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The timing of parturition is crucial for neonatal survival and infant health. Yet, its genetic
basis remains largely unresolved. We present a maternal genome-wide meta-analysis of
gestational duration (n = 195,555), identifying 22 associated loci (24 independent variants)
and an enrichment in genes differentially expressed during labor. A meta-analysis of
preterm delivery (cases = 18,797, controls = 260,246) revealed 6 associated loci, and large
genetic similarities with gestational duration. Analysis of the parental transmitted and
non-transmitted alleles (n = 136,833) shows that 15 of the gestational duration genetic
variants act through the maternal genome, while seven act both through the maternal
and fetal, and two act only via the fetal genome. Finally, the maternal effects on
gestational duration show signs of antagonistic pleiotropy with the fetal effects on birth
weight: maternal alleles that increase gestational duration have negative fetal effects on
birth weight.

In humans, similar to mammals broadly, the
timing of delivery is crucial for neonatal
survival and health. Preterm delivery is the
world-leading direct cause of death in
neonates and children under five years of age
1. While the rate of neonatal mortality has

substantially decreased in recent years, the
reduction attributable to preterm delivery is
one of the lowest among the major causes of
mortality 2. This partly reflects the relatively
poor knowledge of the processes governing
the timing of delivery in humans. Parturition
may be initiated by a diversity of biological and
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mechanical pathways. Some of these are part
of the physiological timing process, while
others may override pregnancy maintenance
with fail-safe mechanisms (e.g., in the case of
uterine infection) 3. The diversity of the
mechanisms has led to the conceptualization
of preterm delivery as a syndrome 4, with
various pathophysiological processes
contributing to its etiology. Both maternal and
fetal genomes are involved in these
mechanisms. Yet, genetic studies have
identified only a handful of loci associated with
the timing of parturition 5,6.

Gestational duration is the major determinant
of birth weight (i.e., the longer the gestation,
the heavier the newborn). At the same time,
uterine load is one of the known triggers of
parturition 7, evidenced by half of twin
pregnancies delivering preterm 8. Both the
maternal and fetal genomes contribute to
birth weight as well, as revealed in recent
genome-wide association studies (GWAS) 9,10,
and over evolutionary time may have even
conflicted on gestational duration and birth
weight, as proposed in the hypothesis of the
genetic conflicts of pregnancy 11. This
hypothesis suggests that the maternal
genome favors slightly shorter gestations and
lower birth weight while the fetal genome
favors the opposite. Co-adaptation theory,
instead, suggests that maternal and fetal
genomes may invest resources to achieve an
optimal gestational duration or birth weight
that increases fitness 12. These known
contributions, potential conflicts, and
coadaptation of gestational duration and birth
weight may ultimately create a complex
relationship between the two.

What and how distinct are the maternal
genetic effects on gestational duration and
preterm delivery? What is the relationship
between fetal growth and gestational

duration? Is there evidence suggesting
maternal-fetal co-adaptation on these traits?
To address these questions, we conducted a
GWAS meta-analysis of gestational duration
and preterm and post-term delivery in
>190,000 maternal samples with spontaneous
onset of delivery. We further analyzed these
results using the parental transmitted and
non-transmitted alleles in >135,000
parent-offsprings.

Results

Genome-wide association analyses

We conducted a GWAS meta-analysis of
gestational duration in 195,555 women of
recent European ancestry (Supplementary
Table 1), a four-fold increase in sample size
compared to the largest published maternal
GWAS of gestational duration 5. After quality
control, genetic variants at 22 loci were
associated with gestational duration at
genome-wide significance (Fig. 1,
Supplementary Table 2, and Supplementary
Fig. 1). Approximate Conditional and Joint
(COJO) analysis revealed two conditionally
independent signals at EBF1 and KCNAB1 gene
regions. Sixteen of the loci did not overlap with
any previously reported gestational
duration-associated locus 5. Effect sizes were
relatively small, ranging from 7 (HIVEP3/ EDN2)
to 27 (MRPS22) hours of gestation per allele
(average duration of gestation = 282 days, 40.3
weeks). Heterogeneity in the effect estimates
was limited to loci previously identified (EBF1,
WNT4, ADCY5, EEFSEC and AGTR2), likely due to
winner’s curse 13 (Supplementary Table 2 and
Supplementary Fig. 2). Out-of-sample
re-analysis of previously reported gestational
duration-associated lead SNPs (n = 6) show
that all four that were available after QC
replicate at nominal significance
(Supplementary Table 3). In addition, all 6 loci
(± 250 kb from lead SNP) replicated at
suggestive evidence.
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To prioritize candidate genes, we performed
colocalization analysis 14 with cis-expression
quantitative trait loci (eQTL) in induced
pluripotent stem cells 15, endometrium 16,
uterus, vagina and ovary 17 (Supplementary
Table 4). eQTLs for seven protein coding
(OPRL1, ZBTB38, RGS19, TET3, COL27A1,
CRISPLD1 and ADCY5) and four non-coding
genes colocalized with gestational duration.
Furthermore, colocalization analysis with
blood protein QTLs 18 showed several trans
associations: ZBTB38 with three proteins, and
TCEA2/ OPRL1 and WNT4 with one each.
Particularly interesting are the associations
with OPRL1 and POMC, which play a role in
modulating nociception and pain perception;
in vitro studies in tissues from pregnant rats
and humans suggests that the administration
of nociceptin inhibits uterine contractions,
mediated by the OPRL1 receptors 19,20.

RNA tissue-specific enrichment of top genes
highlighted the endometrium and other
female reproductive and smooth muscle
tissues (Supplementary Fig. 3), results further
supported at the genome-wide scale using
stratified LD-score regression (Supplementary
Fig. 4). Previous genetic studies have
suggested a critical role of the decidua
(endometrium) in the timing of parturition,
indicating an effect early in pregnancy 21. Using
stratified LD-score regression, we show that
the heritability of gestational duration is
enriched in regions harboring genes
differentially expressed during labor
(enrichment = 1.7, p-value = 7.1×10-7, Extended
Data Fig. 1) 22, suggesting the SNPs associated
with gestational duration may as well act
during labor.

Stratified LD-score regression (Supplementary
Fig. 5) revealed an enrichment in background
selection, super enhancers, CpG content,
H3K23ac and DNA methylation. Using the
mosaic pipeline 23, we confirm that gestational
duration loci have diverse evolutionary
histories, including evolutionary conservation,
excess population differentiation and negative
selection (Supplementary Fig.  6).

We also performed a GWAS meta-analyses of
preterm delivery (controls, delivery between
39 and 42 gestational weeks, n = 260,246;
cases, delivery < 37 completed weeks, n =
18,797) and post-term delivery (controls,
delivery between 39 and 42 gestational weeks
= 115,307, cases > 42 completed weeks, n =
15,972) (Fig. 1A, Supplementary Table 2 and
Supplementary Fig. 7-8). We observed a lower
number of associated loci: 6 and 1 for preterm
and post-term delivery, respectively. COJO
analysis identified a secondary conditionally
independent SNP associated with preterm
delivery at the EBF1 gene region. We identified
only one locus associated with preterm
delivery (rs312777, p-value = 6.6×10-9) that
showed weak evidence of association with
gestational duration (p-value = 3.9×10-3).

