Comparing human and AI performance in medical machine learning: An open-source Python library for the statistical analysis of reader study data
View ORCID ProfileScott Mayer McKinney
doi: https://doi.org/10.1101/2022.05.06.22274773
Scott Mayer McKinney
Google Health, Palo Alto, CA, USA
Data Availability
All of the associated code is publicly available on Github.
https://github.com/Google-Health/google-health/tree/master/analysis
Posted May 07, 2022.
Comparing human and AI performance in medical machine learning: An open-source Python library for the statistical analysis of reader study data
Scott Mayer McKinney
medRxiv 2022.05.06.22274773; doi: https://doi.org/10.1101/2022.05.06.22274773
Subject Area
Subject Areas
- Addiction Medicine (349)
- Allergy and Immunology (671)
- Anesthesia (181)
- Cardiovascular Medicine (2661)
- Dermatology (224)
- Emergency Medicine (402)
- Epidemiology (12266)
- Forensic Medicine (10)
- Gastroenterology (765)
- Genetic and Genomic Medicine (4124)
- Geriatric Medicine (387)
- Health Economics (681)
- Health Informatics (2670)
- Health Policy (1008)
- Hematology (364)
- HIV/AIDS (855)
- Medical Education (399)
- Medical Ethics (109)
- Nephrology (442)
- Neurology (3912)
- Nursing (210)
- Nutrition (582)
- Oncology (2048)
- Ophthalmology (587)
- Orthopedics (242)
- Otolaryngology (306)
- Pain Medicine (250)
- Palliative Medicine (75)
- Pathology (473)
- Pediatrics (1116)
- Primary Care Research (455)
- Public and Global Health (6551)
- Radiology and Imaging (1410)
- Respiratory Medicine (872)
- Rheumatology (412)
- Sports Medicine (344)
- Surgery (452)
- Toxicology (54)
- Transplantation (186)
- Urology (167)