortality rates of 27% versus 
37% (Ventilatory ratio trajectories) and of 25% versus 39% (mechanical power trajectories).   

Added value of this study 
To our knowledge, this is the first study that uses age and laboratory results at hospital 
admission (i.e., before ICU admission) in elderly patients to early stratify, prior ICU admission, 
the risk of death in ICU at 30 days. We classified 193 patients with COVID-19, based on age 
and ten Full Blood Count (FBC) tests, into five subphenotypes (one healthy, three moderate, 
and one severe) that showed significantly disparate 30-day ICU mortality rates from 2% to 
44%. 

Implications of all the available evidence 
Identifying,  from elderly ICU patients with COVID-19 (Eld-ICU-COV19), subphenotypes could 
spur further investigation to analyze the potential differences in their underlying disease 
mechanisms, acquire better phenotypical understanding among Eld-ICU-COV19 toward 
better decision-making in distributing the limited resources (including both logistic and 
medical) as well as shedding light on tailoring personalized treatment for each specific target 
subgroup in future medical research and clinical trial. 
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Methods 

Study design and population 
This was a retrospective observational study at two Spanish hospitals, Hospital Universitario 12 

de Octubre de Madrid and Hospital Clínico Universitario de Valencia. The data were available 

between 26 February 2020 and 02 November 2020. Patients with COVID-19 at hospital 

admission with a posterior ICU admission were eligible. This resulted in an initial set of 503 

Spanish Eld-ICU-COV19 aged>64 years. The use of data was approved by the Ethical Committees 

of the two hospitals and the Universitat Politècnica de València. STROBE recommendations were 

followed (appendix 1). 

The studied variables included patient demographics, FBC laboratory tests, and clinical 

outcomes. A data quality control was applied to exclude cases with missing data, as described 

next.  

Data preprocessing and Study measures 
The study measures include for each patient the age, sex, date of hospitalization, date of ICU 

admission, date of death (if any), and ten FBC variables including Leukocytes (K/µL), Neutrophils 

(%), Eosinophils (%), Basophils (%), Monocytes (%), Lymphocytes (%), Erythrocytes (Mill/µL), 

Hemoglobin (g/dL), Hematocrit (%), and Platelets (K/µL). All these variables were obtained and 

measured at the time of hospitalization. 

Also, we derived three variables by using the date of hospitalization, the date of ICU admission, 

and the date of death: (1) ADM2ICU, indicates how many days it took for a hospitalized patient 

to be admitted to ICU; (2) Mortality7_ICU, indicates whether a patient suffered death within 

seven days after being admitted to ICU; (3) Mortality30_ICU, indicates whether a patient 

suffered death within thirty days after being admitted to ICU.  

We excluded patients who showed any missing data in the studied variables. Specifically, all the 

patients who showed any missing data had at least two variables with missing data discouraging 

the use of variable imputation methods since including few variables, and thus preferring the 

inclusion of a comprehensive set of individuals for the sake of robustness and reliability. Besides, 

we performed a principal components analysis (PCA)5 for both exploratory and evaluation 

purposes, where we found no outliers or further data quality issues. Hence, no patient was 

excluded in this second phase. This finally resulted in 193 quality-controlled patients.  This 

selection process is summarized in the CONSORT flowchart in Figure 1. 

Subphenotype clustering 
The Machine Learning pipeline in this study first applied a non-linear dimensionality reduction 

of the variables using t-distributed stochastic neighbor embedding (t-SNE)6, fed by the 

normalized input variables using PCA as a robust t-SNE initialization method7,8. The t-SNE 

parameters were 5000 maximum iterations and a perplexity value of N1/2, where N is the number 

of patients. The t-SNE algorithm maximizes non-linear similarity among input variables, reducing 

noises, keeping distances between pairs of points while also preserving both local and global 

information –i.e., points that are close to one another in the high-dimensional dataset, will tend 

to be close to one another in the low dimension– after embedding the data into 3-dimensional 

subspace that also facilitates visualization. 

We then performed a hierarchical clustering on the t-SNE output using Euclidean distance. The 

number of clinically relevant subphenotypes was chosen by combining two clustering quality  
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metrics, namely the Silhouette Coefficient and Elbow Coefficient9,10, and validated with an 

exploratory analysis. 