We observed a modest genetic correlation (rg =
-0.62; 95% CI = -0.72, -0.51) between
gestational duration and preterm delivery,
suggesting similarities between the two
phenotypes (Supplementary Fig. 9 and
Supplementary Fig. 10). Post-term delivery,
instead, showed a perfect genetic correlation
with gestational duration (rg = 1.17; 95% CI =
0.93, 1.41), suggesting no differences in the
maternal genetic effects on such traits.
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Fig. 1. GWAS of the timing of parturition and dissection of maternal-fetal effects. (A) Miami plot
illustrating the GWAS for gestational duration (top) and preterm delivery (bottom). The x-axis shows the
chromosome position and the y-axis the two-sided p-value of the inverse-variance weighted meta-analysis.
The dashed line represents the genome-wide significance threshold (p-value = 5×10-8). Each genome-wide
significant locus is labeled by their nearest protein-coding gene. Blue, previously identified locus; pink,
newly identified locus. (B) Clustering of the effect origin for the index SNPs for gestational duration using
transmitted and non-transmitted parental alleles (n= 136,833). Numbers depicted above the heatmap are
the highest probability observed for that SNP and group names define the cluster to which the highest
probability refers to. The probabilities were estimated using model based clustering. Heatmap represents
effect size and effect direction for the parental transmitted and non-transmitted alleles. For comparison
purposes, the maternal alleles with positive effects were chosen as reference alleles. Three major groups
were identified according to the highest probability: maternal only effect, fetal only effect and maternal and
fetal effect. Within variants with both maternal and fetal effects two clusters were observed: same (“SD”) or
opposite (“OD”) effect direction from maternal and fetal genomes. One of the fetal effects was further
clustered as having a parent-of-origin effect (“PoE”), specifically, an effect from the maternal transmitted
allele.

Resolving maternal-fetal effect origin
The genetic effects on pregnancy traits may be
driven by two correlated genomes: the
maternal and the fetal. To investigate whether
the gestational duration signals originate in

either or both genomes, we used phased
genotype data to estimate the effects of the
parental transmitted and non-transmitted
alleles from 136,833 parent-offspring trios or
mother-child duos (Fig. 1B, Supplementary
Table 5 and Extended Data Fig. 2; the maternal
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samples of these duos/ trios were part of the
GWAS meta-analysis). Based on pattern
similarity using Gaussian mixture
model–based clustering 10, SNPs were
assigned to three large groups. Of the 24 index
variants, 15 had the highest probability of a
maternal effect, seven of both maternal and
fetal effects (five, with opposite effect
directions, and the remaining two, with the
same direction). Finally, two variants were
grouped as having a fetal only effect; the first,
independent of the parent of origin (TFAP4,
probability= 0.57), the second limited to the
maternal transmitted allele (EEFSEC). Caution
should be taken when interpreting the latter
considering the low probability (0.47).

The index SNP at ADCY5 locus (rs28654158)
had both maternal and fetal effects on
gestational duration with the same effect
direction. Interestingly, a SNP also located in
the first intron of ADCY5 harbors maternal and
fetal effects on birth weight, but in opposite
directions, attributed to the fetal insulin
hypothesis 9,10. The two index SNPs for
gestational duration (rs28654158) and birth
weight (rs11708067) are located 50 kb apart
from each other and are in low LD (R2 < 0.2).
The birth weight SNP, also implicated in
diabetes, likely acts through ADCY5 24, but it is
unknown whether the gestational duration
variant also acts through the same gene,
although it colocalizes with ADCY5 gene
expression in the uterus (Supplementary Table
4). Despite being physically close to each
other, differences between the two loci are
evident in the traits they colocalize with. The
gestational duration locus also affects
fat-mass-related traits, while the birth weight
locus affects glucose-related ones (Extended
Data Fig. 3).

The only fetal index SNP identified to date in a
GWAS (rs7594852; MAF = 0.49; beta = 0.37
days; 95% CI = 0.22, 0.51) 6 clustered as having
a fetal only effect (Supplementary Table 5,
probability = 1), independent of the parent of
origin (beta paternal transmitted allele = -0.42,
p-value = 2.7×10-6).

Polygenic score of gestational duration and
preterm delivery have similar prediction
accuracy on preterm delivery
We built polygenic scores for gestational
duration and preterm delivery using the
corresponding GWAS results in the MoBa
cohort (including the X chromosome) using
LDpred225 and estimated its effect on both
traits. The polygenic score for gestational
duration explains 2.2% of its variance (beta =
0.22 days per z-score; 95% CI = 0.02, 0.03; n =
3,943). The lowest decile had a mean
gestational duration of 278 days (95% CI = 278,
279) while the highest decile had a mean of
283 days (95% CI = 282, 284) (Fig. 2). The
polygenic score was also significantly
associated with preterm delivery
(Supplementary Table 6 and Supplementary
Fig. 11, odds ratio = 0.994; 95% CI = 0.990,
0.997) with an area under the curve of 0.61
(95% CI = 0.55, 0.67). For comparison, a
polygenic score for preterm delivery was built
using the same samples as above. This
polygenic score was also significantly
associated with preterm delivery
(Supplementary Table 6 and Supplementary
Fig. 11, odds ratio = 1.005, 95% CI = 1.001,
1.009), with effect estimate similar to that
obtained for the gestational duration
polygenic score (after matching the direction).
This reflects the genetic similarity between
gestational duration and preterm delivery.
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Fig. 2. Polygenic prediction of gestational duration. Mean (95% CI) gestational duration for each decile of
the gestational duration polygenic score (n = 3,943). Only spontaneous deliveries were considered.

Strong pleiotropic effects between
sex-hormones and the timing of parturition

To examine the potential shared genetic basis
between the timing of parturition and other
traits, we estimated the genetic correlations
between 14 female reproductive traits and the
maternal effects on gestational duration and
preterm delivery (Fig. 3). These estimates were
generally comparable, with the latter being
consistently higher. Calculated bioavailable
testosterone (CBAT, rg = 0.40; 95% CI = 0.26,
0.54), testosterone (rg = 0.35; 95% CI = 0.19,
0.51) and sex hormone binding globulin
(SHBG, rg = -0.16; 95% CI = -0.27, -0.06) in
women were modestly genetically correlated
with preterm delivery, whereas there was little
genetic correlation with levels of the same
hormones in men (Supplementary Table 7).
We observed a positive genetic correlation
between preterm delivery and the number of
live births and, while this may be
counter-intuitive, it is in line with a positive

genetic correlation reported between
miscarriage and the number of live births 26.

The genetic correlation between preterm
delivery and the number of live births was
twice as high in cohorts where the women’s
whole reproductive history was available (rg =
0.27; 95% CI = 0.11, 0.43) compared to cohorts
based on a random pregnancy (rg = 0.13; 95%
CI = 0.00, 0.26), indicating an increased
probability of preterm delivery with an
increasing number of live births. We also
detected a negative genetic correlation with
age at first birth and age at menopause.

Genetic correlations can arise due to
pleiotropy or due to a trait being causally
upstream of the other. To distinguish between
these situations, we used a latent causal
variable (LCV) 27 model between
sex-hormones, and preterm delivery and
gestational duration (Supplementary Table 8).
We observed evidence for full or nearly full
genetic causality of CBAT, testosterone, and
SHBG on preterm delivery (0.7 < GCP ≤ 0.8),

6

 . CC-BY-NC 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 12, 2022. ; https://doi.org/10.1101/2022.05.04.22274624doi: medRxiv preprint 

https://doi.org/10.1101/2022.05.04.22274624
http://creativecommons.org/licenses/by-nc/4.0/


but not on gestational duration (0.4 ≤ GCP <
0.5).

Fig. 3. Genetic correlations between gestational
duration and preterm delivery and other female
reproductive traits. (A) Genetic correlations using
LD-score regression. Dots are the genetic
correlation estimate and error bars, the 95% CI. The
direction of the genetic correlations with preterm
delivery was flipped so that term deliveries were
considered as cases and preterm deliveries as
controls. Hence, the direction of the genetic
correlations of preterm delivery matches that of
gestational duration, providing a clear comparison
of the 95% CI. Pink, preterm delivery; blue,
gestational duration.

