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Abstract

Randomized controlled trials (RCTs), which evaluate hypotheses in specific contexts,
are often considered the gold standard of evidence for infectious disease interventions,
but their results cannot immediately generalize to other contexts. Mechanistic models
are one approach to generalizing findings between contexts, but infectious disease
transmission models are not immediately suited for analyzing RCTs, since they often
rely on time-series surveillance data that is rarely collected by RCTs. We developed a
modeling framework to explain the main outcome of an infectious disease
RCT—relative risk—and applied it to a water, sanitation, and hygiene (WASH) RCT.
This model can generalize the RCT results to other contexts and conditions. We
developed this compartmental modeling framework to account for key WASH RCT
factors: i) transmission across multiple environmental pathways, ii) multiple
interventions applied individually and in combination, iii) adherence to interventions or
preexisting conditions, and iv) the impact of individuals not enrolled in the study. We
employed a hybrid sampling-importance resampling and estimation framework to obtain
posterior estimates of mechanistic parameters and their uncertainties and illustrated our
model using WASH Benefits Bangladesh RCT data (n=17,187). Our model reproduced
reported diarrheal prevalence in this RCT. The baseline estimate of the basic
reproduction number R0 for the control arm (1.15, 95% CI: 1.09, 1.27) corresponded to
an endemic prevalence of 13% (95% CI: 9–21%) in the absence of intervention or
preexisting WASH conditions. No single pathway was likely able to sustain transmission:
pathway-specific R0s for water, fomites, and all other pathways were 0.49 (95% CI: 0.07,
0.99), 0.26 (95% CI: 0.04, 0.57), and 0.40 (95% CI: 0.02, 0.88), respectively. An
infectious disease modeling approach to evaluating RCTs can complement RCT analysis
by providing a rigorous framework for generating data-driven hypotheses that explain
trial findings, particularly unexpected null results, opening up existing data to deeper
epidemiological understanding.

Author summary

A randomized controlled trial (RCT) testing an intervention to reduce infectious disease
transmission can provide high-quality scientific evidence about the impact of that
intervention in a specific context, but the results are often difficult to generalize to other
policy-relevant contexts and conditions. Infectious disease transmission models can be
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used to explore what might happen to disease dynamics under different conditions, but
the standard use of these models is to fit to longitudinal, surveillance data, which is
rarely collected by RCTs. We developed a framework to fit an infectious disease model
to steady-state diarrheal prevalence data in water, sanitation, and hygiene RCTs,
explicitly accounting for completeness, coverage, and compliance. Although this
framework is developed with water, sanitation, and hygiene interventions for
enteropathogens in mind, it could be extended to other disease contexts. By leveraging
existing large-scale RCT data sets, it will be possible to better understand the
underlying disease epidemiology and investigate the likely outcomes of policy-relevant
scenarios. Ultimately, this work can be incorporated into decision making for public
health policy and programs.

Introduction

Randomized controlled trials (RCTs) are an important source of scientific evidence in
the field of epidemiology. However, while they provide high-quality evidence on the
causal impact of interventions, they are also inflexible. They answer only a specific set
of questions, i.e., they determine whether and to what extent the interventions led to a
detectable reduction in disease burden. RCTs are not designed to decipher null results,
i.e., when the expected health benefits are not realized, they provide little information
on important outstanding explanatory questions. Systematic reviews and meta-analysis
are often employed to increase the collective power of a collection of related trials.
However, these approaches are not able to account for factors that could provide insight
into the mechanism of transmission reduction, such as variability in baseline exposures
(conditions), differences in background rates of infection or disease burden across study
sites, heterogeneous interventions, or differences coverage and adherence of the
intervention. As a result, expensive and time-consuming trials result in narrow causal
inference and may provide minimal actionable data to policy makers eager to understand
how findings could and should be generalized and applied to different contexts.

Infectious disease transmission models are an important tool that allow us to make
inferences about disease spread and dynamics within a population. The standard use of
transmission models for inference largely relies on time-series incidence data, usually in
the form of passive surveillance, where the dynamic signature of time-series data can
provide valuable information about an infectious disease transmission system. However,
longitudinal surveillance is only one of many types of data that can provide insight into
the epidemiology of infectious diseases. RCTs are concerned with comparisons between
individuals across intervention arms in the form of relative risks and are generally do
not include the collection of longitudinal surveillance data. If data from large-scale
RCTs could be leveraged to inform mathematical models, it would open up a wealth of
data that could be used to better understand epidemiological findings. Mechanistic
models can play a pivotal role in developing intervention strategies and estimating what
health benefits can be expected under various scenarios.

Decades of RCTs and observational studies have been conducted in the field of
water, sanitation, and hygiene (WASH), constituting a wealth of data on the
epidemiology of enteric disease. WASH improvements have been responsible for major
public health gains by greatly reducing diarrheal disease burden caused by a variety of
enteropathogens. Reducing the diarrheal burden can also result in improved nutrition
and reduced stunting of child growth [1]. Transmission of the enteropathogens
responsible for diarrheal disease can occur through multiple, interconnected pathways
by which a susceptible person may come in contact with pathogens shed (in feces) by an
infected individual. These pathways are often visualized as an “F-diagram,” illustrating
some of the potential transmission routes (e.g., feces, fingers, fomites, fluids, and food)
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Fig 1. F-diagram. Simplified “F-diagram” illustrating different transmission
pathways [2]. The blue bars show how specific types of interventions may interrupt
transmission along these pathways. The dotted line (not traditionally included in the
F-diagram), highlights that infected individuals continue to contribute to environmental
contamination.

and potential points of intervention [2] (Fig. 1). Recent large scale, well-powered
intervention trials have not shown the expected health benefits of WASH interventions,
namely reduced diarrhea and improved growth [3–9]. Moreover, while WASH
improvements such as latrines have demonstrable efficacy at the household level, they
have not yielded the expected health improvements at the community level [10]. This
failure of community-level efficacy is likely due to a combination of three factors: the
interventions did not sufficiently reduce transmission across the multiple pathways
(completeness), the coverage did reach a sufficient level to induce herd protection
(coverage), or the adherence to the interventions was not sufficiently great
(compliance) [11].