Statistical Analysis 
When analyzing the overall characteristics of each cluster, data are presented as mean 

accompanied by Standard Deviation (SD), and absolute number accompanied by percentage for 

numeric variables and categorical variables, respectively. Numeric variables’ means between 

clusters were compared using Tukey's honest significance difference test (Tukey HSD)11,12 with 

95% confidence level to verify the significant difference, i.e., verify which means amongst a set 

of means differ from the rest. Odds Ratio (OR) with a 95% Confidence Interval (CI) as well as the 

corresponding P-value using Fisher’s exact test13 were computed for comparing categorical 

variables between clusters. All analyses were done on R Studio, version 1.3.1073, using R, 

version 4.0.2. 

Role of the funding source 
The funder of the study had no role in study design, data collection, data analysis, data 

interpretation, or writing of the report.  

Results 
Between 26 February 2020 and 02 November 2020 503 elderly Covid 19 patients were admitted 

to the ICU of the two Spanish hospitals.  Of the 503 patients, 310 were not screened because of 

the high missing data proportion. Among the 193 Eld-ICU-COV19 patients, 77 (39·9%) accounted 

for female, with a mean age of 76·26 years (SD 8·62), a mean ADM2ICU of 1·84 (SD 3·95) days, 

and a 30-day ICU mortality rate of 22% (43 patients), as described in Table 1. 

After analyzing the Silhouette Coefficient and Elbow Coefficient (Appendix 2), we identified five 

subphenotypes with heterogeneous inter-clustering age and FBC patterns associated with 

significantly disparate 30-day ICU mortality rates ranging from 2% to 44%. Each cluster counted 

with approximately 42-48 patients, except cluster 4 that only has 14 patients (Table 1). Figure 2 

Figure 1 CONSORT flowchart about the inclusion/exclusion criteria of the final sample. 
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provides a visually effective comparison of the differences in normalized average FBC results 

between the five clusters and individual patterns for each cluster. 

Figure 3 and Figure 4 show, respectively, the inter-clustering significant difference between the 

numeric variables (age, FBCs, and ADM2ICU), and the ICU mortality within 30 days using OR 

alongside the corresponding p-value. Appendix 3 describes the statistical difference between 

the variables sex and Mortality7_ICU. 

From the five subphenotypes, we found one ‘healthy’ subphenotype –cluster 1– that showed 

one case of (2%) 30-day ICU death incidence; characterized by relatively moderate count of 

leukocytes (8·42K/µL [SD=2·89]) and eosinophils (1·77% [SD=1·93]), the highest monocytes 

count (9.34% [SD=2·58]), low hemoglobin (12·11g/dL (SD=1·58)) and hematocrit counts (36·34% 

[SD=4·47]), and little count of erythrocytes (4,1M/µL [SD=0·6]). 

One severe subphenotype –cluster 5– showed an increased 30-day ICU mortality rate of 44% 

(OR 35.63 [4.49-282.62; 95%CI] compared with the ‘healthy’ subphenotype; p=0.0007); 

characterized by abnormal high count of leukocytes (14·26K/µL [SD=4·62]) and neutrophils 

(85·94% [SD=3·77]), lacking monocytes (6·73% [SD=2·98]) and lymphocytes (6·91% [SD=2·25]), 

the lowest eosinophil (0·12% [SD=0·23]) and the highest platelet count (272K/µL [SD=91·8]).  

Three moderate subphenotypes –cluster 2, 3, 4– with relatively higher 30-day ICU mortality 

rates (20%-28%) compared with the ‘healthy’ subphenotype –cluster 1– (p<=0.0211, Figure 4C). 

Cluster 2 is similar to cluster 5 with non-significant difference in terms of lacking lymphocyte 

(10·06% [SD=5·94]), lacking eosinophil (0·18% [SD=0·36]), and abundant neutrophil counts 

(85·07% [SD=7·09]), but differentiated by its lowest mean age (69·83years [SD=4·83]), a 

predominant male rate (13 [27%]),  and the abundant count of red blood cells –erythrocyte 

(4·84M/µL [SD=0·47]), hemoglobin (14·8g/dL [SD=1·3]), and hematocrit (43·92% [SD=3·96])– 

(Figure 3).  

Table 1. Main features of the 5 resultant Eld-ICU-COV19 clusters with 95% CI. Spain, February 

26–02 November, 2020.  