In a two-sample Mendelian randomization
analysis, the concentrations of these sex
hormones (Supplementary Table 9-10),
including a set of variants that have consistent
effects on testosterone, but no aggregate
effects on SHBG 28, were associated with
gestational duration and preterm delivery.
While the MR-Egger intercept was not
significantly different from 0 (Supplementary
Table 10 and Extended Data Fig. 4),

colocalization analyses across the genome
confirmed that distinct variants underlie the
associations for sex-hormones and the timing
of parturition (Supplementary Fig.  12).
Using the parental transmitted and
non-transmitted alleles in individual level
parent-offspring data from Iceland and
Norway (deCODE, MoBa and HUNT; n = 46,105
parent-offsprings, Supplementary Table 11),
we observed a nominally significant
association between the maternal
non-transmitted alleles polygenic scores for
CBAT and testosterone and gestational
duration.

Testosterone and SHBG levels have a complex
genetic link with the timing of parturition,
likely explained by partial causality, as pointed
out by the LCV analysis on gestational
duration.

Maternal, but not fetal effects on birth
weight are partially mediated by
gestational duration
We sought to understand the genetic
relationship between gestational duration and
birth weight and how the interplay between
the maternal and fetal genomes affect this
relationship. We used published summary
statistics of birth weight (<15% of samples
adjusted for gestational duration) derived
from two different models 9: maternal only
effect (adjusted by fetal effects) and fetal only
effect (adjusted by maternal effects). These
models were obtained using weighted linear
modeling, and provide unbiased estimates for
the maternal and fetal effects, respectively.
The fetal effects on gestational duration were
obtained from a previously published GWAS 6.
The more recent GWAS meta-analysis of fetal
growth 10 had >40% of samples adjusted for
gestational duration, the reason why we did
not use it in this section.
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The maternal effects on gestational duration
are strongly correlated with those on birth
weight (Supplementary Fig. 13, rg = 0.65; 95%
CI = 0.54, 0.75). Conversely, neither the
maternal (rg = -0.05; -0.15, 0.04) nor the fetal (rg

= -0.02; 95% CI = -0.15, 0.11) effects on
gestational duration were genetically
correlated with the fetal only effects on birth
weight. We suggest the maternal effects on
birth weight are, at least partially, mediated by
gestational duration, while the effects of the
fetus on birth weight are not.

We then tested the extent of this mediation.
Using multi-trait COJO analysis 29, we
conditioned the genetic effects on birth weight
on the maternal effects on gestational
duration. After conditioning, the maternal
effects on birth weight changed substantially:
the SNP-heritability was reduced by 53%
(p-value = 9.4×10-7, Supplementary Table 12),
and the effect size of 87 suggestive SNPs
dropped (Fig. 4A, median relative difference =
-11%, Wilcoxon rank-sum test p-value =
1.3×10-8). Applying the same method on
genome-wide significant variants classified
with a “Maternal Only” effect on birth weight 9

provided very similar results (Supplementary
Table 13 and Supplementary Fig. 14). This was
further replicated using individual level data
by directly adjusting for gestational duration in
the linear model on birth weight (using
genotypes in Icelandic data and the maternal
non-transmitted alleles in MoBa, Norway,
Supplementary Table 13 and Supplementary
Fig. 14). In contrast, for fetal effects on birth
weight, conditioning on gestational duration
did not change the effect estimates or the
heritability (Fig. 4A and Supplementary Table
12 for results with 108 suggestive SNPs and
Supplementary Table 13 and Supplementary
Fig. 14 with genome-wide significant variants
classified as having a “Fetal Only” 9).

In summary, while the maternal effects on
birth weight are partially driven by gestational
duration, we found no evidence for this for the
fetal effects on birth weight.

The maternal genome drives the
phenotypic association between
gestational duration and birth weight
It is widely accepted that longer gestations
lead to heavier newborns. Here, we sought to
obtain causal estimates of the effect of
gestational duration on birth weight.
We used the index SNPs from our discovery
GWAS and the effect estimates from the
maternal non-transmitted alleles as genetic
instruments in a two-sample Mendelian
randomization analysis (Fig. 4B and
Supplementary Fig. 15) on the maternal only
effects on birth weight (derived using a
weighted linear model 9). The maternal
non-transmitted gestational
duration-increasing alleles were associated
with higher birth weight (beta = 0.06 z-scores
per day; 95% CI = 0.05, 0.08; p-value =
1.7×10-16). The estimated effect (approximately
23 g per day) is concordant with the
phenotypic association between gestational
duration and birth weight (25 g per day in
18,452 samples from the MoBa cohort). We
observed no effect from the paternal
transmitted gestational duration-increasing
alleles on birth weight. The LCV model
confirmed a full or nearly full causal (GCP = 0.6,
p-value = 0.002, Supplementary Table 8) effect
of gestational duration on birth weight.

Maternal effects on gestational duration
and fetal effects on birth weight exhibit
signs of antagonistic pleiotropy
First, we evaluated the impact of fetal growth
on gestational duration by instrumenting fetal
growth using 68 SNPs with fetal only effect on
birth weight (n= 35,280 and 48,741
parent-offsprings, Supplementary Table 14) 9.
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Fig. 4. Genetic relationship between gestational duration and birth weight. (A) Distribution of the
relative difference in effect size before and after conditioning the effect on birth weight by the maternal
effect on gestational duration using approximate multi-trait conditional and joint analysis. In blue, relative
difference in effect sizes for the maternal only effects on birth weight before and after conditioning; in pink,
relative difference in effect sizes for the fetal only effects on birth weight after conditioning. After
conditioning, we split the genome into approximately LD-independent regions and selected the SNPs with
the lowest p-value on birth weight (p-value < 5×10-6) from each region (n SNPs maternal effect = 87; n SNPs
fetal effect = 108). (B, C) Scatterplot for two-sample Mendelian randomization analysis for the maternal
effect of gestational duration on birth weight (B, maternal or C, fetal effects). Each dot represents one of the
gestational duration index SNPs. Effect sizes and standard errors from the index SNPs for gestational
duration derived from the maternal non-transmitted alleles were obtained from the meta-analysis of
parent-offspring data (n= 136,833). The maternal only and the fetal only effects on birth weight were
extracted from a previous GWAS meta-analysis (n= 210,248 and 297,356, respectively). The x-axis shows the
SNP effect of the maternal non-transmitted alleles on gestational duration, and the y-axis the effect on birth
weight. Horizontal and vertical error bars represent the standard error. The gray line depicts the
inverse-variance weighted method estimate, and the gray-dashed line the MR-Egger estimate. Colors
represent the clustering of the SNP effects on gestational duration, performed using model based
clustering.

Higher paternally transmitted birth weight
score was associated with shorter duration of
gestation and the estimated effect was larger
when estimated using the last menstrual
period (beta = -1.9 days per z-score, p-value =
4.0×10-4) than ultrasound. This result supports

previous evidence showing faster fetal growth
is associated with shorter duration of
gestation 30. To investigate whether this was
due to antagonistic pleiotropy between the
fetal effects on birth weight and the maternal
effects on gestational duration, we assessed
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the relation between birth weight-increasing
alleles and maternal effects on gestational
duration. The fetal birth weight-increasing
alleles were not associated with maternal
effects on gestational duration
(Supplementary Table 15), suggesting that the
results presented above are likely not due to
antagonistic pleiotropic effects.

Next, we used summary statistics to
investigate potential pleiotropy between the
genetic effects on gestational duration and
fetal birth weight. Using methods borrowed
from Mendelian randomization analysis, we
evaluated the association between the
maternal gestational duration-increasing
alleles and the fetal effects on birth weight. We
observe that the alleles that increase
gestational duration through a maternal effect
tend to reduce birth weight through a fetal
effect (Fig. 4C and Supplementary Table 15).
Interestingly, this effect was not limited to the
maternal transmitted alleles (beta = -0.02
z-scores per day; 95% CI = -0.03, -0.01; p-value
= 3.4×10-4), but was also observed for the
maternal non-transmitted gestational duration
increasing alleles (beta = -0.01 z-scores per
day; 95% CI = -0.02, -0.01; p-value = 6.2×10-3).
The paternal transmitted gestational duration
increasing alleles were not associated with
fetal only effects on birth weight
(Supplementary Table 15).