Here, we present a transmission modeling framework that develops a mechanistic
understanding of the WASH RCT data, explicitly accounting for completeness, coverage,
and compliance. To this end, we developed a compartmental infectious disease modeling
framework and parameter estimation approach to analyzing RCT data. This analytical
framework was designed to incorporate the data underlying relative risk estimates and
other contextual data collected by an RCT to calibrate a mechanistic model. A
calibrated model could then be used to examine counterfactual questions (i.e., “what
would have happened if ... ?”) that provide the basis to generate hypotheses on
mechanisms behind the observed relative risk estimates. We applied our framework and
approach using data from WASH Benefits Bangladesh [6, 12], a large, seven arm,
cluster-randomized controlled trial on the impact of WASH and nutrition on diarrhea
and child growth outcomes. Specifically, the model generated prevalence estimates from
steady-state simulations accounting for multiple environmental pathways, individual
adherence to multiple WASH interventions, preexisting WASH conditions, and
contribution of the subpopulation that was not enrolled into the RCT study to
transmission. We used sampling-importance resampling to quantify the uncertainty in
key parameters of interest, such as intervention efficacy and the relative contribution of
different environmental pathways.

Methods

Randomized controlled trial design

While no two randomized controlled trials (RCTs) are exactly alike, they often have
similar characteristics. The objective of an infectious-disease-related RCT is to
determine the effectiveness of an intervention, and, if the interventions are effective, the
RCT may estimate pathway-specific attributable risks. RCTs are the one true
experimental tool in epidemiology and are often considered the gold standard of
scientific evidence [13–15] because the intervention is randomly assigned, thereby
addressing confounding in the design phase of the study. Participants are randomly
assigned to one or more groups, or arms. An intervention is applied to one arm (e.g., a
water treatment device and health promotion visits from study staff), while the
comparison group, the control arm, receives either no intervention, a placebo, or an
alternative intervention (e.g., standard care, such as health promotion visits but no
water treatment device). Typically, specified measurements are taken at a baseline time
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point prior to intervention and at one or more follow-up time points after the
interventions are applied. More complicated intervention designs are possible, including
multiple interventions that are compared to the control or each other. In the case of
WASH RCTs, different interventions are used to target different environmental
pathways (Fig. 1). Multiple interventions applied together are used to evaluate the
completeness of the interventions in blocking transmission.

RCT data are often analyzed using one of two strategies. An intention-to-treat
(ITT) approach analyzes data by grouping individuals by their intervention assignment.
The ITT approach results in a measure of intervention effectiveness, reflecting
real-world usage. Effectiveness can differ from the true underlying potential efficacy of
the intervention used under ideal conditions because of imperfect intervention fidelity,
i.e., delivery of the intervention, or imperfect intervention compliance/adherence, i.e.,
the use of the intervention by the recipient as intended. A per protocol approach to
analysis of the RCT removes participants who did not receive or did not adhere to their
intervention assignment. This approach can provide an estimate of intervention
effectiveness that is closer to the true efficacy, but the benefits of randomization are lost.
The magnitude of risk reduction associated with an intervention depends not only on
the its efficacy at blocking transmission, but also on the endemic pathogen prevalence,
the susceptibility of the target population, the quality of the preexisting WASH
conditions (e.g., an improved latrine may have greater benefits if it replaces open
defecation compared to if it replaces an unimproved latrine), and other factors.

Interventions in a WASH RCT are usually delivered in a way that would be practical
for subsequent programs to implement at a greater scale, which means that
interventions are usually provided at the household, village, school, or district level,
rather than the individual level. Moreover, rather than randomizing individuals to
treatment arms, RCTs may employ a cluster-randomized design to randomize larger
groups, or clusters, because WASH interventions likely affect those beyond the intended
target, i.e., they have both direct effects on the participant and indirect effects on the
community through reduced infection pressure. The fraction of the population in an
area that receives the interventions is coverage of the trial; in some trials, all individuals
in a cluster are receive the intervention, and in other trials, only a subset or only eligible
individuals receive the intervention.

WASH randomized clinical trial data

For the purposes of developing an analysis framework, we lay out our assumptions
about what is included in a WASH RCT data set reporting on diarrheal outcomes.

� Random allocation occurs at the cluster level, and we know which intervention
arm and cluster each individual is in.

� We know whether each enrolled individual has preexisting WASH conditions
substantively equivalent to the intervention. If not, we assume that the
preexisting WASH conditions are not equivalent to the intervention.

� The preexisting WASH conditions of people not enrolled the study are
approximated by the conditions of people in the control arm at that point in time.

� We know whether each individual received and adhered to their intervention
(resulting in a per-protocol-like approach). If not, we assume that all individuals
received and adhered to their intervention (resulting in an ITT-like approach).

� We know the fraction of the population enrolled in the study (e.g., through a
census). If not, we will estimate it.
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� The measured outcome for each enrolled individual is a self-report (or guardian
report) of whether they recently had (all-cause) diarrhea (e.g., in the past seven
days).

