Performance of the SD Bioline rapid diagnostic test as a good alternative to the detection of Human African Trypanosomiasis in Cameroon.

Deutou Wondeu Andrillene Laure1,6&7, Okoko Aline2, Doll Christian1&3, Djeunang Dongho Ghyslaine Bruna1&4, Bahebegue Samuel2, Mpeli Mpeli Ulrich Stéphane5, Dologuele Nicolas Félicien2, Chouamou Ninko Christian1, Montesano Carla6, Awono Ambene Herman Parfait2

Affiliations
1Evangelical University of Cameroon, Bandjoun, Cameroon
2Organisation de Coordination pour la Lutte contre les Endémies en Afrique Centrale (OCEAC), Yaoundé, Cameroon
3Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery (CMSC), Berlin, Germany
4Sapienza University of Rome, Rome, Italy
5Institute for Statistics and Applied Economics, Yaoundé, Cameroon
6University of Rome Tor Vergata, Rome, Italy
7School of Health Science, Catholic University of Central Africa, Yaoundé, Cameroon

Acknowledgements
The study received support from the WHO office through grants to the national program for the control of human trypanosomiasis in Cameroon and from OCEAC for the acquisition and execution of rapid diagnostic tests for HAT. The authors present their tributes to the memory of Mr. Ebo'o Eyenga, coordinator of the National Program Against Human African Trypanosomiasis (NPAHAT) of Cameroon, who participated in the conceptualization and planning of this study in the field. Mr. Ebo'o died on October 13, 2018 during the drafting process of this paper.

Contribution: DWAL designed the study and wrote the manuscript; AO, EEV and BS provided supplies and technical assistance for field collections and laboratory testing; DC, DDGB and MC reviewed the manuscript; MMUS and CNC conducted the statistics analysis; AAHP supervised the study and reviewed the manuscript; AAHP and OA coordinated the study.

Corresponding author: Deutou Wondeu Andrillene Laure, Email: andrillene.1@gmail.com

Conflict of interest: the authors declare no potential conflict of interest.

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
The management of Human African Trypanosomiasis (HAT), caused by *Trypanosoma brucei gambiense* relies on case detection. As part of this, the routine screening by the Card Agglutination Test for Trypanosomiasis (CATT) is the critical step before parasitological confirmation. Individual rapid diagnostic tests (RDTs) have recently been developed for the serodiagnosis of HAT. The objective of the current study is to assess the input of SD Bioline HAT on the serological screening of Human African Trypanosomiasis in Cameroonian foci. Blood samples were collected during the surveys in the foci of Campo, Yokadouma and Fontem between June 2014 and January 2015. Diagnostic performance indicators such as sensitivity (Se) and specificity (Sp) of SD Bioline HAT was determined from the CATT, used as gold standard for the detection of specific antibodies of *Trypanosoma brucei gambiense*. In total 88 samples were tested. The Se and Sp were 80% and 89.7% respectively for SD Bioline HAT. The results of the current study show that the performance of the SD Bioline HAT is close to that of CATT in the case of serological detection of HAT.

Keywords: Human African Trypanosomiasis, Card Agglutination Test for Trypanosomiasis, rapid diagnostic tests, Cameroon.
Introduction

African Human Trypanosomiasis (HAT), also known as sleeping sickness, is a vector-borne parasitosis that is endemic in many countries of sub-Saharan Africa.\(^1\) It is caused by a flagellated protozoan of the genus Trypanosoma, naturally transmitted to man by the Tsetse fly. HAT is one of the neglected and deadly tropical diseases with its Rhodesian form due to *Trypanosoma brucei rhodesiense* widespread in eastern Africa and the Gambian form caused by *Trypanosoma brucei gambiense* in central and western Africa.\(^2\)

HAT remains a worrying problem in intertropical Africa where it is currently on the upsurge. In 2014, an estimated 70 million people are at risk and 20,000 are the actual number of cases, and more than 98% of the reported cases are due to *T. b. gambiense*.\(^3\) In Central Africa, there are several outbreaks of endemcity: Bandundu in the Democratic Republic of Congo (DRC), which notified 1885 of the 3196 cases registered in 2014, Mandoul in Chad (87 out of 94 cases), Nola in the Central African Republic (151 out of 194 cases) and Campo (7 out of 7 cases) in Cameroon.\(^17\)

The management of the Gambian form is based on the detection of cases, followed by appropriate treatment according to the stage of the disease.\(^3\) The routine technique for mass screening is the Card Agglutination Test for Trypanosomiasis (CATT). However, the constraints of its use limit its application under certain conditions during active and passive screening.\(^19\) As a result; new strategies at the stages of fight and control of HAT have been established.

