
Genome-wide analysis of binge-eating 

disorder identifies the first three risk loci and 

implicates iron metabolism 
 

David Burstein1-7*, Trevor Griffen1,8*, Karen Therrien1-7, Jaroslav Bendl1-6, Sanan Venkatesh1-7, Pengfei Dong1-

6, Amirhossein Modabbernia1, Biao Zeng1-6, Deepika Mathur1-6, Gabriel Hoffman1-6, Robyn Sysko1,8, Tom 

Hildebrandt1,8, Georgios Voloudakis1-7†✉, Panos Roussos1-7,9†✉ 

 

* These authors contributed equally 
† These authors jointly supervised this work 
✉ Corresponding authors 
 

Affiliations: 
1Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA 
2Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY USA 
3Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA 
4Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA 
5Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA 
6Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA 
7Mental Illness Research, Education, and Clinical Center (VISN 2 South), James J. Peters VA Medical Center, Bronx, NY, 

USA 
8Center of Excellence in Eating and Weight Disorders, Icahn School of Medicine at Mount Sinai, New York, NY USA 
9Center for Dementia Research, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA. 

 

Abstract 

 

Binge-eating disorder (BED) is the most common eating disorder yet its genetic architecture remains largely 

unknown. Studying BED is challenging because it is often comorbid with obesity, a common and highly polygenic 

trait, and it is underdiagnosed in biobank datasets. To address this limitation, we apply a supervised machine 

learning approach to estimate the probability of each individual having BED based on electronic medical records 

from the Million Veteran Program. We perform a genome-wide association study on individuals of African (n = 

77,574) and European (n = 285,138) ancestry while controlling for body mass index to identify three independent 

loci near the HFE, MCHR2 and LRP11 genes, which are reproducible across three independent cohorts. We 

identify genetic association between BED and several neuropsychiatric traits and implicate iron metabolism in 

the pathophysiology of BED. Overall, our findings provide insights into the genetics underlying BED and suggest 

directions for future translational research.  

 

Main 

BED is a common, heritable (41-57%) psychiatric disorder1,2 with lifetime prevalence estimated between 0.9 and 

3%3,4. BED was a provisional diagnosis until the publication of the DSM 5 in 2014 when sufficient evidence was 

available to conclude that BED can be reliably discriminated from other eating disorders5, including anorexia 

nervosa (AN) or bulimia nervosa (BN). Because BED was only recently added to the most widely used diagnostic 

classification systems, a sufficiently powered case-control cohort has not yet been recruited6 and few subjects 

can be identified with traditional approaches to electronic medical record (EMR)-driven genetic studies in existing 

genotyped cohorts. Thus, identification of genetic risk variants for BED has lagged behind similar efforts for other 
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neuropsychiatric disorders. As a result, our understanding of the biological processes underlying the 

pathophysiology of BED is limited and the development of genetically based, targeted treatments for BED 

remains out of reach. 

BED is epidemiologically associated with obesity, metabolic dysfunction, multiple psychiatric disorders and low 

overall well-being4,7. The heritability of BED is enhanced when adjusting for its association with obesity1,2. BED 

patients have a higher genetic liability for obesity when compared to healthy controls and those with other eating 

disorders8. While research distinguishing BED from obesity is limited, individuals with BED consistently consume 

more calories in laboratory meals than obese individuals without BED and demonstrate higher levels of 

psychiatric comorbidity, eating disorder psychopathology, distress and quality of life impairment5,9,10. Frequent 

binge eating is associated with poor metabolic outcomes after adjusting for body mass index (BMI)11,12 and those 

with BED are resistant to sustained weight-loss after interventions with known efficacy4,13. Successful treatment 

of BED does not necessarily result in metabolic improvement or significant weight change13,14 and approximately 

one third of individuals with current or recent BED do not have obesity3. Overall, BED is a serious disorder with 

psychiatric and metabolic components that is epidemiologically distinct from obesity yet shares some underlying 

genetic influences.  