Mathematical modeling framework

Our framework is comprised of a transmission model representing WASH interventions
applied to a subset of a population and a parameter estimation approach designed to fit
data to steady-state modeling simulations. Our model structure incorporates several
important assumptions. First, the model reflects a cluster RCT design where each
cluster includes both the fraction of the population enrolled in the study and the
remainder that is not. Second, the model explicitly accounts for adherence and fidelity
(i.e., the extent to which the intervention is implemented as intended), and therefore it
uses a per-protocol-like approach where only those who received and are adhering to the
intervention are considered in the protected group. Third, the model does not
distinguish between those adhering to the intervention and those that have preexisting
WASH conditions that block the same transmission pathway as the intervention. For
example, we do not distinguish between an preexisting improved latrine and one
provided by the RCT. Finally, everyone within a given cluster is modeled as sharing the
same environment. These assumptions are specific to our WASH RCT analysis and the
WASH Benefits study design. Other study designs and infectious disease systems would
necessitate an alternative model structure. Below, we describe the model structure and
the parameter estimation approach.

Developing the single-intervention SISE–RCT model

The basis of our modeling framework is the environmental infectious disease
transmission model, the SIRE (susceptible, infectious, recovered, environment)
model [16,17]. This model tracks the fraction of individuals that are susceptible (S),
infectious (I), or recovered (R), as well as the concentration of pathogens in the
environment (E). Pathogen transmission occurs when susceptible people contact the
environment. Here, the contact rate, contact volume, and pathogen infectiousness are
all combined into a single transmission parameter β [18]. Infectious individuals recover
at rate γ and shed pathogen into the environment at rate α. Pathogens decay in the
environment at rate ξ. The differential equations governing this model are

dS

dt
= −βSE,

dI

dt
= βSE − γI,

dR

dt
= γI,

dE

dt
= αI − ξE. (1)

The basic reproduction number of the SIRE model, which is a measure of the epidemic
potential of the system, is R0 = βα

γξ .
For the RCT framework, we modified the above model in several ways. First,

because the WASH RCT outcome measure is all-cause and not pathogen-specific
diarrhea, we used an SIS (susceptible–infectious–susceptible) framework. Individuals
return to the susceptible compartment after their infectious period rather than
progressing to a recovered compartment, as they remain susceptible to other
enteropathogens. An SIS model can have an endemic equilibrium, where the disease
remains prevalent at some level in the population. For many SIS models, the value of
this endemic equilibrium is 1− 1/R0, so that the larger the R0, the more prevalent the
disease at equilibrium.

Second, we explicitly modeled two populations that share a single environment, i.e.,
a single cluster (Fig. 2). The first population, denoted by the subscript +, received and
is adhering to an intervention or has a substantively equivalent preexisting WASH
condition (e.g., already has an improved latrine in a trial providing improved latrines).
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For brevity going forward, “preexisting WASH condition” will refer to a preexisting
WASH condition that is substantively equivalent to the corresponding intervention.
Accordingly, this population has attenuated exposure to or shedding into the
environment. The second population, denoted by the subscript −, is not enrolled in the
study, or has not received or is not adhering to the intervention and has no preexisting
WASH condition. This population has regular exposure and shedding, although it may
receive indirect benefits of the intervention through reduced environmental
contamination. We use this framework for clusters both in the intervention arm and in
the control arm. In the intervention arm, all study households receive the intervention,
though not all adhere to the intervention, while local, non-study households do not
receive the intervention but may have preexisting WASH conditions that are equivalent
to the intervention. In the control arm, no one receives the intervention, and both study
households and non-study households may or may not have preexisting WASH
conditions.

Fig 2. Environmental transmission in an intervention study. The shared
environment has multiple environmental pathways that correspond to transmission
routes depicted on a traditional F-diagram. The first population (subscript +) adheres
to an intervention or has preexisting WASH conditions that provide the same protection
as the intervention; this population has attenuated exposure to and attenuated shedding
into the environment (dashed lines). The second population (subscript -) is not covered
by the study or does not adhere to the intervention and has no preexisting WASH
conditions; this population has regular exposure and shedding (solid lines).

Let ρ be the fraction of those in a cluster (i.e., with a shared environment) that are
adhering to the intervention or an equivalent preexisting WASH condition. Let ρ0 be
the fraction of those not in the study that have a preexisting WASH condition
equivalent to the intervention. Let ω be the fraction of the population in the study
(coverage). The size of the population adhering to intervention or with a preexisting
condition is ωρ+ (1− ω)ρ0, and the size of the population not adhering to the
intervention or preexisting condition population is ω(1− ρ) + (1− ω)(1− ρ0).

Third, we extend the model to account for multiple modes of environmental
transmission, E1, E2, . . . , En. The modes represent different pathways on the
F-diagram (Fig. 1), such as fluids and fomites. We always include an “other” pathway
to account for transmission pathways not intervened on. We define which part of the
transmission process is impacted by each of the modeled interventions. An intervention
may reduce the transmission rate by reducing the number of pathogens contacted or the
susceptibility of the individual. We denote the relative transmission by ϕβi , where
subscript βi denotes an impact on transmission from environment i, and thus the
intervention efficacy by 1− ϕβi

. For example, if an intervention has 80% efficacy in
reducing transmission, the magnitude of the remaining transmission is 20% of the
original. The intervention may instead reduce the shedding of pathogen to the shared
environment, with efficacy 1− ϕαi

, where αi denotes the impact on shedding into
environment i.

This expanded model (SISE–RCT) has 4 equations representing the human
population and n equations representing the environmental pathways (Fig. 2). These
equations are provided in the supporting information (Eq. S1).

Identifiability and reparameterization

The initial goal of this work is to determine what model parameter values are consistent
with the observed RCT data. As we discuss in a later section in more detail, we connect
the model to the data through the modeled steady-state diarrheal prevalence. To
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estimate the value of a parameter from the data, it must be identifiable from
steady-state prevalence, that is, the parameter must have a unique value associated with
a given steady state.