In recent years, Rapid Diagnostic Tests (RDTs) have been developed and evaluated in some countries for the detection of HAT. These tests are an alternative choice for routine screening at the health facilities of endemic foci with the goal of HAT elimination by 2020 set by the World Health Organization (WHO). Further studies on the performance of these RDTs are necessary for their effective dissemination. It was in this context that we evaluated the performance of the SD Bioline HAT Rapid Diagnostic Test for the detection of HAT cases at *T. b. gambiense* in three foci (Campo, Fontem and Yokadouma) of HAT in Cameroon, where a National Program for the Control of Human African Trypanosomiasis is actively investigating cases.
Materials and Methods

Type of study, study site and target population
We conducted a cross-sectional study over a period of nine months, from June 2014 to March 2015. The samples were collected in three foci: Campo in the South, Yokadouma in the East and Fontem in the Southwest of Cameroon. These foci are geographically propitious zones for hatching Tsetse flies: a temperature of about 25°C and a relative humidity of 80 to 85% and a lot of shade.

The participants in the study were the inhabitants of the foci and the refugees from the Central African Republic residing in the Yokadouma camp. However, pregnant women and infants were not included in our study.

Sampling
Sampling was done by simple random sampling. It consisted in drawing lots directly from individuals in the population of the various foci surveyed. The size was fixed by convenience and it was 88 Individuals.

Ethical considerations
All necessary precautions have been taken to ensure that the rights and freedoms of the participants in the research are respected. In order to carry out the present study, an ethical clearance No 2015 / 0003 was sought and obtained from the Institutional Ethics Committee for Research for Human Health of the School of Health Sciences (Yaoundé).

Procedure for collecting samples and data
Our work was carried out during the various surveys organized by the National HAT Control Program of Cameroon. They were done in several stages, ranging from the census to prior awareness of the target population by the field team. We then approached each participant by presenting the information leaflet, explaining to him in simple terms the purpose of the study, the interest, the amount of blood to be collected and the way in which the results will be managed.

Anyone who understood and accepted the conditions of the study gave their consent by signing the informed consent form. After this stage, each participant was registered and then taken to perform the different CATT and TDR screening tests. At the end the results were handed to them individually.

The sampling consisted in taking from each participant, at the level of the finger of the hand (middle or ring finger), about 200 μl of blood. This blood was stored in heparin microcapillary tube and classified on racks numbered from 1 to 10 for the first step of screening. However, for
all individuals who tested positive in the first step of screening, whole blood was collected from the elbow in a 4ml heparinised tube for further testing (CATT and RDT dilution).

Procedure for analyzing samples

The samples were analyzed both in the field and at the HAT laboratory at the Organisation de Coordination pour la Lutte contre les Endémies en Afrique Centrale (OCEAC), Yaoundé. Two types of tests were performed for each sample: the agglutination test for trypanosomiasis and the rapid diagnostic test.

- Card Agglutination Test for Trypanosomiasis: CATT (Figure 1)

The Card Agglutination Test for Trypanosomiasis is a direct plate agglutination test. It consists in bringing together antigens of trypanosomes, consisting of whole and lyophilized *T. b. gambiense*; and the whole blood of the person to be examined. It is an interaction between a specific agglutinating antibody and a particular antigen.

A drop of reconstituted reagent (about 45 μl) was deposited on the card, a drop of blood (about 25 μl) was added. The mixture was then spread, the card was placed five minutes on a rotary shaker at one revolution per second. The reading was done immediately after the 5 minutes of stirring, with the naked eye with reference to the positive and negative controls.

Quantitation was performed on all positive CATT whole blood samples. It consisted in taking 100 μl of whole blood for successive dilutions (1:2, 1:4, 1:8, 1:16) with 100 μl CATT buffer each time. The titration was done by taking 25 μl of each blood dilution that we put in the test area on the card, before adding a drop of reconstituted reagent. For the rest we proceeded as for the CATT test. This quantification was done in order to determine the positivity threshold of each sample.
Figure1: Stages of the CATT (Test Guide CATT/T.b.gambiense Institute of Tropical Medicine)

The rapid diagnostic test

The rapid diagnostic test (RDT) SD Bioline HAT is an immunochromatographic test for the rapid and qualitative detection of antibodies named Litat1.3 and Litat1.5, which are specific for T. b. gambiense. The procedure used was according to the manufacturer's instructions (Figure 2).

A drop of whole blood was placed in the round window of the test. Subsequently, we added four (04) drops of diluent to this spot, the result was read within 15 minutes of the deposit.

The result was negative when a single coloured band was observed on "C" in the result window.

