Cutaneous surgical wounds have distinct microbiomes from intact skin

Sameer Gupta,*, Alexandra J. Poret,*, David Hashemi, Amarachi Eseonu, Sherry H. Yu,*, Jonathan D’Gama, Victor A. Neel+, Tami D. Lieberman

1. Department of Dermatology, MGH, Boston, MA, USA
2. Current address: Department of Dermatology, Warren Alpert Medical School of Brown University, Providence, RI, USA
3. Institute for Medical Engineering and Sciences, Massachusetts Institute of Technology, Cambridge MA, USA
4. Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge MA, USA
5. Current address: Department of Dermatology, Dermatology and Plastic Surgery Institute, Cleveland Clinic Foundation, Cleveland OH USA
6. Ragon Institute of MIT, MGH, and Harvard, Cambridge MA, USA
7. Broad Institute of MIT and Harvard, Cambridge MA, USA

*These authors contributed equally to this work
+Co-corresponding authors: vneel@mgh.harvard.edu and tami@mit.edu

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
ABSTRACT

Background:
Infections are relatively rare following cutaneous surgical procedures, despite the potential for wound exposure to pathogens both during surgery and throughout the healing process. Although gut commensals are believed to reduce the risk of intestinal infections, an analogous role for skin commensals has not been described. In fact, the microbiome of normally healing surgical skin wounds has not yet been profiled using culture-independent techniques.

Results:
We characterized the wound microbiome in 52 patients who underwent skin cancer surgery and healed without signs or symptoms of infection. A week after surgery, several bacterial species displayed significant differences in relative abundance when compared to control, non-operated skin from the same patient. The most common bacteria found on intact skin, *Cutibacterium acnes*, was depleted in wounds 5-fold. Surprisingly, *Staphylococcus aureus*, a frequent cause of postoperative skin infections, was enriched 6.4-fold in clinically non-infected wounds, suggesting active suppression of this pathogen. Finally, members of the *Corynebacterium* genus were the dominant organism in postoperative wounds, making up 37% of the average wound microbiome.

Conclusions:
We observed distinct bacterial communities in acute wounds a week after surgery and anatomically-matched normal skin from the same patient. Future studies focused on the biological and clinical significance of the wound microbiome may shed light on normal wound healing and potential therapeutic opportunities to mitigate infection risk.
INTRODUCTION

The structural integrity of skin presents a formidable barrier against invasion by pathogenic bacteria encountered in the environment. It is generally accepted that following the disruption of this barrier-- due to surgery, trauma, or other insults-- the innate and adaptive arms of the immune system protect against infection until the barrier is re-established (Raziyeva et al. 2021). The skin microbiome is believed to play a role in skin homeostasis (Grice and Segre 2011; Zheng et al. 2020), possibly by modulating the invasive phenotype of pathogens (Byrd et al. 2018; Cogen et al. 2008). However, the role of the skin microbiome in promoting infection-free recovery after injury is not established.

While the microbiome of chronic skin ulcers and burns has been studied in humans (Byrd et al. 2018; Loesche et al. 2017; Plichta et al. 2017), few human studies have characterized the microbiome in uncomplicated, acute wounds (Bartow-McKenney et al. 2018; Holder-Murray et al. 2020). In one study, the microbiome of traumatic open fracture wounds was analyzed at time of presentation to the emergency department and at subsequent outpatient visits, concluding that microbial population shifts occur in wounds over the course of healing and are associated with the specific injury mechanism (Bartow-McKenney et al. 2018). Another study on microbiome transitions at the incisional site on the abdomen after colorectal surgery showed transient loss of skin commensals and appearance of potential pathogens and anaerobes originating from the gut (Holder-Murray et al. 2020). Surprisingly, no studies have explored the microbiome in normally healing, acute wounds following elective skin surgery.