To solve for the steady-state values of the model, we first set each dEi/dt equation in
the SISE–RCT model (Eq. (S1)) to 0 (a quasi-steady-state assumption), solve for each
Ei, and substitute those expressions into the remaining equations (Eq. (S3)). When
these resulting equations are at steady state, for each pathway i the model parameters
βi, αi, ξi, and γi only appear together in a certain parameter combination and thus are
not separately identifiable from steady-state data. We define these identifiable
combinations of those four parameters as the pathway-specific reproduction numbers,

R0,i =
βiαi

γiξi
. (2)

The magnitude of each R0,i relates to the strength of transmission along pathway i.
Note, too, that R0 =

∑
i R0,i is the basic reproduction number of the system in

Eq. (S1) in the absence of any efficacious intervention, i.e., each ϕβi = 1 and ϕαi = 1.
For parameter estimation, it is convenient to express the strength of the transmission
pathways as relative to the total R0, that is R0,i/R0.

The equations Eq. (S3) resulting from the quasi-steady-state assumption on the
environmental states and reparameterization (in terms of βα/ξ and γ) still include
dynamics for the susceptible and infectious states, and there is not a closed-form
solution for the steady state values. However, we can use numerical simulation to
calculate the steady state solutions as a function of the R0,i only and not their
constituent parameters using the following observation. If we divide the right hand side
of each equation in Eq. (S3) by γ, the equations are only parameterized by the R0,i,
and this set of equations has same steady state values as the original equations
(Eq. (S1)), which is our goal. (Note that the transient dynamics of these equations are
no longer biologically meaningful).

dS+

dt
= −

(
ϕβ1

R0,1 (ϕα1I+ + I−) + ϕβ2
R0,2 (ϕα2I+ + I−) + · · ·+ ϕβnR0,n (ϕαnI+ + I−)

)
S+ + I+,

dI+

dt
=

(
ϕβ1

R0,1 (ϕα1I+ + I−) + ϕβ2
R0,2 (ϕα2I+ + I−) + · · ·+ ϕβnR0,n (ϕαnI+ + I−)

)
S+ − I+,

dS−

dt
= − (R0,1 (ϕα1I+ + I−) +R0,2 (ϕα2I+ + I−) + · · ·+R0,n (ϕαnI+ + I−))S− + I−,

dI−

dt
= (R0,1 (ϕα1I+ + I−) +R0,2 (ϕα2I+ + I−) + · · ·+R0,n (ϕαnI+ + I−))S− − I−.

(3)

Adjusting for arm- and time-point-specific variation in force of infection

If an RCT takes multiple measurements (even just a pre-intervention and
post-intervention measurement), it may be necessary to adjust the model for systematic
differences in the force of infection across those time points. For example, external
stressors, such as weather, may be vary across time points, as may important
demographic factors such as the age distribution.

While succesful randomization should render the baseline disease prevalence across
arms to be essentially the same, therefore negating the need to adjust for covariates
when estimating relative risks, when fitting the data in mechanistic models it may be
beneficial to account for actual differences across arms in potential confounders or
external factors to improve our model fits to the data.

We account for any systematic differences in R0 across time points t = 1, . . . , T and
between the control (a = 1) and intervention arms (a = 2), by defining time- and arm-
specific relative reproduction number parameters ηt and ηa, relative to the basic
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reproduction number baseline and the control arm, respectively. Thus, we can represent
the diarrheal disease pressure at time t in arm a as Ra,t

0 = ηa · ηt · R0, where ηt=1 = 1
at baseline and ηa=1 = 1 for the control arm.

Summary of model parameters

We have now defined all parameters needed to specify the SISE-RCT model, which will
be used to calculate cluster- and intervention vs non-intervention population-specific
steady-state prevalence values. These parameters consist of i) the overall basic
reproduction number R0; ii) pathway-specific basic reproduction numbers relative to
the total basic reproduction R0,i/R0, one for each environmental pathway i; iii) efficacy
parameters indicating the effect of the intervention on transmission ϕβ,i and shedding
ϕα,i for each pathway i; iv) the arm- and time-specific relative basic reproduction
numbers ηt and ηa; and v) the coverage ω (if unknown). Collectively, we denote this set
of model parameters {R0, {R0,i/R0}, {ϕβ,i}, {ϕα,i}, {ηa}, {ηt}, ω} as θ, where internal
brackets denote a set of multiple parameters.

Expanding the model framework to an RCT with multiple intervention arms

This single intervention framework can be expanded to account for multiple
interventions within a single RCT. In the context of WASH, an RCT may have water,
sanitation, and hygiene interventions arms, as well as arms evaluating some combination
of these interventions. The RCT may also include interventions indirectly associated
with WASH, such as nutrition. For an RCT with multiple interventions, the number of
modeled populations is 2 raised to the power of distinct interventions. For example, to
model an RCT testing 3 interventions in some number of combinations, we model each
cluster as partitioned into 8 populations denoted by whether individuals are
independently adhering to each of the three interventions (or preexisting conditions):
I000, I100, I010, I001, I110, I101, I011, I111, where a 1 in the subscript represent that
individuals in the group receive and adhere to the respective intervention or preexisting
WASH condition and a 0 represents that they do not. We refer to these populations as
adherence groups. Note that the number of adherence groups does not depend on the
number of arms in the RCT. The RCT may or may not be investigating any given
combination of interventions, but because individuals may or may not be adhering to
each intervention or the associated preexisting condition, all adherence groups are
modeled in all clusters in all arms. We replace the single intervention adherence fraction
ρ by a vector denoting the fraction of the population in each of adherence groups ρ. We
denote the specific distribution of adherence groups in cluster j as ρj . In a cluster, the
population not enrolled in the study also has a distribution of adherence groups,
denoted ρ0, which only includes adherence to preexisting conditions. Because we do not
have a measure of ρ0, as detailed earlier, we assume that it follows the mean baseline
distribution of preexisting conditions and is the same in all clusters.