It was positive when two coloured bands were observed, either on line 1 and control line "C" (positive to Litat 1.3), or on line 2 and control line "C" (positive to Litat 1.5) or again when three coloured bands appeared in the control, 1 and 2 respectively, this means a positive result in Litat 1.3 and 1.5. The result was invalid when the control band "C" did not appear, regardless of the other results observed.
Figure 2: Procedure of the DS Bioline HAT test (Lumbala et al; 2013)

Statistical analysis of data

Data were collected during analyzes of samples from the target population. These collected data were then entered in Microsoft Excel 2010 and analyzed in the R software version 3.1.1. This analysis made it possible to calculate the prevalence (p), the sensitivity (Se) and the specificity (Sp).

The p-values were calculated according to a null hypothesis (H0) and an alternative hypothesis (H1). The p-value is less than 0.05 indicated a statistically significant difference between the performance of the RDT and our gold standard. However, when the p-value gave a value greater than 0.05 H0 was accepted, indicating that there is no statically significant difference between RDT performance and CATT performance.

Results

This study involved 88 people from Campo (n = 52), Yokadouma (n = 28) and Fontem (n = 8). The distribution of gender in the foci investigated was 54 men and 34 women with an average age of 35.4 years, ranging from 5 to 75 years.

HAT serological prevalence

In total, the CATT plate agglutination test and the SD Bioline HAT were performed on 88 samples. These two tests made it possible to detect specific antibodies LiTat 1.3 and LiTat 1.5 from T. b. Gambiense in all prospects.
The serological prevalence (Figure 3) of HAT on whole blood was in the foci of Campo and Yokadouma. It was 36% with total blood CATT and 18.2% with SD Bioline HAT. To increase the sensitivity of CATT, successive dilutions of whole blood were performed. The threshold of suspicion of a case of HAT in Cameroon is represented by a positive CATT from 1/16th diluted blood; our study suggests that the prevalence of suspected cases of HAT is 11.4% in the probed foci.

CATT ST: Card Agglutination Test for Trypanosomiasis with Whole Blood; CATT 1:16: Card Agglutination Test for Trypanosomiasis diluted 1:16; RDT: Rapid Diagnostic Test

Figure 3: Serological prevalence

Performance of rapid tests for HAT case detection
To determine the performance of SD Bioline HAT, we selected all 88 samples (positive and negative for CATT and SD Bioline HAT) from the probed foci. We observe that, as the dilutions are made, the sensitivities of the RDT increase while the specificities decrease.

CATT's positivity threshold for blood dilution is 1/16th in Cameroon. At this threshold, SD Bioline HAT obtained an 80% Sensibility, a 97.22% NPV and the p-value of each was greater than 0.05 indicating a statistically insignificant difference between these values and those of the CATT. At the same threshold, the Specificity was 89.7%; The PPV 50% and the p-value of each was less than 0.05 thus showing that the difference between the specificity of CATT and that of SD Bioline HAT is statistically significant.
The table below shows the values of SD Bioline HAT intrinsic (Se and Sp) and extrinsic (PPV and NPV) performance indicators.

Table: Descriptive statistics of the performance values of SD Bioline HAT

<table>
<thead>
<tr>
<th>SD Bioline HAT</th>
<th>CATT (whole blood)</th>
<th>CATT (diluted blood 1:4)</th>
<th>CATT (diluted blood 1:8)</th>
<th>CATT (diluted blood 1:16)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Se (%)</td>
<td>50</td>
<td>53.6</td>
<td>60</td>
<td>80</td>
</tr>
<tr>
<td>P-value</td>
<td>0.0002</td>
<td>0.0009</td>
<td>0.0133</td>
<td>0.4795</td>
</tr>
<tr>
<td>Sp (%)</td>
<td>100</td>
<td>98.33</td>
<td>94.1</td>
<td>89.7</td>
</tr>
<tr>
<td>P-value</td>
<td>1</td>
<td>1</td>
<td>0.1336</td>
<td>0.0133</td>
</tr>
<tr>
<td>PPV (%)</td>
<td>100</td>
<td>94</td>
<td>75</td>
<td>50</td>
</tr>
<tr>
<td>P-value</td>
<td>1</td>
<td>1</td>
<td>0.1336</td>
<td>0.01333</td>
</tr>
<tr>
<td>NPV (%)</td>
<td>77.8</td>
<td>81.9</td>
<td>88.9</td>
<td>97.2</td>
</tr>
<tr>
<td>P-value</td>
<td>0.0002</td>
<td>0.0009</td>
<td>0.0133</td>
<td>0.4795</td>
</tr>
</tbody>
</table>

Discussion

The main objective of our work was to evaluate the contribution of the rapid diagnostic test in the screening of HAT cases to *T. b. gambiense* in Cameroon. We had as a reference test the CATT where we performed four dilutions (1/2, 1/4, 1/8, 1/16) in addition to whole blood. We have used this RDT because it is now available and circulated by the Institute of Tropical Medicine for screening for HAT. To evaluate this test, samples were recorded in three outbreaks of HAT in Cameroon: Campo, Yokadouma and Fontem. Campo and Fontem are active and recognized foci of HAT in Cameroon while the Yokadouma home is a suspect and silent focus. The investigation in the latter focus follows the movement of refugee victims of political instability in the Central African Republic (CAR), mostly coming from Nola, which is an active and recognized focus of the HAT in the CAR.