Discussion
The timing of parturition is crucial for neonatal
survival and health. Yet, discovery of maternal
and fetal genetic effects lags behind that of
other pregnancy traits such as birth weight 9

and fetal growth 10. In this GWAS meta-analysis
of parturition timing, we identified 17 loci not
previously reported, one of which was more
strongly linked to preterm delivery than to
gestational duration. The results support large
similarities in the maternal genetic effects on
gestational duration and preterm delivery. By
including parent-offspring data with a similar
sample size to that of the discovery GWAS, we
were able to discern maternal from fetal
effects with high certainty in most index SNPs.
Finally, the results show a complex genetic

relationship between the maternal and fetal
genomes on gestational duration and birth
weight.

Our understanding of the molecular signals
governing the timing of parturition in humans
has not advanced significantly. Previous
genomic evidence suggests a critical role of
the decidua 21, denoting an effect on the
timing of parturition as early as implantation.
We report that the SNP-heritability of
gestational duration is enriched in genes
differentially expressed during labor in the
myometrium. We suggest the maternal effects
on the duration of gestation may as well act
during labor, for instance, by inhibiting uterine
contractions. Genetic studies of gestational
duration may prove useful in the discovery of
drug targets as tocolytic agents or for labor
induction. At the same time, the genetic
effects on gestational duration and preterm
delivery are largely similar; this is opposed to
the heterogeneity observed at the phenotypic
and transcriptomic levels 31,32. As an example,
while the polygenic score of gestational
duration is still inadequate for clinical use, it
had a similar effect on preterm delivery as a
polygenic score of preterm delivery itself.

Gestational duration is the major determinant
of birth weight. While the maternal genome
affects offspring birth weight through many
different causal pathways (e.g., maternal
glucose levels 9,10), the effects are partly
mediated by gestational duration. This has
implications on the interpretation of GWAS of
birth weight and downstream analyses, such
as Mendelian randomization. In contrast with
this, the fetal genetic effects on birth weight
are not mediated by gestational duration,
suggesting the fetal genome mainly acts on
birth weight by modulating fetal growth.
Interestingly, the maternal gestational
duration increasing alleles have negative fetal
effects on birth weight, likely reflecting
antagonistic pleiotropy. The opposite was not
true; fetal birth weight increasing alleles were
not associated with maternal effects on
gestational duration. We speculate that the
fetal effects on birth weight have likely
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coadapted to increase the fitness of the fetus
in pregnancies genetically predisposed to a
shorter duration. It has been suggested that
both gestational duration and birth weight are
under balancing selection, with intermediate
values of these traits having highest fitness 3,33.
As exemplified here, this could lead to
antagonistic pleiotropy favoring the
coadaptation of maternal and fetal effects to
attain optimal gestational duration and birth
weight 12.

The presented results have several limitations.
First, we analyzed data from participants of
European ancestry. Over 70% of the samples
were obtained from Nordic countries, with
genotype data linked to the Medical Birth
Registers; in these countries, the preterm
delivery rate is one of the lowest in the world 1.
Studying diverse ancestries would propel the
identification of novel loci associated with
gestational duration and aid in fine-mapping
efforts, as has been previously shown for
other traits 34. Second, to understand the
relationship between gestational duration and
birth weight, we used summary statistics from
a previously published birth weight GWAS that
was partially adjusted for gestational duration
(<15% of samples) and excluded preterm
deliveries. This is likely to affect our analyses
by reducing their power. Third, we assumed a
causal association between gestational
duration and birth weight. While this is known
to be true to some extent (i.e., longer
gestations are linked to heavier newborns),
pleiotropy between gestational duration and
birth weight could be very well at play. And,
fourth, phenotypic heterogeneity between
cohorts (e.g., gestational duration estimation
method) may have hindered the identification
of additional signals.

In conclusion, the present results provide
evidence of large genetic similarities between
gestational duration and preterm delivery and
further our understanding of the complex
relationship between gestational duration and
birth weight, likely shaped by strong
evolutionary forces. Particularly, we showed
that the maternal effects on birth weight are
largely driven by gestational duration and that

the maternal and fetal genomes have
antagonistic pleiotropic effects on gestational
duration and birth weight.

Online Methods
Phenotype definition

In this study we included pregnancies with a
singleton live birth and a spontaneous onset
of delivery: medically initiated deliveries
(either by induction or planned cesarean
section) were excluded or part of controls for
preterm delivery. Gestational duration in days
was estimated using either the last menstrual
period date or ultrasound. We excluded
pregnancies lasting <140 days (20 completed
weeks) or >310 days (44 completed weeks), as
well as women with health complications prior
to or during pregnancy and congenital fetal
malformations. Spontaneous preterm delivery
was defined as a spontaneous delivery <259
days (37 completed gestational weeks) or by
using the ICD-10 O60 code, and controls as a
delivery occurring between 273 and 294 days
(39 and 42 gestational weeks). Post-term
delivery was defined as a delivery occurring
>294 days (42 completed weeks) or ICD-10
O48 code, and controls as a spontaneous
delivery between 273 and 294 days (39 and 42
gestational weeks). Given the perfect genetic
correlation between gestational duration and
post-term delivery GWAS, and the small power
of the latter, all downstream analyses are
focused on gestational duration and preterm
delivery.

Study cohorts and individual-level GWAS

This study consists of cohorts participating in
the Early Growth Genetics (EGG) Consortium
and the Norwegian Mother, Father and Child
Cohort study (MoBa) 35, deCODE genetics 10,
Trøndelag Health Study (HUNT) 36, Danish
Blood Donor Study (DBDS) 37, the Estonian
Genome Center of the University of Tartu
(EGCUT) 38 and summary statistics from
FinnGen 39 and a previous GWAS of gestational
duration and preterm delivery performed
using 23andMe, Inc, data 5. A total of 18
different cohorts (Supplementary Table 1)

11
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provided GWAS data under an additive model
for meta-analysis for the maternal genome,
resulting in 195,555 samples for gestational
duration, 276,218 samples for preterm
delivery (n cases= 18,797) and 115,307
samples for post-term delivery (n cases=
15,972) of recent European ancestries
(indicated by principal component analysis).
For binary outcomes (preterm and post-term
deliveries), only cohorts with an effective
sample size > 100 were included. Detailed
description of the cohorts included can be
found in the Supplementary text. All study
participants provided a signed informed
consent, and all research studies were
approved by the relevant institutional ethics
review boards (Supplementary Text).

Each individual cohort applied specific quality
control procedures, data imputation and
analysis independently following the
consortium recommendations. Unless more
stringent, samples were excluded if genotype
call rate <95%, autosomal mean
heterozygosity >3 standard deviations from
the cohort mean, sex mismatch or major
recent ancestry was other than European
(HapMap central european). Genetic variants
were excluded if genotype call rate <98%,
Hardy-Weinberg equilibrium p-value <1×10-6 or
minor allele frequency (MAF) <1%. Reference
panels for imputation were either 1000
Genomes Project (1KG) 40, Haplotype
Reference Consortium (HRC) 41, 10KUK, or a
combination of one of the mentioned
reference panels and own whole-genome
sequencing data (deCODE, HUNT, DBDS, and
FinnGen). Each individual cohort performed a
GWAS using an additive linear regression
model adjusted for, at least, genetic principal
components or relationship matrix on
autosomal chromosomes and chromosome X.
Summary statistics for each individual cohort
were stored centrally and underwent quality
control procedures before meta-analysis.
Genetic variant ids were converted to

‘CHR:POS:REF:EFF’ (positions were mapped to
the Genome Reference Consortium Human
Build 37, hg19), where EFF was the
alphabetically higher allele - effect sizes were
aligned accordingly. Alleles for
insertion/deletions were coded as ‘I/D’,
respectively. Only sequence variants from the
Haplotype Reference Consortium panel or
1000 Genomes Project were included in the
meta-analysis and genetic variants with a MAF
> 0.05%, minor allele count > 6, an imputation
INFO score > 0.4, MAF +- 20% compared to
HRC or 1KG, and a reported p-value with a less
than 10% difference with a calculated p-value
(from the z-score) in the -log10 scale were
included.