The differential equation model defines a set of steady state prevalence values πj

among the adherence groups in cluster j as a function of the model parameters θ and
the distribution of adherence groups among people in the study ρj and not in the study
ρ0. We denote the steady state prevalence values in this cluster πj(θ,ρj ,ρ0) as a
function of the model parameters. We are interested in prevalence estimates for each
observation k, i.e., for a given individual at a given time point. Because ρj is known
from the data for any observation k in cluster j and as ρ0 is assumed to be equal to
that of the control group, we can drop explicit dependence on these quantities when we
denote the modeled prevalence for observation k as a function of the model parameters,
πk(θ). Note that all individuals in the same adherence group at a given time will have
the same associated modeled prevalence.
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Parameter estimation

Statistical likelihood

We connect the model parameters to the data through a goodness-of-fit function, the
likelihood L. Because self-reported diarrhea is a binary outcome, we use a Bernoulli
likelihood. As defined above, let θ be the vector of model parameters, πk be the
modeled prevalence corresponding to observation k, and xk be the indicator of diarrhea
for observation k. Then, the likelihood is given as

L(θ) = Πk

(
(πk(θ))

xk (1− πk(θ))
1−xk

)
. (4)

Sampling-importance resampling

We expect that in most RCT contexts, most of the model parameters θ will not be
strongly determined by the available data, i.e., will have large uncertainty around their
values. For example, a 30% water intervention efficacy may explain the data as well as a
70% efficacy, for certain values of the other parameters. In this situation, the likelihood
space may be flat or multi-modal. Accordingly, it may not be possible to determine
maximum-likelihood estimates, and asymptotic confidence intervals may not be
representative of the true uncertainty.

Instead, we take a sampling approach to understand the distribution and uncertainty
of the parameter values that explain the RCT data. First, we sample a large number of
parameter sets from a prior distribution (such as a uniform distribution, as we use here).
Then, we evaluate the importance of these samples by calculating their likelihood
(Eq. 4). Finally, we resample the parameter sets, weighting the parameter sets by their
likelihoods, to generate posterior distributions of our parameters. This Bayesian
approach is known as sampling-importance resampling [19,20].

Hybrid sampling–estimation approach

Instead of sampling all parameters in the sampling step of the sampling-importance
resampling procedure, we sample a subset of the parameters, treat them as fixed, and
estimate the remaining parameters. This approach creates a hybrid sampled–estimated
set of initial parameters that we subsequently calculate the likelihoods for and resample
from. The advantage of this approach is that it reduces the number of parameter
samples needed by preventing a parameter set that could otherwise fit the data well
from being discarded because an identifiable parameter was sampled poorly. This
hybrid approach requires that the parameters to be estimated be practically identifiable,
given fixed values of the sampled subset of parameters. Because R0 is closely tied to
steady state prevalence, there will be a best-fit value of R0 for a given set of coverage,
efficacy, and pathway-specific relative R0 parameters. Thus, for each sample of the
coverage, efficacy, and relative pathway parameters, we find the maximum-likelihood
value of R0 and arm- and time-specific relative basic reproduction numbers ηa and ηt.
This maximum likelihood is then associated with the sampled parameter set. Once a
likelihood is established for each sampled–estimated parameter set, the posterior
distribution can be estimated using sampling-importance resampling. More formally, we
take the following steps.

1. Define sets of parameters to be sampled
θsamp = {{R0,i/R0}n−1

i=1 , {ϕ
β
i }ni=1, {ϕα

i }ni=1, ω} and parameters to be estimated
θest = {R0, {ηa}Aa=2, {ηt}Tt=2}, taking advantage of any degeneracies (e.g., we do
not need to estimate Rn

0/R0 if we know R0 and {R0,i/R0}n−1
i=1 ).
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2. Define parameter sample sets of values of θm
samp for m ∈ M using a multivariate

uniform distribution or a more efficient algorithm such as Latin hypercube
sampling [21] or a Sobol sequence [22].

3. For each θm
samp, use an optimization algorithm to minimize the negative

log-likelihood as a function of θest, and set
θm
est = argminθest

(
− logL(θest;θ

m
samp)

)
.

4. Define unnormalized weights νm for each θm = {θm
samp,θ

m
est} as the corresponding

likelihood value divided by the probability of the sample in the originating
(uniform) distribution νm = L(θm)/(1/M). Define normalized weights
ν̄m = νm/

∑
m∈M νm. It may be preferable to directly compute the normalized

weights as

ν̄m = exp (logL(θm) + ξ) /
∑
m∈M

(exp (logL(θm) + ξ)) (5)

where ξ = minm∈M (− logL(θm)) is the minimum negative log-likelihood among
the parameter samples.

5. Sample N parameter sets, with replacement, from {θm} using the normalized
weights ν̄m.

6. These N parameter sets approximate the posterior distribution of θ and thus
describe our knowledge of about the uncertain parameter. Summarize these
distributions using histograms.

We summarize the hybrid sampling–estimation approach in Figure 3.

Fig 3. Schematic. Schematic of the hybrid sampling–estimation approach to
estimating model parameters from Water, Sanitation, and Hygiene (WASH) randomized
controlled trials (RCT) data.

