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Abstract  

Introduction 

Pharmacovigilance shifted its focus from spontaneous reporting systems to electronic health care 

(EHC) data. Usually, a single statistical method is used to detect signals, i.e., potential adverse drug 

reactions (ADRs).  

Objective and Method 

We present a novel approach to detect ADRs in EHC databases. It aggregates the results of multiple 

statistical signal detection methods applying Borda count ranking, a preference voting system, which 

results are used by an expert committee to select plausible signals. The obtained signals are afterwards 

investigated in tailored pharmacoepidemiological studies to provide support of plausibility or 

spuriousness of the signal.  

We showcase the approach using data from the German Pharmacoepidemiological Research Database 

on drug reactions of the direct oral anticoagulant rivaroxaban. Results of four statistical methods are 

aggregated into Borda count rankings: longitudinal Gamma Poisson shrinker, Bayesian confidence 

propagation neural network, random forests and LASSO. A verification study designed as nested active 

comparator case-control study was conducted. We included patients diagnosed with atrial fibrillation 

who initiated anticoagulant treatment with rivaroxaban or with phenprocoumon as active comparator 

between 2011 and 2017.  

Results 

The case study highlights that our Borda ranking approach (https://borda.bips.eu) is fast, able to 

retrieve known ADRs and find other interesting signals. Hasty false conclusions are avoided by a 

verification study, which is, however, time-consuming. 

Conclusion 

Post-market signal detection in EHC data is useful to identify and validate safety signals, particularly a 

few years after first admission to the market, when spontaneous reports are less frequent and more 

EHC data are available. 
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1 Introduction 

Evidence of the safety of newly approved drugs is often limited. The pivotal randomized clinical trials 

(RCTs) are powered to assess efficacy so that the sample sizes are too small to examine rare safety 

outcomes. Patients in RCTs usually have to fulfill several inclusion criteria and especially vulnerable 

groups such as pregnant women, elderly, and multi-morbid persons are often excluded or 

underrepresented. Moreover, patients are followed up very closely under controlled conditions over 

a limited period of time. Therefore, it is essential to also monitor the safety of drugs in routine care.  

Traditionally, spontaneous reporting systems form the cornerstone of pharmacovigilance [2-6]. In the 

last years, research shifted its focus to electronic health care data, which contain drug prescriptions 

and medical events over time for individual patients [5, 7, 8]. These data sources offer several 

advantages over spontaneous reporting systems: 1) the total number of patients that were prescribed 

a drug and/or suffered an adverse drug reaction (ADR) is known, while a spontaneous report is only 

filed when a drug was prescribed and an ADR occurred, 2) under- and over-reporting issues are less 

pronounced [9, 10], and 3) some electronic health care databases contain follow-up data of several 

million persons [11]. 

A plethora of statistical methods and study designs for detecting associations between drugs and ADRs, 

i.e., signals, in electronic health care databases have been proposed [12-15]. These methods range 

from disproportionality measures (e.g., reporting odds ratio [16]), hypothesis tests (e.g., Poisson test 

[17]) and Bayesian shrinkage estimates (e.g., Bayesian confidence propagation neural network, BCPNN 

[18, 19]) to sparse regression (LASSO [20, 21]). These methods offer different advantages, e.g., 

disproportionality measures provide risk estimates, sparse regression controls for high-dimensional 

confounding and the BCPNN can deal with innocent bystanders [13]. The choice of method is non-

trivial and depends on many factors [13, 22]. To combine the strengths and overcome the limitations 

of individual signal detection methods, we propose to employ multiple methods simultaneously and 

aggregate their individual scores into a single ranking using the Borda count method [23, 24]. 

After the signal detection phase, the ranking of drug-ADR pairs is usually presented to a committee of 

medical experts, which triages the signals and decides on any possible actions (e.g., further analyses, 

issue warnings, request label changes or, in extreme cases, recommend to withdraw the license [25]). 

We propose to complement signal detection and signal decision with a verification study using state 

of the art pharmacoepidemiological methods as an additional option to check whether signals persist 

when standard methods to avoid sources of bias such as controlling for confounding are applied.  