Meta-analysis of genome-wide association
studies

After quality control, individual-cohort GWAS
summary statistics were pooled using fixed
effects inverse-variance weighted
meta-analysis with METAL 42 without genomic
control correction. We also performed an
analysis of heterogeneity of effects
(Supplementary Table 2, I2 statistic). After
meta-analysis, we removed genetic variants
reported in less than half the number of
available samples for each phenotype,
resulting in 9-10 million genetic variants. For
example, the variant observed in the largest
number of samples for gestational duration
was available in 195,555 individuals, only
variants reported in at least 97,778 were kept.
Genomic inflation factors were low for all
three phenotypes (Supplementary Table 16,
gestational duration λ = 1.14, preterm delivery
λ = 1.08 and post-term delivery λ = 1.05).
LD-score regression intercepts were
substantially lower than genomic inflation
factors, suggesting that the inflation in test
statistics was mostly due to polygenicity
(Supplementary Table 16). Test statistics were
not further adjusted for genomic control for
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any of the phenotypes. If not otherwise stated,
all analyses presented in this manuscript are
two-sided tests.

Initially, we naively defined independent loci
based on physical distance, where SNPs within
250 kb from the index SNP were considered to
be at the same locus. Novel loci were defined
as loci not overlapping previously reported
gestational duration loci in the largest GWAS
performed to date 5. Finally, we used
conditional analysis to resolve independent
loci (see below).

Conditional analysis

We looked for conditionally independent
associations within each locus using
approximate Conditional and Joint (COJO)
analysis 43 implemented in Genome-wide
Complex Trait Analysis (GCTA) software 44. We
ran a stepwise model selection (-cojo-slct) to
identify conditionally independent genetic
variants at p-value< 5×10-8 for each of the
genome-wide significant loci (using a radius of
1.5 Mb from the index SNP). Overlapping loci
were merged into a single locus (only two loci
overlapped, at 3q23). LD between genetic
variants was estimated from 19,092 maternal
samples from the Norwegian Mother, Father
and Child Cohort, after excluding variants with
imputation INFO score< 0.4. We converted the
reference panel from BGEN files to hard-called
PLINK binary format (.bed). As per default in
COJO, genetic variants >10 Mb apart were
assumed to be in complete linkage
equilibrium.

Gene prioritization

To prioritize genes at the gestational duration
loci identified, we set the baseline as the
nearest protein coding gene to the index SNP
at each independent locus. While naive, this
approach has been consistently shown to

outperform other single metrics for
locus-to-gene mapping 45,46. Next, we
performed colocalization analysis for
cis-eQTLs in 1,367 human iPSC lines from the
i2QTL resource (± 250 kb from gene start and
stop position) 15, endometrium (± 250 kb from
gene start and stop position) 16 and uterus,
vagina and ovary from GTEx (± 1 Mb around
transcription start site) 17. Unfortunately, none
of the variants we identified were in LD (R2 >
0.6) with missense variants. To complement
the prioritization of genes, we queried each of
the index SNPs for blood protein QTLs 18(both
in cis and trans). For all index SNPs that were
protein QTLs (p-value < 5×10-6), we performed
colocalization analyses (± 1.5 Mb around the
index SNP). We excluded the HLA region due to
its large pleiotropic effects.

Colocalization

We utilized genetic colocalization to identify
pleiotropic effects between gestational
duration and expression and protein
quantitative trait locus (see Gene
prioritization) and with other female and
reproductive traits. To this end, we applied
COLOC 14, which evaluates, in a Bayesian
statistical framework, whether a single locus
from two different phenotypes best fits a
model where the associations are due to a
single shared variant or distinct variants in
close LD. For each tested locus, this
information is summarized in the posterior
probability of five hypotheses. Given
phenotypes A and B, in a specific locus:

- No association for any of the two
phenotypes

- Association with phenotype A but not
with phenotype B

- Association with phenotype B but not
with phenotype A

- Association with both phenotypes,
association driven by SNPs in low LD

13
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- Association with both phenotypes,
association driven by SNPs in close LD

The last two hypotheses explicitly model an
association with both phenotypes at the same
locus, but in the former, the leading SNPs are
not shared (i.e., lead variants for the two
phenotypes are in low LD) and in the other the
leading SNPs are shared (i.e., lead variants for
the two phenotypes are in close LD), despite
not knowing which one is the causal one.

Prior probabilities for each for the non-null
hypotheses were set as suggested by Wallace
(prior probabilities that a random SNP in the
loci is associated with phenotype A, phenotype
B, or both phenotypes, 1×10-4, 1×10-4, and
5×10-6, respectively), which are considered
more conservative than the ones set by
default 47.

Strong evidence of colocalization was defined
as a posterior probability of colocalization
>0.9.

Enrichment analysis

We tested for enrichment based on top loci
and genome-wide using partitioned LD-score
regression. To test for over-representation in
tissue-specific RNA expression (Human Protein
Atlas, RNA consensus tissue gene data) 48 a
Wilcoxon rank-sum test was performed on
normalized RNA for genes within our set
(above-mentioned) and all other genes.
Significance for this test was set at Bonferroni
correction for the number of tissues (p-value<
0.05 / 61), and suggestive evidence at p-value<
0.1/ 61. At the genome-wide level, we
performed partitioned heritability using
LD-score regression to test for enrichment in
97 different annotations 49,50 and
tissue-specific RNA expression using 205
different tissues/ cell types 51, using
pre-computed partitioned LD-scores for
subjects of recent European ancestry

(baseline-LD model v2.2). We further explored
the possibility that the genetic effects on
gestational duration were acting late in
pregnancy. To this end, we applied stratified
LD-score regression to investigate whether
SNP-heritability was enriched in regions
harboring genes differentially expressed
during labor in single-cells from myometrium
22. We calculated LD scores (European
individuals from phase 3 of the 1000 Genomes
project) for sets of genes differentially
expressed at labor (± 100 kb) for each cell type
separately and for the overall set of genes
differentially expressed in the myometrium. In
the manuscript, we report exclusively the
analysis performed on the overall set of genes,
given that the -log10(p-value) for enrichment
was a linear function of the number of
differentially expressed genes, which ranged
from 2 to >3000 (Supplementary Fig. 16). In
this context, it is unwise to compare the
enrichment in the different cell types.
Stratified LD-score regression was run
together with the baseline model mentioned
above.

Genetic correlations

We estimated genetic correlations by
performing LD-score regression 52 locally using
pre-computed LD-scores from 1000 Genomes
Project samples of recent European ancestry.
The MHC region (chr6:28477797-33448354)
was removed prior to running LD-score
regression.