WASH Benefits Bangladesh

We demonstrate the modeling framework using data from the WASH Benefits
Bangladesh RCT [6,12]. WASH Benefits Bangladesh measured diarrheal prevalence in
children (as well as multiple child growth measures, although we do not consider those
outcomes here) at each of three time points (baseline, midline, endline). Households in
the study area are typically organized into compounds in which a patrilineal family
shares a common space and resources, such as a water source and latrine. A total of
5551 compounds were enrolled, contingent on having a pregnant woman in their second
trimester during the enrollment period. The study followed one or more target children
born after baseline, as well as any siblings who were under age 3 at baseline. These
compounds were grouped into 720 clusters. Each cluster was assigned to one of 7 arms
testing combinations of 4 interventions: water chlorination (W), a double-pit, pour flush
improved latrine (S), handwashing with soap and water (H), and supplementary
nutrition sachets (N). Of the 720 clusters, 180 were assigned to the control arm (C),
while 90 were assigned to each of the water (W), sanitation (S), handwashing (H),
nutrition (N), combined water, sanitation, and handwashing (WSH), and all
interventions (WSH-N) arms. Specific details on trial design, intervention specifics, and
results may be found elsewhere [6, 12]. Because our analysis was a secondary analysis of
deidentified data, it is not regulated as human subjects research.
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For the purposes of assigning individuals to intervention adherence groups for the
model, we classified individuals at each time point in each arm as using or not using
each intervention or preexisting WASH condition using the following indicators.

� W: Free chlorine was detected in stored water.

� S: Latrine was present and had a functional water seal.

� H: Primary handwashing location was present with available water and soap.

� N: At least 50% of expected nutrition sachets were reported as being consumed.

Each of these indicators denote WASH or nutrition conditions that impact susceptibility,
exposure, or shedding, as we describe in more detail below. These four indicators
collectively describe 24=16 adherence groups. In WASH Benefits Bangladesh, chlorine
was only measured in arms with the water intervention, and we assumed that there was
no use of chlorination in arms not receiving the intervention. Children not in nutrition
intervention arms and non-target children in nutrition intervention arms were assumed
to have not received supplemental nutrition. We removed individuals with negative
reported ages (n=2), missing reported diarrhea (n=2,745), or missing in any of the four
use indicators (n=2,660), which left 17,187 individual observations (76% of the original
sample) over the three time points. For the remaining data, we plot the arm-specific
prevalence of each of the 4 indicators (Figure 4a–d). Among target children in arms
receiving the nutrition intervention, 93% reported consumption of at least 50%, the vast
majority of whom (83% of target children) reported 100% consumption.

Fig 4. Prevalence of intervention and preexisting WASH conditions.
Prevalence of (a) free chlorine, (b) latrine with water seal, (c) handwashing station with
soap and water, and (d) reported 50% nutrition sachet consumption (only provided to
target children). The arms are denoted by combinations of interventions, C: control, W:
water, S: sanitation, H: hygiene, N: nutrition.

We connect the data to the model by making assumptions about which transmission
pathways the interventions/conditions effect. We model three transmission pathways,
namely water w, fomites f , and other o (including person-to-person). We assume
chlorination (W) reduces exposure from the water pathway ϕβw,W, a latrine water seal
(S) reduces shedding into the water pathway ϕαw,S, handwashing with soap and water
(H) reduces exposure from the fomite pathway ϕβf ,H, and supplemental nutrition (N)
reduces susceptibility from all pathways ϕβ,N = ϕβw,N = ϕβf ,N = ϕβo,N (where the first
subscript, e.g., βw, represents the pathway-specific parameter attenuated by the
intervention, and the second subscript, e.g., W, represents the intervention.) We assume
transmission and shedding in all other arms and pathways are not attenuated, i.e., ϕβ

and ϕα are 1. In total, we considered sixteen model parameters, namely the overall R0,
3 pathway-specific relative R0 parameters, 4 efficacy parameters, a coverage parameter,
6 arm-specific relative R0 parameters, and 2 time-point-specific R0 parameters:
θ = {R0,R0,w/R0,R0,f/R0, ϕβw,W, ϕαw,S, ϕβf ,H, ϕβ,N, ω, ηW, ηS, ηH, ηN, ηWSH, ηWSH-N,
ηmid, ηend}. Full model equations are given in the Appendix (Eq. (S4)). We used the
hybrid sampling–estimation approach (Fig. 3) to estimate posterior distributions of each
of the 16 parameters. We began with prior set of M = 25,000 parameter sets
determined by a Sobol sequence to uniformly cover the parameter space, and we present
posterior distributions taking N = 25,000 samples (with replacement) from the prior
distribution weighted by the importance (likelihood) of the prior samples.
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Results

The model of the WASH Benefits Bangladesh RCT trial reproduced the observed
prevalence across the arms and time points (Figure 5a; the analogous figure with
midline and endline separately plotted is given in Figure S2). The observed prevalence
values are analogous and comparable to the results shown previously in Luby et al. [6],
although the prevalence estimates in Figure 5a are for the subset of the population with
full intervention adherence data. (See Figure S1 for a comparison of the distribution of
model fits in the prior and posterior samples is provided in the supporting information).
As previously reported [6], midline/endline prevalence in the W arm was comparable to
the control arm, and the prevalence in the remaining arms were lower than control and
similar to each other. There were no statistically significant differences in the observed
baseline prevalence across the arms.

When comparing the relative risk of midline/endline to baseline across arms, arms
with combined interventions had lower point estimate prevalence ratios than arms with
consituent interventions, e.g., the point estimate for the WSH-N prevalence ration was
below than each of the W, S, H, WSH, and N arms. Moreover, the midline/endline to
baseline prevalence ratios for all arms, including the control, were below 1. Together,
these results provide a rationale for the inclusion of both arm- and time-point-specific
estimates of the variation in R0, allowing us to maximize the amount of information
about the pathway and efficacy parameters.