We demonstrate the applicability of the approach by means of a case study of the direct oral 

anticoagulant rivaroxaban (RVX, ATC: B01AF01) using the “German Pharmacoepidemiological 

Research Database” (GePaRD) [11] which is based on health care claims data. 

2 Methods 

2.1 Signal detection of potential adverse drug reactions (ADRs)  

Detecting possible adverse drug reactions (ADRs) is commonly done by using a single signal detection 

method [17-20, 26, 27]. Such methods yield a score for each drug-ADR pair that reflects the ‘strength’ 

of the association between the drug and the ADR in question [13]. A ranking of the drug-ADR pairs 

based on these scores is presented to a committee of medical experts for discussion and signal triage. 

See Figure 1a for a graphical representation of the process.  
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We propose instead to use multiple signal detection methods simultaneously, see Figure 1b. Different 

methods can yield scores with different interpretations, e.g., the Poisson test [17] yields p-values, while 

the LASSO [20] results in shrunken odds ratio estimates and random forest provides variable 

importance rankings. Rather than using the raw scores, we aggregate the rankings of the drug-ADR 

pairs that resulted from the individual methods into a single ranking using the Borda count [23, 24], 

which is an electoral system for selecting broadly agreed beliefs. The Borda count for each drug-ADR 

pair is the sum of the ranks for that drug-ADR pair in each of the rankings. The drug-ADR pair with the 

lowest Borda count is ranked first with rank scored as “1”; the drug-ADR pair with the highest Borda 

count is placed last. The intuition behind the Borda count ranking is that it captures the ‘consensus’ 

between the methods rather than the majority. For example, if a drug-ADR pair shows a high level of 

‘association’ according to multiple methods, the pair is ranked high in the individual rankings. The sum 

of the ranks for this pair would be relatively low. As a result, the pair will also be listed high up in the 

Borda count ranking. Now consider the situation where a pair is ranked high for only a few methods, 

while the others place it low. This pair would not end up high in the Borda count ranking. The advantage 

of this approach is that it does not depend on the raw scores directly and can be easily applied, even 

when the number of methods is large and the assessment criteria of the methods differ. Tournament-

style counting is used to account for ties [28].  

2.2 Signal triage 

Let us assume that the Borda count ranking of the drug-ADR pairs is presented to a committee of 

medical experts. The committee is charged with the task of filtering signals based on the Borda count 

that might indicate severe and unknown ADRs and taking appropriate actions. Employing expert 

knowledge in this process is hence paramount. Subject-matter knowledge is required to assess the 

biological plausibility that an identified ADR is caused by the drug of interest. The possibility of the drug 

in question to be an innocent bystander, or whether the signal is due to confounding by indication, has 

to be ruled out. Only considering the top-ranked drug-ADR pairs would be insufficient, since they are 

likely to contain known ADRs, while unknown ADRs are likely lower on the list. Due to the large number 

of pairs, it would be infeasible to systematically verify all signals using traditional 

pharmacoepidemiological studies. Our approach, therefore, is limited to verifying a smaller set of drug-

ADR pairs. Instead of individual signals, the committee could also opt to further investigating an 

outcome in which the diagnostic codes of multiple signals are aggregated into events of interest. There 

may, however, be medical or pharmacological reasons to expand an event definition from the signal 

triage to include other diagnostic codes that were not particularly conspicuous in signal detection.  

We created an online tool for performing signal triage based on Borda counts, which is available on 

https://borda.bips.eu. The R-Shiny app computes the Borda count ranks based on uploaded data and 

helps with graphical representations to select drug-diagnostic code pairs. 

2.3 Verification of signals 

In the third step, the robustness of the filtered signals is tested by an observational study targeted to 

the specific exposure-outcome relationship of interest. This study should be designed to minimize bias 

and control for confounding, e.g., use a new user active comparator approach [29], assess all available 

potential confounders and use adequate statistical methods (see Supplementary Material for more 

information).  
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2.4 Case study 

Data Source 

For the verification study we used the German Pharmacoepidemiological Research Database 

(GePaRD). GePaRD is based on claims data from four statutory health insurance (SHI) providers in 

Germany and currently includes information on approximately 25 million persons who have been 

insured with one of the participating providers since 2004 or later [11]. Diagnoses are coded based on 

the 10th version of the International Classification of Diseases in the German Modification (ICD-10-GM). 