 All patients Cluster 1 Cluster 2 Cluster 3  Cluster 4 Cluster 5  

Num. of indiv. (N=193)  193 46 48 42 14 43 

Demographic Features, mean (SD) or n (%) 

Age (per year) 76·26 (8·62) 79·61 (8·2)  69·83 (4·83)  83·49 (8·09)  72·63 (7·57)  73·98 (6·25)  

Female sex  77 (39·9%)  20 (43%)  13 (27%)  25 (60%)  3 (21%)  16 (37·21%)  

FBC Tests, mean (SD) or n (%) 

Leukocyte (K/ µL)  10·5 (4·76) 8·42 (2·89)   9·65 (4·36)  9·23 (3·83)  12·5 (6·85)  14·26 (4·62)  

Neutrophil (%) 78·31 (12·63) 69·52 (7·08)  85·07 (7·09)  82·05 (7·48)  49·29 (13·85)  85·94 (3·77)  

Eosinophil (%) 0·71 (1·24) 1·77 (1·93)   0·18 (0·36)   0·5 (0·63)  1·55 (0·94)  0·12 (0·23) 

Basophil (%) 0·06 (0·1) 0·043 (0·06)  0·112 (0·16)   0·021 (0·05)  0·107 (0·13)  0·04 (0·07)  

Monocyte (%) 6·96 (3·18) 9·34 (2·58)   4·4 (1·99)   7·37 (2·88)  7·41 (3·49)  6·73 (2·98)  

Lymphocyte (%) 13·59 (10·94) 18·71 (6·26)   10·06 (5·94)   9·71 (5·59)   41·11 (15·53) 6·91 (2·25) 

Erythrocyte (M/µL) 4·25 (0·74) 4·1 (0·6)   4·84 (0·47)   3·39 (0·57)  4·72 (0·39)  4·42 (0·46)  

Hemoglobin (g/dL) 12·95 (2·16) 12·11 (1·58)  14·8 (1·3)  10·54 (1·57)  14·96 (1·25)  13·5 (1·34)  

Hematocrit (%) 38·62 (6·34) 36·34 (4·47)  43·92 (3·96)  31·46 (4·81)  44·69 (3·29)  40·16 (3·88)  

Platelet (K/µL) 223·78 (88·15) 245·3 (101·1)  206·0 (65·88)  180·8 (70·55)  195·0 (58·39)   272·0 (91·8)  

Outcomes, mean (SD) or n (%) 

ADM2ICU (days)  1·84 (3·95) 2·46 (4·42)  1·42 (2·08)  1·67 (3·32)  2·57 (8·78)  1·58 (3·16)  

Mortality7_ICU  17 (9%) 0 (0%)  1 (2%)  6 (14%)  1 (7%)  9 (21%)  

Mortality30_ICU  43 (22%) 1 (2%)  10 (21%)   9 (21%)  4 (29%)  19 (44%)  

· 
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Figure 2. Differences in standardised average blood cells counts between the five Eld-ICU-

COV19 subphenotypes. See Table 1 for the original values. Spain, February 26–02 November, 

2020. 

 

Similar to cluster 2, cluster 3 shows a normal leukocyte count (9·23K/µL [SD=3·83]), little counts 

of lymphocyte (9·71K/µL [SD=5·59]) and eosinophil (0·5% [SD=0·63]), and abundant neutrophil 

count (82·05K/µL [SD=7·48]). However, it differentiates from the former by the highest mean 

age (83·49years [SD=8·09]), the highest female rate (25 [60%]), the lacking counts of red blood 

cells –erythrocyte (3·39M/µL [SD=0·57]), hemoglobin (10·54M/µL [SD=1·57]) and hematocrit 

(31·46% [SD=4·81])– and the lowest platelet count (180·8K/µL [SD=70·55]).  

Cluster 4 is characterized by the lowest neutrophil (49·29% [SD=13·85]) and the highest 

lymphocyte counts (41·11% [SD=15·53]), with a noticeable significant difference among the five 

(Figure 3). Noteworthy, albeit that cluster 4 has a moderate 30-day ICU mortality rate of 28%, 

there is no statistically significant difference when we compare cluster 5 (the ‘severe’ one) 

versus cluster 4 in terms of 7-day ICU mortality (OR 3·44 [0·4-29·92; 95%CI]; p=0·2627) and 30-

day ICU mortality (OR 1·98 [0·54-7·31; 95% CI]; p=0·3057). 
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Figure 3. Tukey's honest significance difference test with a 95% confidence interval for the 

studied numeric variables. Y-axis represents each variable, and the X-axis represents the 

cluster IDs. If two intervals overlap, they will have the same letter, such as a, b, c, and/or d, at 

the top of the interval. 