Fig 5. Prevalence and prevalence ratio. a) Prevalence of self-reported diarrhea
(7-day recall) in WASH Benefits comparing the baseline (red) to the combined
midline/endline (blue) surveys (comparable to result given in [6]), as well as posterior
distributions of simulated prevalence (violine plots). b) Prevalence ratios (data and
simulated) for each arm for midline/endline relative to base. In both figures, the violin
plots indicate the distribution of values in the parameter posterior sample for each arm,
and their areas are scaled to the number of observations.

While most of the simulation estimates were able to reproduce the data, or at least
produce confidence intervals overlapping those of the data, the model estimate for the S
arm does not capture the observed diarrheal prevalence in that arm at midline/endline.
This discrepancy may suggest that our assumption that the efficacies of the sanitation
and hygiene interventions were the same as the comparable preexisting WASH
conditions is not valid for those interventions. That is, there may be a poor fit to
midline/endline prevalence in those arms because, to better match the prevalence in the
arms, the model would have had to also decrease the infection prevalence for individuals
in the other arms that had preexisting conditions, which would have resulted in poorer
fits for those arms. Alternatively, the discrepancy may be due to noise in the diarrhea
recall variable [23]. The simulated prevalence for the N arm also has limited overlap
with the data. This discrepancy is due, in part, to the fact the the model is fitting to
individual outcomes while the plots are showing aggregrate outcomes. While diarrheal
prevalence point estimate in the N arm among those who had the intervention (3.0%)
was lower than that among those that did not (4.2%), this pattern did not hold in the
WSH-N arm, where prevalence among those who received the intervention (3.9%) was
comparable to that among those who did not (3.6%). The model cannot fit the
outcomes for one group better without fitting the outcomes from another group more
poorly.

The basic reproduction number R0 corresponding to the control arm at baseline was
estimated to be 1.15 (95% CI: 1.09, 1.27) (Figure 6a), which corresponds to an endemic
prevalence of 13% (95% CI: 9–21%) in the absence of any preexisting WASH conditions.
Estimates of timepoint- and arm-specific relative R0 are given in the supporting
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information (Figure S3). The posterior distributions of the pathway-specific
reproduction numbers were wide, indicating uncertainty in the estimates. The mean R0

value for the water pathway accounted for 42% of transmission (R0,w = 0.49, 95% CI:
0.07, 0.99), while the fomite and other pathways accounted for 22% (R0,f = 0.26, 95%
CI: 0.04, 0.57) and 35% (R0,o = 0.40, 95% CI: 0.02, 0.88), respectively. However, there
is substantial uncertainty around the specific values. Nevertheless, the results indicate
that no single pathway would be able to sustain diarrhea transmission alone.

Fig 6. Reproduction numbers. Posterior distributions (dark grey) of the (a) overall
basic reproduction number R0, (b) the water pathway basic reproduction number, (c)
the fomite pathway reproduction number, and (d) the other pathway reproduction
number. Prior distributions (light grey) are given for the three sampled parameters;
prior distributions are not uniform because they are products of underlying uniformly
distributed parameters.

The observed prevalence values are consistent with a wide range of values for the
efficacy of a) water chlorination (ϕβw,W = 0.49, 95% CI: 0.06, 0.97), b) having a latrine
with a water seal (ϕαw,S = 0.33, 95% CI: 0.01, 0.93), and c) handwashing with soap and
water (ϕβf ,H = 0.53, 95% CI: 0.08, 0.97), but are consistent with a comparably narrower
range of efficacy of d) consumption of nutrition sachets (ϕβ,N = 0.14, 95% CI: 0.01,
0.35) (Figure 7). The posterior distribution of estimated study coverage ω suggests that
3.8% (95% CI: 0.002, 9.3%) of the population was enrolled in the study (Figure S4); this
result is an underestimate because the initial sampling range (up to 10%) did not
capture the full tail of the distribution.

Fig 7. Efficacy. Posterior distributions (dark grey) of the efficacy of (a) water
chlorination, (b) the fomite pathway reproduction number, (c) handwashing, and (d)
the other pathway reproduction number. Prior distributions (light grey) are given for
all four sampled parameters.

Discussion

Mechanistic models are valuable hypothesis generating tools, complementing
epidemiological analyses often used for hypothesis testing. They can be particularly
useful alongside randomized controlled trials (RCTs), which provide rigorous
assessments of a specific hypothesis but do not generalize easily to other contexts. Here,
we developed a steady-state analytical framework and Bayesian parameter estimation
approach that exploits both relative risk estimates and other contextual information
collected in RCTs, taking advantage of the rich individual-level data in the trial. In
particular, sampling-importance resampling is an ideal algorithm for developing
inference from relative risk estimates or other non-epidemic disease data [24–26].
Applying this framework to a WASH RCT we found that no single pathway was likely
sufficient to sustain transmission, suggesting the potential need for multiple
interventions, including some not included in traditional WASH RCTs.

One important feature of our approach is the focus on steady state analysis.
Although there is an extensive mathematical biology literature studying steady state
properties of dynamics transmission models that focus both on stability analysis and
the estimation of R0 [27], little work has been done to build an inferential framework
around steady state solutions to take advantage of epidemiological data collected in
RCTs and observational studies. Instead, most inferential frameworks built around
analyzing infectious disease transmission models are designed to incorporate time-series

April 28, 2022 13/19

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 29, 2022. ; https://doi.org/10.1101/2022.04.28.22274441doi: medRxiv preprint 

https://doi.org/10.1101/2022.04.28.22274441
http://creativecommons.org/licenses/by-nc-nd/4.0/


data often from passive surveillance. For instance, increasingly, studies are using
transmission models with epidemic data to estimate R0 [28,29]. The framework that we
developed here takes advantage of relative risk estimates comparing prevalence among
different sub-populations that have different pathway-specific exposures [30]. RCTs
provide the most rigorous data to exploit since the experimental set up eliminates
confounding biases.