Persons who were insured in the Techniker Krankenkasse between January 2015 and December 2016 

were included in the signal detection study. The verification study included patients diagnosed with 

atrial fibrillation who started anticoagulant treatment with rivaroxaban or with phenprocoumon as the 

active comparator between 2011 and 2017. 

Exposure of interest 

Rivaroxaban (RVX, ATC: B01AF01) is a direct oral anticoagulant (DOAC) that has been approved for the 

prevention of stroke and systemic embolism in patients with atrial fibrillation, the treatment of deep 

vein thrombosis and pulmonary embolism, and the prevention of recurrent deep vein thrombosis and 

pulmonary embolism in adult patients, and for the prevention of venous thromboembolism in adult 

patients undergoing elective hip or knee replacement surgery. As is the case with other anticoagulants, 

clinical studies of rivaroxaban identified hemorrhage as an important safety outcome [30]. 

GePaRD and the cohort of the signal detection study are described in detail in the supplementary 

material.  

Signal detection methods 

We employ four signal detection methods: the Bayesian confidence propagation neural network 

(BCPNN; [19]), the longitudinal Gamma Poisson shrinker (LGPS; [31]), the LASSO [20] and random 

forests (RF; [32]). Both the BCPNN and the LGPS are univariate methods yielding scores based on 2x2 

contingency tables, one for each ADR, see Table 1. The LASSO and the RF are multivariate methods 

and can take a large number of covariates, e.g., diagnoses and patient information, into account. The 

scores for the ADRs of the LASSO are defined as the highest penalization parameter for which that ADR 

enters the active set [33]. The output of the RF is a rank vector of the variable importance score [34]. 

A self-controlled case series design [35] was used for the LASSO and the RF, where we considered the 

first control period, in which the patient was not exposed to the drug, and the first risk period, in which 

the person was exposed. See Figure S1 in the Supplementary Material for a graphical representation. 

We noted whether or not the person experienced the ADR in question during the control period and 

in the risk period. In our analysis, we used the covariates age, sex, and all diagnoses and prescribed 

medications to account for potential interactions. The ranking of all four methods were than 

aggregated into Borda count ranking. 

Signal triage 

A committee of pharmacoepidemiologists, pharmacologists, physicians and statisticians reviewed the 

rankings and discussed plausibility, severity and novelty of the signal.  

Verification study 

The verification study was designed as an active comparator case-control study nested in a cohort of 

new users of RVX and phenprocoumon (PPC, ATC: B01AA04, the most frequently used vitamin K 

antagonist in Germany), with atrial fibrillation.  
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Cases were defined as patients with a diagnosis of the respective outcome of interest. Each case was 

matched with up to 10 controls by sex, age at index day (± 1 year) and statutory health insurance 

provider using risk set sampling with time in cohort as the time axis to ensure a similar follow-up as for 

the corresponding case. Eligible patients hospitalized for any reason at the index date of the case were 

excluded from the set of potential controls. Cases were eligible for selection as controls before their 

index date, and controls could be selected more than once [36].  

See the Supplementary Material for the specification of the verification study cohort and the list of 

confounders that were considered.  

Conditional logistic regression was used to estimate crude and confounder-adjusted odds ratios (ORs) 

with 95% confidence intervals (95% CI). We report ORs comparing current use of RVX to 1) current use 

of PPC (active comparator) and to 2) no exposure to RVX or PPC at index day. While the first should be 

used for a verification study, the second is needed to evaluate the decision made in the signal triage 

based on the Borda count ranks. 

3 Results 

In this section, we report the results of the case study. The results can be explored interactively on 

https://borda.bips.eu. The website also offers the opportunity to perform the same analysis with one’s 

own dataset.  