Resolving effect origin

To classify the identified index SNPs for
gestational duration as having maternal, fetal
or maternal and fetal origin, we performed an
association analysis using the parental
transmitted and non-transmitted alleles on
gestational duration. We used phased
genotype data (i.e. estimated haplotypes) in
parent-offsprings or mother-child duos to infer
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the parent-of-origin of the genotyped/
imputed alleles as previously described 30.
Once the transmitted allele was identified, the
non-transmitted maternal allele was extracted.
Briefly, parental origin of each allele was
inferred using genotypes of relatives,
reference cohort data, or distributions of
genotypes within the cohort and LD
measurements. Different methods were used
for phasing in each of the cohorts providing
data for this analysis (see Supplementary
Table 17). In Icelandic data, parental alleles
were inferred by combining long-range
phasing, genealogy and a maximum likelihood
estimation 10,53,54. All other cohorts were
phased using SHAPEIT2 55, except HUNT which
was phased using Eagle v2.3 56. The two
methods use a hidden Markov model in
combination with information from genetic
relatives to refine phase calls and assign
parents to haplotypes. Reliability of all these
methods is considered to be high, particularly
when large amounts of identical-by-descent
segments are present (i.e., when
parent-offspring data is available).

For each index SNP we fit the following linear
regression model:

𝑔𝑒𝑠𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 =  𝑀𝑛𝑇 +  𝑀𝑇 +  𝑃𝑇 +  𝑃

where MnT and MT refer to the maternal
non-transmitted and transmitted alleles
respectively, and PT refers to the paternal
transmitted alleles. The latter is interpreted as
a fetal only genetic effect, while the effect of
the maternal non-transmitted allele is a
maternal only genetic effect. We first
estimated the effects of the index SNPs in
each birth cohort separately; effect sizes were
then combined through fixed-effect
meta-analysis, totalling a sample size of
136,833 (104,962 parent-offspring trios from
Iceland with at least one genotyped individual,
17,024 parent-offspring trios from the MoBa
cohort, 5,122 parent-offspring trios from the

HUNT cohort, and 9,725 mother-child duos
from the Avon Longitudinal Study of Parents
and Children (ALSPAC), Finnish birth data set
(FIN), the Danish National Birth Cohort (DNBC),
the Genomic and Proteomic Network for
Preterm Birth Research (GPN) and the
Hyperglycemia and Adverse Pregnancy
Outcome (HAPO)). The analysis of the Icelandic
data was done on 104,962 parent-offspring
trios with at least one genotyped individual.
This includes 18,165 fully genotyped trios,
5,208 with only child and mother and 1,875
with only child and father genotyped, 40,182
with both parents genotyped but not the child,
and 1,627, 24,965 and 12,868 with only child,
mother or father genotyped, respectively.

To classify the identified genetic variants into
classes with similar patterns of effect we used
model based clustering 10. Variants were
clustered based on estimated effects of the
transmitted and non-transmitted parental
alleles into five clusters. Two clusters assume
fetal effect only, one with effect independent
of parent-of-origin and one where the effect is
limited to the maternally transmitted allele; a
cluster with maternal effect only; and two
clusters with both maternal and fetal effects,
either in opposite or same direction.

Locus pleiotropy at 3q21

After identifying locus pleiotropy between the
maternal effect on gestational duration and
the fetal only effect on birth weight at the
ADCY5 gene region, we set out to investigate
differences between the two top SNPs in their
colocalization with other traits. Phenome-wide
colocalization for the two regions (defined as
1.5Mb around the index SNP) was performed
using summary statistics from FinnGen (data
freeze 5) and Pan UK Biobank data 57 (in
subjects of recent European ancestry). We
included all phenotypes available from
FinnGen (n traits= 2,803), while for Pan UK
Biobank, we reduced it to summary statistics
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with an estimated heritability >0.01 and that
were labeled as biomarkers, continuous trait
or ICD-10 codes (n traits = 832). Given the
exploratory nature of this analysis, despite
using 3,635 phenotypes, we used a lenient
posterior probability of colocalization (>= 0.75).

Female reproductive traits

We obtained summary statistics for several
female reproductive traits from different
sources (minimum sample size 10,000). We
included summary statistics from the following
traits: miscarriage 26, gestational duration (fetal
genome) 6, age at first birth, age at menarche
58, age at menopause 59, number of live births
58, testosterone 60, CBAT 60, SHBG 60, oestradiol
(women)58, pelvic organ prolapse (FinnGen),
polycystic ovary syndrome (61 and FinnGen),
endometriosis 58, leiomyoma uterus (FinnGen)
and pre-eclampsia 62. For polycystic ovary
syndrome, we meta-analyzed summary
statistics from the largest published GWAS 61

and FinnGen. We estimated genetic
correlations between gestational duration and
preterm delivery and these traits, and latent
causal variable analysis between sex
hormones (testosterone, CBAT and SHBG) and
gestational duration and preterm delivery. We
further explored causality using two-sample
Mendelian randomization and inspected
whether the effects originated in the maternal
or the fetal genome (see below “Mendelian
randomization”). Finally, when one trait is
causally upstream of the other, it is expected
that the two traits would share a causal variant
at some of the trait-associated loci. To test for
this at the genome-wide scale, we performed
colocalization analysis between sex-hormones
and gestational duration and preterm delivery
using approximately LD independent regions
63.

To obtain GWAS estimates for preterm
delivery independent of the number of live

births, we split the cohorts into two groups
and then meta-analyzed per strata: on one
side, cohorts based on a random pregnancy
per mother (the probability of having at least
one preterm delivery is not affected by the
number of previous or subsequent deliveries)
and cohorts with whole reproductive history of
a woman (i.e., cohorts using life-time ICD
codes or with data on > 1 pregnancy for the
same mother).

Latent causal variable analysis

We used latent causal variable analysis to
distinguish (partial) causation from genetic
correlation 27. For this, we used the traits that
were genetically correlated with gestational
duration or preterm delivery (birth weight or
sex-hormones). In the LCV model, a latent
variable mediates the genetic correlation
between two phenotypes. The genetic
causality proportion, which quantifies the
proportion of the genetic correlation that is
due to causality, is then estimated using mixed
fourth moments. Whenever GCP p-values
were significant, we defined GCP>= 0.6
between two traits as evidence of full or nearly
full genetic causality, and GCP< 0.6 as evidence
of limited partial causal implication.

Gestational duration and preterm delivery
polygenic score analysis

To obtain an independent sample for training
and validation of a polygenic score, the
meta-analyses for gestational duration were
rerun, excluding the MoBa cohort. These new
meta-analysis results were used as the base
datasets to calculate the polygenic scores.
After applying the same exclusion criteria to it
as used for the study samples in the
meta-analysis, and removing duplicated
samples and those with a kinship of greater
than 0.125, the MoBa cohort was randomly
split, using 80% (n=15,768) as the training
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cohort and the remaining 20% (n=3,942) as the
validation cohort.

QC of Training Genotypes Dataset

From the training cohort, genotypes were
excluded if they had a minor allele frequency
of less than 0.01, info scores < 0.7, a
Hardy–Weinberg equilibrium less than 1.0×10-6

and genotype call rates less than 0.01.

Polygenic Score Calculation

LDpred2 was used for the calculation of the
polygenic scores 25. As we wanted to include
the X chromosome in the polygenic score, we
mapped the genotypes to the genetic map
taken from Bolt-LMM 64. Polygenic scores were
calculated for a range of models using a grid of
hyperparameter values; proportion of causal
SNPs from 10-5 to 1 for 21 values, and
proportions of heritability of 0.7, 1, and 1.4,
calculated from a constrained LD-score
regression. LDpred2 also uses a third
hyperparameter that allows for sparse effect
size estimates (i.e. some effects are exactly 0).
This resulted in a total of 126 combinations of
hyperparameter values for the range of grid
models 25. The variance explained was used to
decide which of the grid models was the most
appropriate polygenic score.

We found the polygenic score (with ten
principal components and adjusted for
genotyped batch) that utilised the
hyperparameters of proportion of causal SNPs
of 0.0032, 0.7 of the heritability, and did not
allow for sparse effect size estimates, was the
most appropriate for the training cohort. This
model accessed weighted betas from
1,123,366 variants to explain 2.3% of the
variability in the testing sample. We then
extracted the weighted betas for each variant
from this model to be used in the polygenic
score validation.