This study characterizes the microbiome associated with acute surgical wounds to determine which, if any, commensal organisms routinely colonize open surgical wounds. Mohs micrographic surgery (MMS) wounds have unique properties that make them ideal for studying the microbiome of recovery after acute wounding. MMS wounds are generated in a controlled environment, unlike wounds resulting from nonsurgical trauma, and are therefore not exposed to a non-cutaneous reservoir of possible pathogens, such as the gut. In addition, many Mohs surgeons use second intention healing (SIH: permitting surgical wounds to heal open without approximating the wound edges with sutures), which provides a unique opportunity to study open wounds in the acute postoperative setting (Massey et al. 2021; Ravitskiy et al. 2012).

RESULTS

Study design

The skin microbiomes of 65 patients undergoing MMS and managed by either complete or partial SIH were profiled 6-8 days after surgery. For each surgical site, an anatomically-matched normal, intact skin site was sampled at the same time. The microbiome from each swab sample was then profiled using 16S rRNA sequencing of the V1-V3 region and a computational approach (see Methods) which enabled the classification of most skin bacteria at the species level. A total of 52 pairs of surgical samples and controls were included in the analysis after quality control (Table 1, Methods). For 8 of these 52 patients, termed ‘batch 2’, the normal skin microbiome was also sampled at the initial visit at both surgical and standardized sites (4 additional normal sites: glabella, alar crease, shin, and nasal mucosa) to better understand the baseline microbiome composition.
Table 1. Characteristics of study participants and surgical sites

<table>
<thead>
<tr>
<th>Patient and Surgical Site Variables</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demographics (n= 52 unique patients)</td>
<td></td>
</tr>
<tr>
<td>Age, y, median (IQR)</td>
<td>70 (18)</td>
</tr>
<tr>
<td>Sex, n (%)</td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>31 (60)</td>
</tr>
<tr>
<td>Female</td>
<td>21 (40)</td>
</tr>
<tr>
<td>Race, n (%)</td>
<td></td>
</tr>
<tr>
<td>Caucasian</td>
<td>49 (94)</td>
</tr>
<tr>
<td>Unknown</td>
<td>3 (6)</td>
</tr>
<tr>
<td>Ethnicity, n (%)</td>
<td></td>
</tr>
<tr>
<td>Non-Hispanic</td>
<td>47 (90)</td>
</tr>
<tr>
<td>Unknown</td>
<td>5 (10)</td>
</tr>
<tr>
<td>Hispanic</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Surgical Site Variables</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Anatomic location, n (%)</td>
<td></td>
</tr>
<tr>
<td>Eyelid</td>
<td>8 (15)</td>
</tr>
<tr>
<td>Postauricular/scalp</td>
<td>6 (12)</td>
</tr>
<tr>
<td>Ear</td>
<td>1 (2)</td>
</tr>
<tr>
<td>Nasal area</td>
<td>15 (29)</td>
</tr>
<tr>
<td>Lip</td>
<td>4 (8)</td>
</tr>
<tr>
<td>Forehead/temple</td>
<td>9 (17)</td>
</tr>
<tr>
<td>Cheek/chin</td>
<td>7 (13)</td>
</tr>
<tr>
<td>Neck</td>
<td>2 (4)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SIH type and area, n (%)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Complete SIH</td>
<td>8 (15)</td>
</tr>
<tr>
<td>Area, mm², median (IQR)</td>
<td>228 (148)</td>
</tr>
<tr>
<td>Partial Closure</td>
<td>44 (85)</td>
</tr>
<tr>
<td>Area, mm², median (IQR)</td>
<td>32 (31.5)</td>
</tr>
</tbody>
</table>

IQR = interquartile range
Healing wounds have a distinct microbiome

When visualized in two dimensions using principal-coordinate analysis, a clustering of wound vs. normal microbiomes is apparent (Figure 1A). This clustering is independent of anatomical location, sequencing run, cancer type, gender, or wound closure type/size in which samples were processed, indicating a robust distinction between skin and wound microbiomes (Supplementary Fig 2-6). Notably, microbiome samples from normal skin of different patients are more similar to one another than wound-normal pairs or even wound-wound pairs (Figure 1B; \(P < 10^{-6} \) Wilcoxon rank-sum). Surprisingly, wound-wound pairs are more discordant than wound-normal pairs (Bray Curtis: \(P=.04 \), Unifrac: \(P=.006 \), suggesting that the skin microbiome of acute wounds can develop in diverse ways.