 

Figure 4. Odds Ratios with 95% CI and the corresponding p-value using Fisher’s exact test for 

the ICU mortality within 30 days. The Y-axis represents the clusters-pair that it compares. The 

X-axis represents the OR on the log-10 scale. 
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Discussion 
This large multicenter retrospective study, has identified five Eld-ICU-COV19 subphenotypes 

with discriminative FBC patterns alongside age. Noteworthy, subphenotypes 1 and 5, with an 

ICU 30-day mortality rate of 2% to 44%, respectively, provide new insights on COVID-19 severity 

phenotypes from an early immunological presentation at hospital admission in elderly patients. 

The phenotypic presentation of Eld-ICU-COV19 COVID-19 patients is not fully understood yet. 

Former studies used mechanisms for general COVID-19 patients profiling for this purpose. For 

instance, Sudre et al. reported non-hospitalized COVID-19 patient phenotypes based only on 

self-declaration of symptoms using an app14. Gutiérrez-Gutiérrez et al. used clinical data to 

uncover COVID-19 phenotypes, including hospitalized patients of all ages, and successfully found 

three phenotypes associated with significantly disparate 30-day mortality rates15. However, 

since ICU COVID-19 patients themselves are prone to a higher incidence of death, it seems to 

become harder to discern phenotypic patterns that discern different mortality levels associated 

with distinct ICU subphenotypes. For example, Sinha et al. used biomarkers and found two 

phenotypes from 39 ICU COVID-19 patients with 39% and 63% mortality rates, but without 

statistical difference16. A large cohort study Bos X et al. found two ICU COVID-19 phenotypes 

demonstrated certain success using two different trajectories with somehow disparate 28-day 

mortality rates of 27% versus 37% (Ventilatory ratio trajectories) and of 25% versus 39% 

(mechanical power trajectories)17 but may still not be sufficient to discriminate more disparate 

mortality rates associated with different COVID-19 phenotypes. In addition, these phenotyping 

analyses primarily focused on using variables obtained after ICU admission rather than 

leveraging the available information prior to ICU admission, which impedes the possibility of 

estimating the expected outcome for each phenotype prior to ICU admission.  

Thus, subphenotying COVID-19 patients with ICU admission that display discriminative patterns 

associated with different mortality levels is crucial. In this report, we focused on elderly patients 

because they are within the most numerous populations being admitted in the ICU. A reliable 

early risk stratification could help optimize ICU usage towards those more vulnerable and 

critically ill patients. As a result, we identified five Eld-ICU-COV19 subphenotypes. The findings 

of this preliminary report of 193 Eld-ICU-COV19 patients suggest the patient’s FBC result can 

display discriminative patterns associated with disparate 30-day ICU mortality rates.  

In our results, white blood cells seem to be most relevant factors that differentiate the cluster 1 

–the heathy cluster– and the cluster 5 –the severe cluster: the healthy cluster shows white cell 

counts which fall within normal boundaries, reflecting a physiological immune response. In 

contrast, the remarkable increase in total leukocytes, as well as neutrophils percentage, and the 

decrease in lymphocytes, all of which define the severe cluster, depict dysregulated response to 

infection and have previously been correlated to higher mortality18,19,20. In fact, the neutrophil-

to-lymphocyte ratio (NLR) is probably the most frequently cited severity predictor21. Similarly, 

neutrophil to monocyte ratio, which is highest in the healthy cluster, seems to be another 

potential candidate in recent studies18. Even though eosinophils appear to have a limited role in 

this kind of immune response, previous studies found eosinophils percentage to significantly 

decrease in SARS-CoV-19 compared to other causes of pneumonia, and its recovery to be 

parallel to CT-scan improvement and therefore eventually in patient groups with higher recovery 

rates22. In addition, platelet count is within limits in all groups, but highest in the severe cluster, 

which may be explained by the role of platelets as acute phase reagents and therefore reflect a 

more intense immune response. It is important to highlight that most of these FBC were 
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obtained during hospitalization, and very few studies have proven such correlations may already 

be present at admission.  

The importance of NLR is remarkable in the two moderate clusters 2 and 3, whose NLR is similar 

to the severe cluster. However, in contrast to the seve cluster the former two clusters 2 and 3 

show normal total leukocytes. The low-normal leukocyte count in clusters 2 and 3 might be 

explained by a previous cellular immunosuppression status, such as AIDS or immunosuppressive 

drugs affecting lymphocytes. 