Analyzes with CATT included a sample of 88 individuals, the majority of whom were surveyed in the Campo outbreak and the rest in the outbreaks of Yokadouma and Fontem. Contrary to what is often observed in Cameroon's national HAT control program surveys, the number of men has been higher than that of women in our sample group.

The overall prevalence of serum HAT (positive CATT on whole blood) was 36%. It was reduced to 11.4% by considering the dilution of whole blood to 1/16th which corresponds to Cameroon at the threshold of suspicion of a case of HAT requiring surveillance. It should be
noted that for HAT screening, WHO recommends that for any positive whole blood CATT, successive dilutions should be made in order to eliminate possible false positives. In Cameroon, anyone with a diluted blood CATT $\geq 1:16$ is considered to be serological HAT-positive and is being monitored by National Program Against Human African Trypanosomiasis (NPAHAT). This threshold of suspicion fixed to eliminate false positives varies from country to country and the epidemiological situation of HAT. Indeed, it is set at 1:8 in Chad and in the CAR, and 1:4 in the DRC (2). The false positivity of the CATT test may be due to cross-reactions following exposure of the individual to other pathogens, including animal trypanosomes: T. b. Brucei, T. Congolense.\(^{18}\) It has been shown that pathologies such as filariasis are able to agglutinate CATT. This is the case of Sobingo in 2007, which showed that 13% positivity of CATT blood diluted to 1/4 was due to *Onchocerca volvulus* in the region of Kéniéba in Senegal. Similarly, we observed the presence of microfilariae in the ganglionic fluid of a positive CATT whole blood sample during our field work.

Using SD Bioline HAT as an alternative screening tool, the total blood test positivity rate was 18.2%. However, at the blood threshold diluted 1/16th, we obtained a prevalence of 11.4% closer to 18.2% found for the SD Bioline HAT test than undiluted blood. These values therefore indicate an approximation between the detection capability of CATT blood 1/16th and that of SD Bioline HAT.

Performance of TDR SD Bioline HAT

The sensitivity of SD Bioline HAT is its ability to give positive results in all people who have been in contact with *T.b.gambiense* and have antibodies against Litat 1.3 and Litat 1.5 in their blood. The specificity in terms of its capacity has given negative results in all those who have never been in contact with *T.b.gambiense*. These two indicator values of the performance of the RDTs, to identify the serological cases of HAT were estimated by taking the CATT as a reference method.

The sensitivity of this RDT increased as CATT was diluted, unlike specificity. At the CATT blood threshold 1/16th, the Se was 80% and the Sp of 89.7%. These values suggest a satisfactory performance of SD Bioline HAT in the investigation of suspected cases of HAT. These results show some differences with the values found by Sternberg et al. (2014) the Se = 82%, Sp = 97%; by evaluating the performance of SD Bioline HAT and two prototype RDTs, out of 500 samples including 250 cases and 250 controls in Angola, CAR and Uganda. In addition, Lumbala et al. (2013) obtained a sensitivity of 87.8% in the evaluation of the optimization of this same test with 49 confirmed parasitological THA specimens and 93-95% specificities.
following the evaluation of SD Bioline HAT and the SD Bioline optimized on 399 control samples in active screening in the DRC. They also obtained a sensitivity of 89.3% by comparing this RDT with CATT diluted 1/8th. The sensitivity of SD Bioline HAT which is 80% observed in this study was slightly low compared to that mentioned by the manufacturer (98%).

The differences observed can be explained on the one hand by the fact that we have a sample size that is too small compared to theirs. In addition, we have no confirmed parasitological cases.

Conclusion

The study in three HAT foci in Cameroon revealed 18.2% of serological cases with the CATT method and 11.4% with SD Bioline HAT. The performance of SD Bioline HAT RDT compared to the CATT method shows that SD Bioline HAT could be an alternative to be adopted in most HAT foci in Cameroon. Considering that these foci are in remote areas, without appropriate infrastructure and technical platforms for perform CATT.
REFERENCES

1. French Association of Teachers of Parasitology and Mycology. African Trypanosomiasis (Sleeping sickness). Francophone Virtual Medical University; 2014.