Cutibacterium, the most abundant genus in the normal skin microbiome, is depleted in wounds relative to control skin (Figure 1C,D, Table 2; \(P < 10^{-6} \), Wilcoxon signed-rank). This depletion includes the most abundant species within the genus, *C. acnes* (\(P < 10^{-6} \)). This finding likely reflects the surgical removal of pilosebaceous units in the wound bed, the native niche for this genus (Acosta et al. 2021).

Conversely, wounds are enriched in the genus *Corynebacterium* relative to anatomically-matched controls (\(P=0.001 \), Wilcoxon signed-rank). Since this enrichment could have emerged as an artifact of *Cutibacterium* depletion, we attempted to account for the composite nature of the data by removing all *Cutibacterium* from our analyses and renormalizing bacterial ratios. After this correction, *Corynebacterium* remains significantly enriched in surgical wounds (Table 2; \(P = 0.009 \)), indicating an expansion of *Corynebacterium* in the wound niche.

Figure 1. Wound microbiome is altered, characterized by a loss of *Cutibacterium*

(a) Principal Coordinate Analyses (PCoA) using Bray-Curtis and weighted Unifrac metrics illustrates a separation between wound (blue) and control sites (orange) one week post-surgery. (b) Control samples (C-C) are more similar to one another than wounds samples (W-W) are to one another as assessed using the same diversity metrics metrics(* indicates \(P <10^{06} \); Wilcoxon rank-sum, n.s. indicates \(p > .001 \)). Wound samples have lower within-sample diversity (Shannon diversity) than control skin. (c) Community composition of all control and surgery samples sorted by descending *Cutibacterium* abundance. Most reads are classified to the genus level, but *Staphylococcus aureus* is listed separately for emphasis. (d) The fraction of *Cutibacterium* is significantly different between anatomically-matched control and wound samples one-week post-surgery (Wilcoxon rank-sum). Data shapes correspond to the batch-labeling scheme used in panel a.
Table 2. Comparison of Relative Abundance between Wound and Matched Control Sites

<table>
<thead>
<tr>
<th>Genus</th>
<th>With Cutibacterium</th>
<th>Cutibacterium Removed</th>
<th>P-value*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean Control Abundance</td>
<td>Mean Wound Abundance</td>
<td>Fold change on wounds</td>
</tr>
<tr>
<td>Cutibacterium</td>
<td>0.315</td>
<td>0.064</td>
<td>0.2</td>
</tr>
<tr>
<td>Corynebacterium</td>
<td>0.184</td>
<td>0.375</td>
<td>2.0</td>
</tr>
<tr>
<td>Staphylococcus</td>
<td>0.274</td>
<td>0.361</td>
<td>1.3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Species</th>
<th>Mean Control Abundance</th>
<th>Mean Wound Abundance</th>
<th>Fold change on wounds</th>
<th>P-value*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cutibacterium acnes</td>
<td>0.305</td>
<td>0.062</td>
<td>0.2</td>
<td><10^-5</td>
</tr>
<tr>
<td>Staphylococcus aureus</td>
<td>0.036</td>
<td>0.229</td>
<td>6.4</td>
<td>0.002</td>
</tr>
<tr>
<td>Staphylococcus epidermidis</td>
<td>0.156</td>
<td>0.096</td>
<td>0.6</td>
<td>0.012</td>
</tr>
<tr>
<td>Staphylococcus capitis</td>
<td>0.066</td>
<td>0.009</td>
<td>0.1</td>
<td><10^-5</td>
</tr>
<tr>
<td>Corynebacterium kroppenstedtii</td>
<td>0.108</td>
<td>0.060</td>
<td>0.6</td>
<td>0.003</td>
</tr>
<tr>
<td>Corynebacterium tuberculostearicum</td>
<td>0.046</td>
<td>0.157</td>
<td>3.4</td>
<td>0.001</td>
</tr>
<tr>
<td>Corynebacterium accolens/fastidiosum</td>
<td>0.010</td>
<td>0.046</td>
<td>4.7</td>
<td>0.021</td>
</tr>
</tbody>
</table>