Regarding red blood cells, all clusters except from cluster 3 show in-range values of red blood 

cells and haemoglobin. This could be related to the oldest age of this group, age being a well-

established risk factor for anemia. Interestingly, cluster 3 also shows the lowest number of 

platelets, which is opposite to what is expected in iron-deficiency anemia and could point to 

some underlying disease, such as CKF. Anemia being an aggravating condition for most diseases, 

it has also been suggested as a risk factor for severe outcomes in SARS-CoV-19 infection18,20 and 

could contribute to higher mortality in cluster 3.  

Regarding the importance of demographic features, previous studies found age and gender as 
key factors in explaining the higher incidence of death23,24,25. However, we found that the roles 
of age and gender are not so straightforward in discriminating the associated 30-day ICU 
mortality in Eld-ICU-COV19 patients since the healthy cluster and the severe cluster do not have 
the highest/lowest mean age or male/female ratio, and also their Tukey HSD 95% CIs overlap 
with other moderate clusters. For instance, the mean age of the healthy cluster is not 
significantly different from the mean age of cluster 3 –a moderate cluster– and the mean age of 
the severe cluster is not significantly different from the mean age of cluster 4 –another 
moderate cluster. This suggests that FBC tests outweigh the age and gender in discriminating 
the increased 30-day ICU mortality among the five Eld-ICU-COV19 subphenotypes, possibly 
because here we only focused on a particular COVID-infected age group (elderly) admitted in 
ICU.  

This study has several strengths. This is the first study, to our knowledge, that uses age and blood 

tests at hospital admission in elderly COVID-19 patients. The sole use of the age and blood tests 

obtained prior to ICU admission has the utility of early stratifying the risk of death in ICU at 30 

days based on objective signs, and not requiring to acquire any further complex variables or 

costly information of our patients; meaning that the expected outcome of the patients from 

each target group can be inexpensively estimated beforehand if these patients are admitted into 

ICU. In addition, focusing on subphenotyping patients from a particular age group –elderly in 

our case– generally helps uncover more specific detailed subphenotypes and prevents 

overgeneralization26,27, which may have more pragmatical potential to shed light on tailoring 

personalized treatment for each specific target subgroup in future medical research and clinical 

trial. 

One limitation of this study is its sample size. The small number of patients in some 

subphenotypes may make the comparative statistics sometimes difficult to interpret (e.g., 

cluster 4 only has 14 patients). In addition, our data are from two hospitals, which favors 

generalization, although future studies from third hospitals may benefit as external validations. 

In summary, by using Machine Learning we identified five Eld-ICU-COV19 subphenotypes with 

discriminative FBC patterns alongside age. Of which, we found one healthy cluster –where 

nearly all patients survived within 30-day after ICU admission, one severe cluster –where nearly 

half of the patients lost their life within 30-day after ICU admission– and three moderate clusters 
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–whose 30-day ICU mortality is similar to the populational level– with one that has the potential 

of being categorized into the severe category. Our results can provide guidance to comprehend 

the phenotypic classification and disparate severity patterns among elderly ICU patients with 

COVID-19, based only on age and FBC tests, that have the potential to establish target groups 

for an early risk stratification prior to ICU admission or early triage systems to provide 

personalized treatments or aid the decision-making during resource allocation process for each 

target Eld-ICU-COV19 group, especially in those circumstances with resource scarcity problem. 
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Appendix 

Appendix 1: STROBE Statement—Checklist 
 

Item 

No Recommendation 

Section or page 

in manuscript 

Title and abstract 1 (a) Indicate the study’s design with a 

commonly used term in the title or the abstract 

Title 

(b) Provide in the abstract an informative and 

balanced summary of what was done and what 

was found 

Abstract 

Introduction 

Background/rationale 2 Explain the scientific background and rationale 

for the investigation being reported 

Introduction 

Objectives 3 State specific objectives, including any 

prespecified hypotheses 

Introduction, last 

paragraph 

Methods 

Study design 4 Present key elements of study design early in 

the paper 

Methods 

Setting 5 Describe the setting, locations, and relevant 

dates, including periods of recruitment, 

exposure, follow-up, and data collection 

Methods 

Participants 6 (a) Give the eligibility criteria, and the sources 

and methods of selection of participants 

Methods 

Variables 7 Clearly define all outcomes, exposures, 

predictors, potential confounders, and effect 

modifiers. Give diagnostic criteria, if applicable 

Methods 

Data sources/ 

measurement 

8* For each variable of interest, give sources of 

data and details of methods of assessment 

(measurement). Describe comparability of 

assessment methods if there is more than one 

group 

Methods 

Bias 9 Describe any efforts to address potential 

sources of bias 

Discussion 

(paragraph 

discussion 

limitations) 