3.1 Signal selection 

Figure 2 shows Kendall’s tau correlations between ADR rankings of BCPNN, LGPS, LASSO and RF. It 

shows that these signal detection methods can yield quite different rankings. One example is the rank 

of N30.0 (acute cystitis); BCPNN, LGPS and RF rank this ICD-10-GM code under the top 2% of the 

strongest signals, whereas the LASSO ranks this ICD-10-GM code not even under the top 10%.  

Table 2 shows the top 10 highest ranked ICD-10-GM codes according to the Borda ranking. Note that 

K92.2 (gastrointestinal hemorrhage, unspecified) is a known side effect of DOACs.  

3.2 Signal triage 

On the basis of the ranking obtained during the signal detection phase, the committee selected 1) 

acute liver injury (ALI), 2) sepsis, and 3) acute cystitis (CYS). In addition, gastrointestinal bleeding (GB) 

and intracranial bleeding (ICB) were selected as positive controls.  

This selection was made based on medical plausibility, whether the event was already known before, 

and with the help of plots as in Figure 3, in which the relative ranks for the ICD-codes related to the 

selected six health outcomes are shown. Each dot represents an individual ICD-code. A relative rank of 

“1” corresponds to the ADR to be on the bottom of the ranking (no signal). A relative rank of “0” means 

the item is on top of the ranking (strong signal). We prefer to use the relative rank for its readability. 

The ICD codes related to the positive controls GB and ICB are mainly on the top of the ranking as one 

would expect. The negative control, fracture of head and neck of femur, is clearly on the bottom of the 

ranking. The codes associated with ALI are close to the top of the ranking. Although many of the sepsis 

codes are at the bottom, the codes for streptococcal sepsis are noticeably clustered at the top of the 

ranking.  

The ICD codes used to define the filtered signals (GB, ICB, ALI, CYS and sepsis) can be found in Table S1 

in the Supplementary Material.  
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3.3 Verification study 

The study cohort of the verification study was based on 97,400 new users of PPC and 71,917 users of 

RVX. The median age at cohort entry was 73 (inter-quartile-range (IQR): 65, 79) for RVX and 75 (IQR: 

69, 81) for PPC new users. The proportion of women was 47% (RVX) and 48% (PPC). We observed 5053 

cases of acute cystitis, 322 cases of acute liver injury, 3504 cases of sepsis, 6705 cases of 

gastrointestinal bleeding and 2974 cases of intracranial bleeding. A full description of the study cohort, 

including baseline characteristics, relevant medical history and dispensed medication at cohort entry, 

can be found in the Supplementary Material.  

Table 3 shows that the risk of gastrointestinal bleeding and intracranial bleeding was increased in 

current users of RVX compared to no use (OR=2.45, 95% CI: (2.11; 2.84); OR=1.45, 95%CI: (1.18; 1.79)), 

but only the risk of gastrointestinal bleeding was increased compared to current use of PPC (OR=1.37, 

95% CI: (1.27; 1.47); OR=0.74, 95% CI: (0.66; 0.83)). The risk of cystitis was slightly increased both in 

current users of RVX compared to no use and compared to current use of PPC (OR=1.12, 95% CI: (0.98; 

1.29); OR=1.11, 95% CI: (1.02; 1.21)). The risk of acute liver injury was lower both in current users of 

RVX compared to no use and compared to current use of PPC (OR=0.76, 95% CI: (0.42; 1.37); OR=0.50, 

95% CI: (0.35; 0.72)). The risk of sepsis was similar in current users of RVX compared to no use and 

compared to current use of PPC (OR=0.98, 95% CI: (0.82; 1.16); OR=1.10, 95% CI: (0.99; 1.23)). 

4 Discussion 

In this paper we presented a novel three step approach for identifying and verifying potential adverse 

drug reactions in electronic health care data. In the common approach, a single signal detection 

method is applied and the resulting ranking of drug-ADR pairs is presented to a committee of medical 

experts. Here, we extend this process: First, we apply multiple signal detection methods 

simultaneously, where the obtained rankings are aggregated on the basis of the Borda count. Second, 

we offer the committee a graphical representation to define ADRs based on aggregated ICD codes. 

Third, we recommend to verify selected ADRs using a traditional pharmacoepidemiological approach. 