*Wilcoxon rank-sum test, not corrected for multiple hypothesis testing
Staphylococcus aureus is commonly found in normally healing wounds after 1 week

While we did not identify an enrichment of the genus *Staphylococcus* in surgical wounds compared to normal skin microbiomes, stratifying the analysis by staphylococcal species yielded several significant variations between normal skin and wound microbiomes (Table 1). This result highlights the value of using 16S rRNA classifiers with species-level resolution, which was achieved by removing mislabeled sequences from public bacterial databases (Methods; Kozlov et al. 2016). In particular, *Staphylococcus epidermidis* and *Staphylococcus capitis* are depleted on wounds relative to normal skin (P<.02, Wilcoxon signed-rank; Figure 2). *Staphylococcus aureus*, the bacteria most commonly associated with cutaneous wound infections (Humphreys et al. 2016; Raff and Kroshinsky 2016), is enriched in surgical sites (P<.002; Figure 2). Of the 52 unique patient sample-pairs, this species was found at ≥ 5% relative abundance in 31% of healing wounds samples, compared to only 12% of normal skin samples. As patients with clinical signs of infection were specifically excluded from this analysis, the high rate of *S. aureus* occupancy in clinically normal wound beds is notable.

Wound colonization with *S. aureus* could have occurred through several mechanisms: contamination by surgical staff during the Mohs procedure, environmental contamination during wound care at home, or re-implantation from the patient’s microbiome. To investigate how *S. aureus* colonizes healthy wounds, we analyzed data from the eight patients with samples collected immediately after surgery—before any contaminant would have had time to replicate and reach detectable levels. Only two subjects carried *S. aureus* on control skin or in their nares at time of surgery, and both of these had detectable *S. aureus* in wounds a week later. In contrast, only one of six patients without *S. aureus* on control skin at time of surgery developed detectable *S. aureus* a week later. This observation, while not reaching statistical significance, (P = .11, Fisher’s exact test), supports the idea that *S. aureus* is likely to emerge from the patient’s microbiome, rather than from an external source (Huang et al. 2019; Kluytmans et al. 1997).

Figure 2. *S. aureus* asymptptomatically colonizes healthy surgical wounds

The fraction and mean abundance of *S. aureus*, *S. epidermidis*, and *S. capitis* for patient-and-site-matched control and wound samples one-week post-surgery is shown. A Wilcoxon signed-rank indicates a significant increase in *S. aureus*, a decrease in *S. epidermidis*, and a decrease in *S. capitis* in wound samples. Data point shapes correspond to the batch-labeling scheme used in panel 1a.
Specific *Corynebacterium* species are enriched in healing wounds

Not all *Corynebacterium* species detected on human skin are equally enriched in wounds (Figure 3A,B). A diversity of type and degree of enrichment is not surprising, as *Corynebacterium* species comprise a diverse genus, with over 110 validated species (Oliveira et al. 2017). Most human-associated *Corynebacterium* are considered commensals, commonly residing in the skin, upper respiratory tract, conjunctiva, and the urogenital tract (Ang and Brown 2007; Cogen et al. 2008; Hemsley et al. 1999; Qin et al. 2018; Sokol-Leszcynska et al. 2019). However, several species of *Corynebacterium* are known to be strictly pathogenic, most notoriously *C. diphtheria* (Bernard 2012; Cogen et al. 2008). Many *Corynebacterium* species, including *C. jeikeium* and *C. coyleae*, are considered opportunistic pathogens, causing disease in patients with a history of immune compromise, malignancy, or other morbid conditions (Bernard 2012). The overall rarity of these infections supports the categorization of most species of *Corynebacterium* as commensals or even culture contaminants (Bernard 2012; Fernández-Natal et al. 2008). In our study, *C. kroppenstedtii* is depleted on wounds relative to healthy skin (*P* = .003), suggesting that this species, like *S. epidermidis, S. hominis*, and *Cutibacterium acnes*, is a poor wound colonizer.