Pathogens that can exploit multiple environmental transmission pathways, like
enteric pathogens, require a modeling framework that explicitly and distinctly
incorporates these pathways [31]. Modeling multiple pathways allows us to ascertain the
combination of interventions that optimally reduces diarrhea, subject to programmatic
constraints. In our analysis of the WASH Benefits data, we found that there was not a
single dominant environmental pathway that was likely to sustain transmission on its
own, suggesting that multiple interventions would be needed to eliminate transmission.
The perspective that traditional WASH interventions are not blocking all the important
pathways causing infection is actively being discussed in the literature [11,32,33]. Our
finding that no single pathway was sufficient provides empirical backing to this
perspective. We also estimated that the fraction of the population covered by the study
was small, likely under 10%. Although the direct effects of interventions can be
estimated in RCTs with low coverage, some WASH interventions, particularly
sanitation, act primarily through indirect effects. Previous work has shown that indirect
effects are unlikely to be apparent until greater intervention coverage is achieved [34,35].
Our future work will explore the potential disease reduction outcomes if the WASH
Benefits interventions were implemented on a larger scale.

We also found that the reported diarrheal prevalence was consistent with a wide
range of values for many of the environmental pathway strength and efficacy
parameters. The practical unidentifiability of these parameters is due in part to
trade-offs between the pathway strength and efficacy parameters. For example, the
prevalence data may be explained by a strong water transmission pathway and weak
efficacy of chlorination. Alternatively, the data may be explained by a weak water
transmission pathway, regardless of the efficacy of chlorination. Additional data may be
able to resolve this kind of parameter unidentifiability and would allow for more
detailed insight into the multiple, complicated factors underlying diarrheal disease
transmission. Particularly relevant here are the increasing number of studies collecting
environmental samples from different media to inform pathways-specific
exposure [36–39]. This has promise to add more specificity to exposure variables, which
have traditionally been based on the presence of infrastructure (e.g., piped water or the
presence of sanitation structures). Multiplex molecular technology now allows for more
efficient testing of environmental samples for a wide array of pathogens. Given this new,
more affordable technology, it is important to develop and standardize environmental
sampling strategies for different transmission pathways in a way that complements
standard epidemiological data sets. Environmental data promises to resolve many
uncertainties in parameter estimation. More work is needed, both theoretical and
practical, to ensure that the environmental sampling data can inform transmission
pathways and, ultimately, case data. This new molecular technology can also affordably
identify pathogens in stool samples, which can improve parameter estimation by
replacing highly variable and uncertain natures of the self-reported diarrhea outcomes.
Stool analysis also provides an enhanced understanding of infection, and not just
disease, which would more directly inform our disease transmission modeling framework.

We made several assumptions in the model that could be resolved through more
extensive data collection. For example, we assumed that individuals in a cluster all
interact in a shared environment distinct from other environments. A more detailed
characterization of the environment could allow for the relaxation of this assumption.
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We also assumed that the impacts of interventions could be identified from a proxy
indicator and that preexisting sanitation and hygiene conditions meeting the proxy
indicator were as efficacious as the intervention. Our results appear to suggest that the
interventions were likely more efficacious than the preexisting WASH conditions because
the model was unable to achieve the low prevalence estimates reported in those
intervention arms. Future trials should consider how to measure and indicate
preexisting WASH conditions as well as the fidelity of and adherence to the
intervention(s). Future modeling work could also investigate separate effectiveness
parameters for conditions and interventions, although that approach could substantially
increase the computational burden of simulation.

Conclusion

The strength of this work is in the integration of an advanced mathematical framework,
a computational approach leading to a robust understanding of uncertainty, and the
large, well-executed trial that supplied the data. Our work highlights the benefits of
underutilized, interdisciplinary collaborations between mathematical epidemiologists
and infectious disease trialists. This framework lays the groundwork for further analysis
to better explain WASH RCT results, asking questions about completeness, i.e., the
degree to which interventions block most or all transmission pathways, and how the
effectiveness of the interventions may increase with increasing coverage and compliance.
This framework can be used in future work to examine policy-relevant questions about
completeness, coverage, and compliance, and can be adapted to a variety of other
WASH and other types of RCTs. The application of mathematical modeling to estimate
the impact of WASH interventions across different conditions—coverage, adherence,
background infection rate, intervention efficacy—could improve external validity and
deliver policy-relevant findings across contexts to better inform public infrastructure
investment.

Supporting information

S1 Appendix. Supporting Information. The supporting information includes the
generic SISE–RCT model equations, the WASH Benefits Bangladesh SISE–RCT model
equations, and supplemental results, including distributions of likelihoods, timepoint-
and arm-specific relative basic reproduction numbers, and fraction of the population
enrolled in the study.
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1. Set assumptions for how 
interventions/conditions 
impact transmission pathways

2. Select a set of values of the 
sampled parameters from a 
uniform distribution

3. Select initial values 
for the estimated 
parameters

5. Compare modeled 
prevalence to observed cases, 
calculating the likelihood as a 
measure of goodness-of-fit

4. Simulate the model to 
estimate diarrhea prevalence 
for each adherence group in 
each cluster at each timepoint

6. Use sampling-importance 
resampling to define 
parameter posteriors using 
likelihood values as weights

Data:
• Individual adherence groups
• Individual diarrhea cases

Estimated parameters:
• Overall transmission potential 𝑅0
• Relative 𝑅0 by timepoint and arm

Sampled parameters:
• Transmission potential of each 

environmental pathway
• Intervention/condition efficacy
• Coverage

Repeat until the desired 
number of parameter sets 
has been selected

Use an optimization algorithm 
to find the maximum likelihood 
estimates for the estimated 
parameters

Posterior distributions:

Model:
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