This can be of great help; the verification study might provide support for either the existence of the 

signal or its spuriousness.  

We applied this novel approach in a case study for the DOAC rivaroxaban based on the health care 

claims dataset GePaRD. We applied four signal detection methods: two univariate disproportionality 

measures (BCPNN and LGPS), and two multivariate methods; on the one hand sparse regression 

(LASSO), and on the other hand a machine learning method (RF). We demonstrated that our proposed 

signal assessment was able to detect already known adverse events such as GB and ICB. It was also 

able to detect the rare event ALI. Although the verification study could not confirm that after choosing 

an appropriate study design and controlling for confounding current use of rivaroxaban was positively 

associated with ALI. The examples demonstrated that signal detection using health care claims data is 

feasible, but also that a verification is required to mitigate biases such as confounding, selection or 

measurement bias [37]. Here, we described signals of our case study that were either known before 

or signals that were not confirmed in the verification study. Additional results of our case study are 

described in [38], which investigates whether treatment of atrial fibrillation with direct oral 

anticoagulants affects the risk of epilepsy in comparison to treatment with phenprocoumon. 

In general, the signal detection step is very fast and the inclusion of multiple detection methods may 

reduce overfitting. The verification study, however, is time consuming because it requires careful 

attention. Only a limited number of potential signals can hence be verified in a reasonable amount of 

time. Furthermore, the verification study should be enriched with several sensitivity analyses to 
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investigate different sources of potential bias. It is also common practice to split the available data in 

a dataset for signal detection and for verification studies to avoid overoptimistic estimations of odds 

ratios and confidence intervals. In case little data is available, this could reduce the power to detect 

signals; important associations between drugs and ADRs might remain undetected. This might 

especially be the case when the drug of interest is prescribed infrequently, or the event occurs rarely.  

Sandberg et al. [39] also presented a three-fold signal detection step, where first signals are estimated 

and then filtered by a list of criteria, followed by an in-depth signal assessment of the selected signals. 

Their approach focuses on subgroup disproportionalities and a catalog of criteria how to select signals 

for further assessment. Our approach focuses on a fast signal detection step which is based on various 

statistical methods and the combination of their results.  

The advantage of aggregating rankings using Borda counts is that it does not depend on the 

interpretation of the scores produced by the individual methods. In addition, the rankings can be 

weighted, so that the results from various methods can differ in their contribution to the final ranking. 

This might be of interest, especially when one expects a certain method to perform exceptionally well 

in a particular instance. Adding more methods to the analysis is straightforward.  

Working with electronic health care data has the downside that there tends to be a delay. As a 

consequence, ADRs of a newly admitted drug cannot be immediately detected. Here, spontaneous 

reporting systems certainly have an advantage over electronic health care data. However, post-market 

signal detection in claims data can complement spontaneous reports and is particularly useful a few 

years after first admission to the market, when spontaneous reports are less frequent and more 

electronic health care data are available. 

5 Conclusions 

We presented a novel approach to pharmacovigilance that allows the use of multiple signal detection 

methods simultaneously and offers the option to perform an additional verification study to the 

committee of medical experts. The case study shows that with this approach we are able to retrieve 

known ADRs and find other interesting signals. Performing a verification study, however, is time 

consuming but a severe, biologically plausible adverse event might demand immediate actions.  

We developed an online tool available at https://borda.bips.eu that can aid in performing the analysis 

we presented here. 
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Figures 

 

 
Figure 1: (a) The common approach: signal detection is done by applying a single detection method to the LD, resulting in a 
single ranking of drugs-ADR pairs. This ranking is presented to a committee of medical experts. (b) The approach presented 
in this paper: m different detection methods are applied to the LD, resulting in m rankings. These rankings are aggregated 
into a single ranking based on the Borda count. The single aggregated ranking is then presented to the committee. In addition, 
the choice of performing a verification study is available to the committee.  
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Figure 2: Kendall’s tau correlations between the rankings of the BCPNN, LGPS, RF and LASSO. The disproportionality 
methods, BCPNN and LGPS, lead to similar rankings. The LASSO and the RF, however, differ substantially from the others. 
We reduced the range of the legend for readability.   
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Figure 3: The relative ranks of events related to six health outcomes for rivaroxaban. A relative rank of 1 corresponds to the 
item being on the bottom of the list (no signal). A relative rank of 0 means the item is on top of the list (strong signal). 
Gastrointestinal and intracranial bleeding are known ADRs. Many of the ICD codes related to these outcomes are high up on 
the scale. The last, fracture of head and neck of femur (ICD-10: S720), is a negative control. The ICD code is, as expected, 
ranked close to the end. Acute liver injury and sepsis show both ICD codes that are ranked on the top as well as on the 
lower scale, whereas acute cystitis is ranked very high.  