Several *Corynebacterium* species were found to be enriched on healing wounds relative to control skin, with the most significant enrichment found for *C. tuberculostearicum* (*P* <.002) (Figure 3C). *C. tuberculostearicum* normally colonizes dry, moist, and sebaceous areas of the skin (Byrd et al. 2018), but has also occasionally been isolated in infections. However, the majority of these occurred in immunocompromised patients or following orthopedic procedures (Hinic et al. 2012), and there is active debate whether the presence of *C. tuberculostearicum* represents true infection or contamination (Hinic et al. 2012; Kalt et al. 2018). Other species enriched on wounds include *C. accolens, C. amylociticum*, and *C. jeikeium*, though only the first of these reached statistical significance (Figure 3C; Table 2).

A prior study reported a negative correlation between *Corynebacterium* and *S. aureus* abundances in the nasal microbiome, supporting the notion that *Corynebacterium* species might provide colonization resistance against infections (Uehara et al. 2000). We also find a strong negative correlation between these bacterial groups in wounds (*r* = -0.70; Pearson correlation; Supplementary Figure 7). This inverse relationship is less apparent on control skin in our study (*r* = -0.28), perhaps because the low abundance of *S. aureus* on intact skin may limit the detection and relevance of these interactions. Regardless, the concordance between nasal and wound environments suggests that *Corynebacterium* can compete with *S. aureus* across niches.
DISCUSSION

The goal of this study was to identify the bacterial inhabitants of the wound microbiome following uncomplicated skin surgery. We compared the microbiomes of 52 clinically non-infected surgical wounds one week after surgery to those of intact, control skin. We find that a distinct subset of organisms from the local skin microbiome invade the wound and compete to establish the new wound microbiome. The acute wound microbiome signature is marked by a depletion of *Cutibacterium* and an enrichment of *S. aureus* and *Corynebacterium*. The loss of *Cutibacterium* in the wound microbiome is predictable, as this genus primarily resides in sebaceous glands (Acosta et al. 2021), which are largely removed during Mohs surgery. In contrast, *S. aureus* and several *Corynebacterium* species appear to be avid colonizers of surgical wounds. Enabled by a large sample size, the use of anatomically-matched controls from the same patients, and a species-level 16S rRNA classifier, these findings have implications for our understanding of colonization resistance in the skin.

It is generally understood that wound contamination by a potential pathogen can overwhelm local host defenses and cause clinical infection, a notion that can be traced back to the origin of the germ theory and substantiated by the success of antiseptic surgical technique by Lister in the 19th century (Gaines et al. 2017). In contrast, the potential importance of non-pathogenic bacterial colonization of wounds has received scant attention. Efforts by surgeons to minimize the risk of surgical site infection have therefore focused on strategies to create as sterile a surgical environment as possible, aggressively administering topical anti-infectives and systemic and local antibiotics.

Recently, there is a growing appreciation that despite these interventions, pathogenic and non-pathogenic bacteria have access to the wound bed throughout the healing process. Studies have shown...
that pathogenic organisms frequently originate not from external contamination by the surgeon or by the environment, but from cross-contamination from within the patient's microbiome (Bode et al. 2010; van Rijen et al. 2008; Schweizer et al. 2013). In humans, nasal carriage of \textit{S. aureus} is common and correlates with infection risk following surgery (Sakr et al. 2018). Our findings support the relevance of self-contamination: patients who had \textit{S. aureus} at baseline appeared more likely to have \textit{S. aureus} colonizing their wounds a week after surgery.

However, the mere presence of a pathogen in a patient’s wound is not sufficient for an infection to develop. Wounds healing by SIH, which have prolonged exposure to the environment, have similar infection rates to wounds closed surgically (Nathan et al. 2020; Schimmel et al. 2020). Fewer than 5% of typical surgical patients develop an infection (Dixon et al. 2006), despite our observation of \textit{S. aureus} colonization in 33% of normally healing wounds (Fig. 2). In line with this dichotomy, many authorities recommend against treating wounds that grow \textit{S. aureus} if patients lack the clinical signs and symptoms of infection (Healy and Freedman 2006).