Polygenic Score Validation

The remaining MoBa cohort was used for
validation of the polygenic score. The SNPs
included from the polygenic score model that
explained the most variance in the training
data were extracted from the genotyped data
of the validation cohort. These SNPs were then
used with the weighted betas from the
training model to calculate a polygenic score
for each individual in the validation cohort.
These polygenic scores were converted to
z-scores to enable comparison of polygenic
scores between those derived from the
gestational duration linear model and the
preterm delivery logistic models.

To test the performance of the polygenic
score, a linear regression was conducted for
gestational duration by the polygenic score. A
second model was used that adjusted for 5
principal components and genotyped batch. R2

was calculated for the models to quantify
variance explained.

The utility of the polygenic score for the
prediction of preterm delivery was also
assessed. Gestational duration was
dichotomized into preterm delivery (less than
37 weeks) or full term (greater than or equal to
39 weeks and less than 41 weeks). Two models
were analyzed, one assessing just the
polygenic score and a second adjusting for 5
principal components and genotype batch.
Receiver operating characteristic, area under
the curve were calculated for each model and
used as assessment of diagnostic accuracy.

Multi-trait conditional analysis

GCTA was used to perform bi-directional
multi-trait COJO (mtCOJO) 29 analysis using
summary statistics. The gestational duration
GWAS was conditioned on the birth weight
GWAS and vice-versa, using birth weight
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summary statistics from the largest GWAS
meta-analysis of birth weight 9. We did not
condition on the fetal effects on gestational
duration due to a lack of power in the fetal
GWAS 6. We obtained birth weight summary
statistics from four different GWAS within the
EGG Consortium: using the maternal genome -
offspring birth weight, the fetal genome - own
birth weight and using a weighted linear
model to adjust the GWAS of offspring birth
weight by the fetal genome, and the GWAS of
own birth weight by the maternal genome.

To select variants with suggestive association
with maternal or fetal effects on birth weight,
we first split the genome into approximately
LD-independent regions, and from each
region, selected the variant with the lowest
p-value (p-value < 5×10-6). For each of these
suggestive variants (87 maternal and 108
fetal), we calculated the relative difference in
effect size before and after conditioning as
follows,

∆β =  
β

𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑒𝑑
− β

𝑛𝑜𝑛−𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑒𝑑

β
𝑛𝑜𝑛−𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑒𝑑

A negative suggests that adjusting for∆β
gestational duration reduces the effect size.

To test for robustness of results, we repeated
the same analysis for genome-wide significant
variants classified as having a maternal only
effect on birth weight (n = 31) or a fetal only
effect on birth weight (n = 62) 9. For such
variants, we applied the same method as
above, multi-trait COJO analysis, and a linear
regression model with and without adjusting
for gestational duration in individual level data
from Iceland (genetic dosage, n mothers =
32,511 and n fetuses = 16,387) and Norway
(MoBa, parental transmitted and
non-transmitted alleles, n = 21,060
parent-offsprings). For individual level data, we
fitted the following two linear models:

𝑏𝑖𝑟𝑡ℎ 𝑤𝑒𝑖𝑔ℎ𝑡 =  𝑆𝑁𝑃 +  𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑡𝑒𝑠

𝑏𝑖𝑟𝑡ℎ 𝑤𝑒𝑖𝑔ℎ𝑡 =  𝑆𝑁𝑃 +  𝑔𝑒𝑠𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 +  𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑡𝑒𝑠

Where SNP is the genotype dosage in Icelandic
data for the maternal genome or the fetal
genome, and the maternal non-transmitted
allele and paternal transmitted allele for
maternal and fetal SNPs, respectively.
Covariates included the first six principal
components and batch for MoBa data. By
employing different data sets, and different
genetic information (dosage vs parental
transmitted / non-transmitted alleles), allowed
us to provide further evidence and robustness
in our findings.

For all these analyses, we estimated statistical
significance of differences between the effect
estimates from the two models applying a
paired Wilcoxon rank-sum test.

We estimated the heritability of the birth
weight GWAS before and after conditioning for
gestational duration using LD-score regression
65. This method estimates polygenic heritability
as the variance explained by common genetic
variants (autosomal MAF>= 0.01). To test the
significance of differences between heritability
estimates before and after conditioning, we
calculated a z-scored as follows 66,

𝑧 𝑠𝑐𝑜𝑟𝑒 =  (β1 − β2)

(𝑠𝑒12 + 𝑠𝑒22)

where is the non-conditioned estimate,β1 β2
the conditioned estimate, and and the𝑠𝑒1 𝑠𝑒2
standard errors for the non conditioned and
conditioned estimates, respectively.

Mendelian randomization

We performed Mendelian randomization to
study the effects of gestational duration
(maternal) on birth weight (maternal) and the
effects of fetal growth (fetal effect on birth
weight) and sex hormones on gestational
duration.

To study the effect of gestational duration on
birth weight, we employed two-sample
Mendelian randomization. The 24 index SNPs
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(22 autosomal SNPs) from the present
gestational duration meta-analysis and the
effect sizes from the parental transmitted and
non-transmitted alleles analysis were used to
instrument gestational duration; birth weight
was instrumented using summary statistics
from a previous GWAS of offspring’s birth
weight with minimal adjustment by gestational
duration (< 15% of samples) 9. While there is a
recent publication on fetal growth 10, this
analysis was largely adjusted for gestational
duration (> 40% of samples). To avoid
confounding due to the correlation between
the maternal and fetal genomes, we used
summary statistics derived using a weighted
linear model 9. This allowed us to obtain
quasi-unbiased estimates for the fetal effects
on birth weight (adjusting for the maternal
effect):

β
𝑓𝑒𝑡𝑎𝑙 𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑

=  − 2
3 β

𝑚𝑎𝑡𝑒𝑟𝑛𝑎𝑙 𝑢𝑛𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑
 +  4

3 β
𝑓𝑒𝑡𝑎𝑙 𝑢𝑛

and for the maternal effects on birth weight
(adjusting for the fetal effect):

β
𝑚𝑎𝑡𝑒𝑟𝑛𝑎𝑙 𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑

=  − 2
3 β

𝑓𝑒𝑡𝑎𝑙 𝑢𝑛𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑
 +  4

3 β
𝑚𝑎𝑡𝑒𝑟𝑛𝑎

To obtain a causal estimate, we performed an
inverse-variance weighted analysis with
standard errors calculated using the delta
method 67. We assessed the impact of
horizontal pleiotropy on the causal estimate
with MR-Egger regression. The intercept was
used to determine whether the average
pleiotropic effect is not statistically different
from zero (p-value > 0.100). In such cases, the
inverse-variance weighted method estimate is
a consistent estimate of the causal effect 68.
Whenever the MR-Egger intercept is
significantly different from 0, we report the
estimate from the MR-Egger analysis. Both
inverse-variance weighted method and
MR-Egger regression were performed on R
using the MendelianRandomization package 69.