  

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 10, 2022. ; https://doi.org/10.1101/2022.05.10.22274885doi: medRxiv preprint 

https://doi.org/10.1101/2022.05.10.22274885


14 
 

Tables 

 

Table 1: A 2x2 table for a drug and ADR. 

 ADR occurs  ADR does not occur Total 

Rivaroxaban was prescribed a b a + b 

Rivaroxaban was not prescribed c d c + d 

Total a + c b + d N = a + b + c +d 

The count a is the number of time points (in case of GePaRD, quarters) the patients were prescribed rivaroxaban and 

experienced the ADR in question. The count b is the number of quarters the patients were prescribed the rivaroxaban but 

did not experience the ADR. The count c and d are constructed in a similar fashion. Note that N = a + b + c + d is the number 

of the observed quarters of all patients. 

 

 

Table 2: Top ten ICD-10-GM codes for rivaroxaban according to the Borda ranking.  

Rank ICD-10 code Description 

1 D50.8 Other iron deficiency anemias 

2 J69.0 Pneumonitis due to inhalation of food and vomit 

3 K92.2 Gastrointestinal hemorrhage, unspecified  

4 K31.8 Other specified diseases of stomach and duodenum 

5 D50.0 Iron deficiency anemia secondary to blood loss (chronic) 

6 C20 Malignant neoplasm of rectum 

7 K25.0 Acute gastric ulcer with hemorrhage 

8 E86 Volume depletion 

9 I27.2 Other secondary pulmonary hypertension 

10 N17.9 Acute kidney failure, unspecified 
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Table 3: Results of the verification study: Crude and adjusted odds ratios and 95% confidence intervals  

   

Current use of RVX at index 

day 

Current use of rivaroxaban at index 

day vs. current single use of PPC at 

index day 

Current use of rivaroxaban at index 

day vs. no exposure to any study 

drug at index day$ 

Event 

Cases 

N 

Controls 

N 

in Cases 

N (%) 

in Controls 

N (%) 

Crude 

OR (95% CI) 

Adjusted 

OR (95% CI) 

Crude 

OR (95% CI) 

Adjusted 

OR (95% CI) 

Gastrointestinal bleedinga 6,705 67,019 1,635 (24.4%) 13,817 (20.6%) 1.22 (1.14; 1.31) 1.37 (1.27; 1.47) 1.92 (1.66; 2.23) 2.45 (2.11; 2.84) 

Intracranial bleedinga 2,974 29,720 515 (17.3%) 5,959 (20.1%) 0.72 (0.64; 0.80) 0.74 (0.66; 0.83) 1.31 (1.06; 1.60) 1.45 (1.18; 1.79) 

Acute cystitis 5,053 50,424 1,123 (22.2%) 10,590 (21.0%) 1.09 (1.00; 1.19) 1.11 (1.02; 1.21) 1.16 (1.01; 1.33) 1.12 (0.98; 1.29) 

Acute liver injury 322 3,220 52 (16.1%) 688 (21.4%) 0.50 (0.35; 0.71) 0.50 (0.35; 0.72) 0.73 (0.40; 1.30) 0.76 (0.42; 1.37) 

Sepsis 3,504 35,022 670 (19.1%) 7,231 (20.6%) 1.01 (0.91; 1.12) 1.10 (0.99; 1.23) 0.96 (0.81; 1.13) 0.98 (0.82; 1.16) 

RVX: rivaroxaban, PPC: phenprocoumon; OR: odds ratio 

a Positive control 
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