Our finding that \textit{Corynebacterium} species frequently colonize wounds raises the possibility that \textit{Corynebacterium} colonization might be an important factor in regulating \textit{S. aureus} pathogenicity. Providing a possible mechanism, work by Ramsey et al. demonstrated that \textit{Corynebacterium striatum} suppresses expression of the \textit{agr} virulence pathway in \textit{S. aureus} (Ramsey et al. 2016). In addition, Yan et al. found that \textit{Corynebacterium} are more abundant in the nares of individuals without \textit{S. aureus} carriage (Yan et al. 2013). Indeed, a clinical trial has demonstrated that repeated introduction of \textit{Corynebacterium} into the nares of \textit{S. aureus} carriers helped eradicate \textit{S. aureus} colonization of the nares (Uehara et al. 2000).

The two most abundant coagulase-negative \textit{Staphylococci} -- \textit{S. epidermidis} and \textit{S. hominis} -- which are often considered as potential probiotics for the skin (Nakatsuji et al. 2017), did not thrive in open wounds (Figure 2). We therefore speculate that these species play a limited, if any, role in influencing wound infection risk.

There are several limitations to this study. All surgical sites were cleaned with 70% isopropyl alcohol prior to surgery. Sites that were partially closed were also treated with chlorhexidine prior to surgical closure, although differences were not detected between these two subsets of surgeries (Supplementary Figure 4.) While it has been reported that alcohol and other antiseptic treatments temporarily shift the skin microbiome, the influence of these treatments diminishes within hours (SanMiguel et al. 2018). We therefore expect negligible impact remaining at the time of sampling, one week later. Moreover, these treatments have been shown to decrease \textit{Corynebacterium} relative abundances short-term, while we find increased \textit{Corynebacterium} on wounds relative to untreated skin a week later. Other limitations of this study include the focus on older patients who may have slightly different microbiomes than younger adults (Howard et al. 2021), a single timepoint for sampling the microbiome, and a variation in sampled anatomic sites. No significant differences were noted in the wound microbiome in lesions of different sizes, at different locations, or by closure type (Supplementary Figure 4-6).

In conclusion, we observed distinct bacterial communities in acute wounds a week after surgery and anatomically-matched normal skin from the same patient. The prevalence of \textit{S. aureus} in clinically normal wounds was accompanied by the outgrowth of a variety of \textit{Corynebacterium} species. Further work is needed to establish whether \textit{Corynebacterium} colonization plays a role in limiting the risk of wound infection, the specific mechanism underlying this behavior, and by what means clinicians might leverage this information for the prophylactic prevention or treatment of surgical site infections.

MATERIALS AND METHODS

Study Patients

The study was approved by the Partners Human Research Committee Institutional Review Board, and all subjects provided written informed consent prior to undergoing any study procedures. The skin microbiomes of 65 patients undergoing MMS and managed by either complete or partial SIH were
profiled 6-8 days after surgery. MMS is a clean procedure and pre-, intra- and postoperative antibiotics are not routinely administered. Postoperative wound care by patients was restricted to daily washing with soap and water, applying sterile petrolatum and applying a sterile non-adhesive bandage. For each surgical site, anatomically-matched normal, intact skin site was sampled at the same time. The microbiome from each swab sample was then profiled using 16S rRNA sequencing of the V1-V3 region and a computational approach enabling the classification of most skin bacteria at the species level. Patients were further excluded from downstream analyses if they received prophylactic antibiotics (7 patients) or had clinical evidence of surgical site infection at the one-week visit (2 patients). Additionally, all remaining swabs were filtered to remove surgical samples and controls taken at a leg or shin site, as these samples were frequently found to contain non-skin species indicative of contamination (likely the result of low biomass). Samples were also filtered for quality control; both matching control and surgical samples needed to pass these metrics to be included in our analysis. Many patients were sampled at multiple different surgical sites. Of 61 remaining swab pairs, 4 were removed from these filters. If multiple pairs of wound and control samples from the same patient passed quality control, the site first sampled was used, removing a total of 5 samples. A total of 52 pairs of surgical samples and controls were therefore included in our analysis (Table 1).