We assessed the effect of sex hormones
(testosterone, SHBG and CBAT) on gestational
duration using two-sample Mendelian
randomization and instrumenting the
hormones using a polygenic score for the
parental transmitted and non-transmitted
alleles. For each sex hormone, we obtained a
list of independent SNPs genome-wide
associated with these traits (Supplementary
Table 9) by performing GWAS clumping (R2 >
0.001) using the following PLINK command:

plink --bfile <1000 Genomes> --clump {GWAS
summary statistics} --clump-r2 0.001
--clump-kb 1000 --clump-p1 5e-8 --clump-p2
1e-5

We also used a set of SNPs associated with
testosterone, but with no aggregated effects
on SHBG, as clustered in 28. Such variants were
used as instrumental variables in the
two-sample Mendelian randomization analysis
and to construct the polygenic score for the
parental transmitted and non-transmitted
alleles. The current meta-analysis results were
employed as outcome for the two-sample
Mendelian randomization analysis
(inverse-variance weighted and MR-Egger). We
subsequently constructed the polygenic score
for the maternal transmitted and
non-transmitted alleles and the paternal
transmitted alleles in 46,105 parent-offsprings
from Iceland and Norway. We estimated the
effects of the maternal non-transmitted
(MnTPGS) and transmitted (MTPGS) and paternal
transmitted (PTPGS) alleles polygenic score
using the following linear model:

𝐺𝑒𝑠𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 =  𝑀𝑛𝑇
𝑃𝐺𝑆

 + 𝑀𝑇
𝑃𝐺𝑆

 +  𝑃𝑇
𝑃𝐺𝑆

 + 𝑃𝐶𝑠 +  𝑏

Again, effects from each of the three data sets
(Iceland, MoBa and HUNT) were combined
using fixed-effect inverse-variance weighted
meta-analysis.
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To understand the impact of fetal growth on
gestational duration, we used individual
genetic data from 35,280
(ultrasound-gestational duration) and 48,741
(last menstrual period-gestational duration)
parent-offsprings from Iceland, the MoBa
cohort and HUNT. To instrument fetal growth,
we used 68 SNPs with fetal only effect on birth
weight as classified in Warrington et al. using
Structural Equation Modeling 9. Based on
these 68 SNPs, we constructed a fetal growth
polygenic score for the parental transmitted
and non-transmitted alleles and regressed
these on gestational duration (estimated by
ultrasound or last menstrual period,
separately). We estimated the effects of the
maternal non-transmitted (MnTPGS) and
transmitted (MTPGS) and paternal transmitted
(PTPGS) alleles polygenic score using the
following linear model:

𝐺𝑒𝑠𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 =  𝑀𝑛𝑇
𝑃𝐺𝑆

 + 𝑀𝑇
𝑃𝐺𝑆

 +  𝑃𝑇
𝑃

Effect estimates from each of the three data
sets (Iceland, MoBa and HUNT) were pooled
using fixed-effects inverse-variance weighted
meta-analysis.

Testing for maternal-fetal pleiotropic
effects on gestational duration and birth
weight

We further investigated what are the fetal
effects on birth weight for the maternal
gestational duration increasing alleles, and the
maternal effects on gestational duration for
the fetal birth weight increasing alleles. To
study this, we borrowed the inverse-variance
weighted analysis from Mendelian
randomization, but using the effects of two
distinct genomes, the maternal and fetal. We
caution that this should not be interpreted
under a causal framework.

To understand what the maternal gestational
duration-raising alleles do to birth weight
when present in the fetus, we used the effect
sizes and standard errors of the parental
transmitted and non-transmitted alleles for
the 22 autosomal index SNPs on gestational
duration and assessed its effects on the same
SNPs with a fetal only effect on birth weight.
To understand what the fetal birth
weight-raising alleles do to gestational
duration when present in the mother, we used
the effect sizes and standard errors of 68
autosomal SNPs associated with fetal effects
on birth weight and the effect sizes and
standard errors from the current maternal
GWAS of gestational duration.

Evolutionary analysis

To examine the evolutionary history of three
regions identified in the GWAS meta-analysis,
we ran the significant variants through the
MOSAIc pipeline 23. This pipeline is designed to
detect enrichment in evolutionary signals
using a variety of sequence-based metrics of
selection. The sequence based evolutionary
measures used in this method include: 1) Beta
Score which detects balanced polymorphisms
to infer balancing selection 70, 2) ARGWEAVE
uses ancestral recombination graphs to infer
the evolutionary origin of regions 71, 3) GERP
uses sequence conservation to infer positive
and negative selection 72, 4) LINSIGHT uses
sequence conservation to infer positive and
negative selection 73, 5) phastCONS100 uses
sequence conservation to infer positive and
negative selection, 6) PhyloP uses substitution
rate to infer positive and negative selection, 7)
iES uses haplotype homozygosity to infer
positive selection, 8) XPEHH uses haplotype
homozygosity to detect population-specific
positive selection, and 9) Fst uses population
differentiation to infer local adaptation.

Variants from the GWAS that passed a
significance threshold (p-value <1×10-8) were
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clumped into regions using PLINK such that
the clumps of variants had an R2 >0.9 and
were within 500 kb. We then obtained 5,000
control variants matched on variant count, LD
structure and minor allele frequency. The
evolutionary metrics were obtained for all
variants, and the maximum value was
extracted for analysis. Finally, the evolutionary
metrics were also obtained for the control
variants and further used to create a
background distribution. Then a z-score and
p-value were produced for each experimental
genomic region compared to its unique
background distribution.

Variant annotation

Variants were annotated using Ensembl’s
Variant Effect Predictor (hg19) command line
tool 74. Physical coordinates of protein coding
genes were obtained from the UCSC Table
Browser 75, and were matched to the index
SNPs using bedtools v2.29.2 76.

Data availability

Cohorts should be contacted individually for
access to raw genotype data, as each cohort
has different data access policies. Summary
statistics from the meta-analysis excluding
23andMe and the summary statistics of the
top 10,000 SNPs for each phenotype will be
made available at the EGG website
(https://egg-consortium.org/). Access to the full
set, including 23andMe results, can be
obtained after approval from 23andMe is
presented to the corresponding author or by
completion of a Data Transfer Agreement
(https://research.23andme.com/dataset-acces
s/), which exists to protect the privacy of
23andMe participants. Access to the Danish
National Birth Cohort (phs000103.v1.p1),
Hyperglycemia and Adverse Pregnancy
Outcome (phs000096.v4.p1), and Genomic
and Proteomic Network (phs000714.v1.p1)

individual-level phenotype and genetic data
can be obtained through dbGaP Authorized
Access portal
(https://dbgap.ncbi.nlm.nih.gov/dbgap/aa/wga
.cgi?page=login). The informed consent under
which the data or samples were collected is
the basis for determining the appropriateness
of sharing data through unrestricted-access
databases or NIH-designated
controlled-access data repositories. The
summary statistics used in this publication
other than the one generated are available at
the following links: fetal GWAS of gestational
duration (https://egg-consortium.org/), fetal
and maternal GWAS of gestational duration
(https://egg-consortium.org/), miscarriage
(http://www.geenivaramu.ee/tools/misc_sumst
ats.zip), age at first birth, oestradiol (women),
endometriosis, number of live births and age
at menarche (http://www.nealelab.is), age at
menopause (https://www.reprogen.org),
testosterone (women) 60, SHBG, testosterone
and CBAT
(https://doi.org/10.6084/m9.figshare.c.530450
0.v1), pelvic organ prolapse and leiomyome of
the uterus (https://www.finngen.fi/fi),
polycystic ovary syndrome
(https://www.repository.cam.ac.uk/handle/181
0/283491 and https://www.finngen.fi/fi) and
pre-eclampsia (European Genome-phenome
Archive, https://ega-archive.org,
EGAD00010001984). Pan-UK Biobank data is
available at
https://pan.ukbb.broadinstitute.org/. For
pre-computed LD scores for European
populations
(https://data.broadinstitute.org/alkesgroup/LD
SCORE/eur_w_ld_chr.tar.bz2), and for
multi-tissue gene expression pre-computed
stratified LD scores
(https://alkesgroup.broadinstitute.org/LDSCOR
E/LDSC_SEG_ldscores/Multi_tissue_gene_expr_
1000Gv3_ldscores.tgz). eQTL data from GTEx is
available at https://gtexportal.org/home/ and
from endometrium at
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http://reproductivegenomics.com.au/shiny/en
do_eqtl_rna/. Protein QTL data was obtained
from
https://www.omicscience.org/apps/pgwas/.

Code availability

Code for this project has been structured
using a Snakemake workflow 77 and is available
at
(https://github.com/PerinatalLab/metaGWAS).
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