Study size 10 Explain how the study size was arrived at Methods 

Quantitative variables 11 Explain how quantitative variables were 

handled in the analyses. If applicable, describe 

which groupings were chosen and why 

Methods 

Statistical methods 12 (a) Describe all statistical methods, including 

those used to control for confounding 

Methods 

(b) Describe any methods used to examine 

subgroups and interactions 

Methods 
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(c) Explain how missing data were addressed Methods 

(d) If applicable, describe analytical methods 

taking account of sampling strategy 

Not Applicable 

(e) Describe any sensitivity analyses  Not Applicable 

Results 

Participants 13* (a) Report numbers of individuals at each stage 

of study—eg numbers potentially eligible, 

examined for eligibility, confirmed eligible, 

included in the study, completing follow-up, 

and analysed 

Methods 

(b) Give reasons for non-participation at each 

stage 

Methods 

(c) Consider use of a flow diagram Methods 

Descriptive data 14* (a) Give characteristics of study participants (eg 

demographic, clinical, social) and information 

on exposures and potential confounders 

Table 1  

(b) Indicate number of participants with 

missing data for each variable of interest 

There is no 

missing data in 

the studied 

sample 

Outcome data 15* Report numbers of outcome events or 

summary measures 

Methods and 

Results 

Main results 16 (a) Give unadjusted estimates and, if 

applicable, confounder-adjusted estimates and 

their precision (eg, 95% confidence interval). 

Make clear which confounders were adjusted 

for and why they were included 

Methods and 

Results 

(b) Report category boundaries when 

continuous variables were categorized 

Not applicable 

(c) If relevant, consider translating estimates of 

relative risk into absolute risk for a meaningful 

time period 

Not applicable 

Other analyses 17 Report other analyses done—eg analyses of 

subgroups and interactions, and sensitivity 

analyses 

Results 

Discussion 

Key results 18 Summarise key results with reference to study 

objectives 

Discussion 

Limitations 19 Discuss limitations of the study, taking into 

account sources of potential bias or 

imprecision. Discuss both direction and 

magnitude of any potential bias 

Discussion 
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Interpretation 20 Give a cautious overall interpretation of results 

considering objectives, limitations, multiplicity 

of analyses, results from similar studies, and 

other relevant evidence 

Discussion 

Generalisability 21 Discuss the generalisability (external validity) 

of the study results 

Discussion 

Other information 

Funding 22 Give the source of funding and the role of the 

funders for the present study and, if applicable, 

for the original study on which the present 

article is based 

Abstract and 

Methods 
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Appendix 2: selection about the number of clusters 
Figure 1 shows the Silhouette Coefficient and Elbow Coefficient (using within cluster sum of 

squares distance) computed for different numbers of clusters (k) from 2 to 12. One may choose 

a k of 2 because it yields the highest Silhouette Coefficient. However, when k=2, the Elbow 

Coefficient (aka sum of squared distances) is still very high. Thus, we sought to choose another 

point where the Silhouette Coefficient is still very high and also a low Elbow Coefficient. 

Therefore, we chose a k of 5 because it shows the 2nd highest Silhouette Coefficient, and the 

Elbow Coefficient is considerably low already (the criterion of reaching an elbow with the Elbow 

Coefficient is satisfied).  

Figure 1. Silhouette Coefficient and Elbow Coefficient for different numbers of clusters. 
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Appendix 3: Inter-clustering difference between the variable sex=female and 

Mortality7_ICU 
 

Figure 2. Odds Ratios with 95% CI and the corresponding p-value using Fisher’s exact test for 

two studied categorical variables: sex=Female, ICU mortality within 7. The Y-axis represents the 

clusters-pair that it compares. The X-axis represents the OR on the log-10 scale. Remark: there 

are OR values of NA in Mortality7_ICU, it’s because, in cluster 1, there were no patients who 

died within seven days after ICU admission. 
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