These samples were collected in two batches, the first of which contained swabs from the open surgical site and from the anatomically-matched site – either from the contralateral side or adjacent normal skin if surgery site fell along the sagittal plane, such as the dorsum nose – during routine clinical follow-up. These samples were processed in two sequencing runs, and are therefore referred to as batch 1A and 1B. To capture the microbiome on day of surgery as well as additional controls, a second study batch included additional swabs from the open wound and of the anatomically-matched site on day of surgery as well as at postoperative follow-up. Additional control swabs of the nares, alar crease, glabella, and shin were also obtained in batch two on the day of surgery. 18 swabs exposed to only air were also obtained as a negative control in both phases.

Sample Processing and Sequencing
All samples were obtained using sterile cotton swabs (PurFlock Ultra®) that were moistened with a drop of sterile saline before sampling. Sampled surfaces were rubbed using 40 brisk strokes, placed in a sterile container, and stored at -20°C until shipment to Microbiome Insights for processing and sequencing. Cohort characteristics are summarized in Table 1.

DNA extraction, sample prep, and sequencing were performed by Microbiome Insights (Vancouver, Canada). DNA extraction was performed using the MoBio PowerMag Soil DNA Isolation Kit. PCR was performed with dual-barcoded primers (Kozich et al. 2013) targeting the 16S V1-3 (Bacteria) regions (27F: AGAGTTTGTATCMTGGCTCAG, 534R: ATTACCGCGGCTGCTGG) for 35 cycles. The PCR reactions were cleaned up and normalized using the high-throughput SequaPrep 96-well Plate Kit and sequenced on the Illumina MiSeq to 300 cycles.

16S Amplicon Analysis
Amplicon analysis was performed using the first 180 bp after the 27F primer. Cutadapt was used to trim and remove primers from reads (Callahan et al. 2016; Martin 2011), and QIIME2 (2020.01) and DADA2 (Bolyen et al. 2018; Martin 2011) were used to denoise raw reads using standard parameters, resulting in a table of amplicon sequence variants (ASVs) and their abundances across samples.

To classify 16S amplicon sequence variants (ASVs) at the species level, we built a classifier using a cleaned up version of the SILVA database (version 132) and the first 180 base pairs of the V1-V3 region (Quast et al. 2013). *Staphylococcus* species were filtered by the methods presented in Khadka et al. (Khadka et al. 2021), and the genuses *Cutibacterium*, *Acidipropionibacterium*, *Pseudopropionibacterium* and families *Corynebacteriaceae* and *Neisseriaceae* were cleaned in the database using the following...
filters: (i) sequences with inconsistent higher taxonomic classes were removed, (ii) sequences missing a species classification were removed, (iii) species with >60% of sequences that were identical to another taxa were relabeled as a specific “taxa cluster”, (iv) taxonomically mislabeled sequences identified using SATIVA using nomenclature code BAC (Kozlov et al. 2016) with greater than 90% confidence were relabeled and sequences with below 90% confidence removed. To reduce computational load, each family or genus was run independently in SATIVA. This process removed about 2% of sequences from each group. The resultant quality-controlled database was used to train a naive Bayes classifier in QIIME2.

All ASVs labeled by QIIME2 as only “Bacteria” or "Bacteria;Proteobacteria" were removed from the analysis by BLASTING the first 10 most prevalent reads labeled found to map to human genome regions. Additionally, reads aligning to the mislabeled ASV “"Bacteria;Bacteroidetes;Bacteroidia;Flavobacteriales;Flavobacteriaceae;Salinimicrobium;uncultured Pseudomonas” were removed as suspected contamination, as these taxa were found exclusively in Batch 2 and mapped to plant matter when BLASTED (Altschul et al. 1990; Sayers et al. 2022). To remove ASVs suspected to be contamination (e.g. introduced during DNA extraction), the mean abundance in air samples was compared to the average abundance in patient samples (at any location or timepoint), resulting in a contamination ratio for each ASV and batch. The empirical distributions of contamination ratios were examined, and ASVs with a contamination ratio of greater than 4 for batch 1A, 9 for batch 1B, and 6 for batch 2 were removed from the analysis (Supplementary Figure 1). Relative abundances were then calculated from the remaining ASVs. Samples with greater than 500 remaining ASV counts after contamination removal were included in downstream analyses.

Statistical Methods and Phylogenetics

For all comparisons between surgical and control sites, samples were only included if both a surgical and matched control sampling site passed the sequencing depth filter mentioned above. If a patient had multiple sites sampled, only the first was included in the matched-sample analysis to remove any patient-based bias. All statistical tests used are mentioned in the main text and figures where they are presented, using standard Matlab functions and the FATHOM toolbox (Jones, D 2017).

For phylogenetic reconstruction, the full 16S sequence of all Corynebacterium species found in our dataset was pulled from the SILVA database (version 132). A phylogenetic tree was constructed in MEGAx using the pre-aligned sequences from SILVA and a neighbor-joining model with Tamara-Nei substitutions (Stecher et al. 2020). This tree is rooted to the distant outgroup *Haemophilus massiliensis* (SILVA accension number HG931334).

DECLARATIONS

Ethical Approval and Consent to Participate
The study was approved by the Partners Human Research Committee Institutional Review Board, and all subjects provided written informed consent prior to undergoing any study procedures.

Consent for Publication
Not applicable.

Availability of Data and Materials
Sequencing data is available under the BioProject number PRJNA809947. Code and data processing scripts can additionally be found at https://github.com/ajporet/cutaneous_wound_microbiome.

Competing Interests
No authors declare any conflicts of interest.
Funding
This research was supported by a Harvard Catalyst grant (to VAN).

Authors' Contributions
Conceptualization: VAN; Methodology: SG, SHY, VAN, and TDL; Investigation: SG, DH, AE, and VAN; Data Curation: SG and AJP; Formal Analysis: AJP and TDL; Writing – Original Draft Preparation: SG, AJP, VAN, and TDL; Writing – Review and Editing: SG, AJP, DH, AE, SHY, JG, VAN, and TDL; Visualization: AJP; Project Administration: VAN; Resources: VAN and TDL; Supervision: VAN and TDL; Funding Acquisition: VAN.

Acknowledgements
We thank Alexander McAdam and Stacey McMurray and members of the Lieberman Lab for helpful discussions.
REFERENCES

Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet journal. 2011;17(1):10–2

SUPPLEMENTARY FIGURES

Supplementary Figure 1: Histograms determining contaminant ratio cutoffs
Histograms were used to remove contaminant taxa. By examining histograms of air sample /non-air ASV abundance ratios, a cutoff was set at 4 for batch 1A, 9 for batch 1B, and 6 for batch 2. All taxa with abundance ratios above this cutoff were removed from analysis. Histograms bounded from air sample /non-air sample abundance ratios of below 40 are shown above.

Supplementary Figure 2: No bias is observed in microbiome distribution by sex.
Supplementary Figure 3: No bias is observed in microbiome distribution between cancer type.

Supplementary Figure 4: No bias is observed in microbiome distribution between wound closure type.
Supplementary Figure 5: No bias is observed in microbiome distribution by wound size.

Supplementary Figure 6: No obvious bias is observed in microbiome distribution by anatomical location.
Supplementary Figure 7: Comparing genus-genus correlations reveals *Corynebacterium* *Staphylococcus* anti-correlation in wound, but not control samples

By comparing Pearson’s R between the abundances of a specified genus in either control or wound samples, we find that *Corynebacterium* and *Staphylococcus* have an R value of -.70, an outlier compared to all other genus-*Corynebacterium* or genus-*Staphylococcus* comparisons. This outlier relation is not seen in healthy samples (*Staphylococcus* –*Corynebacterium* r value: -.28).