Towards elucidating the genetic architecture of BED, we leveraged the Million Veteran Program (MVP)15 to 

develop and validate a supervised machine-learning algorithm based on clinically diagnosed BED cases to 

estimate each individual’s likelihood of having BED. By performing a bi-ancestry genome-wide association study 

(GWAS), we identified three genetic loci that are significantly associated with BED independent of BMI and we 

implicated a fourth gene through MAGMA gene analysis16. We validated our approach by performing polygenic 

risk score (PRS) analysis in three independent cohorts: the Adolescent Brain and Cognitive Development Study 

(ABCD)17, the Philadelphia Neurodevelopmental Cohort (PNC)18 and the UK Biobank (UKBB)19. By performing 

genetic correlation analysis, we found that BED has considerable genetic overlap with several other 

neuropsychiatric phenotypes, including depression, bipolar disorder and attention-deficit/hyperactivity disorder. 

Finally, using gene-based and partitioned heritability analyses, we implicate iron metabolism in the 

pathophysiology of BED. 

Computational Phenotyping Approach 

There are significant challenges in identifying individuals with BED using EMR: BED was not fully recognized by 

the American Psychiatric Association until 201420, BED remains underdiagnosed21,22 and the most prevalent 

disease classification system, the International Classification of Diseases, Ninth Revision, Clinical Modification 

(ICD-9-CM) does not have a BED-specific diagnostic code. Consequently, in large, longstanding EMRs such as 

the Veterans Health Administration’s MVP where diagnoses were coded in ICD-9-CM until 2015, most individuals 

with BED are likely either undiagnosed or diagnosed using codes corresponding to other or unspecified eating 

disorders (ambiguous codes). Using single ICD codes, we investigated the prevalence of eating disorder 

diagnoses (n = 4,266) within the MVP and found that BED (n = 851) was underrepresented relative to BN (n = 

876) even though BED has a higher prevalence21 (Supplementary Table 1). After excluding those who had not 

been genotyped, there were less than 500 individuals with BED for any given genetic ancestry. 

To identify individuals in the MVP with a high likelihood of having BED and allow for the performance of a well-

powered GWAS, we developed a machine learning approach reliant upon individuals clinically diagnosed with 

BED. We first constructed a list of subjects reliably diagnosed with BED (n = 822) and a list of controls who did 

not have any eating disorder diagnoses (n = 766,705; Supplementary Table 2; Methods). To calculate a BED-

score for each subject in the MVP, we built a LASSO logistic regression model across our BED plus controls 

cohort (n = 767,527). Our hypothesis-free model generated multiple predictors of BED (Top predictors: Fig. 1a; 

full list: Supplementary Table 3), many of which have known associations with BED. Our model selected multiple 

medications found to be effective in treating BED in a randomized, controlled trial: lisdexamfetamine, 
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escitalopram, fluoxetine, naltrexone and atomoxetine23. The model selected numerous medications used for 

weight loss and/or treatment of diabetes (bupropion, lorcaserin, phentermine, liraglutide and dulaglutide)24 and 

equipment used in glucose monitoring (glucose sensors). Antipsychotic medications associated with weight gain 

and diabetes (quetiapine and risperidone)25 were selected as negative predictors of BED. The model 

incorporated broad categories of mood, anxiety and endocrine disorders, all associated with BED7. The model 

also captured predictors related to reproductive organs and sex hormones, gastrointestinal distress, a 

moisturizer, antivenins and antitoxins, other medications, BMI, female sex, white race and other demographic, 

diagnostic and EMR factors.  

We tested our model against a holdout group comprising 10% of the cohort and achieved a strong predictive 

performance: the sensitivity-specificity area under the curve was 97.1% (Fig. 1b), and, while our prevalence of 

identified BED cases was only 0.1%, the average positive predictive value was 11.0% (Fig. 1c). Thus, we 

leveraged the extensive information within the MVP EMR to classify undiagnosed but highly probable cases of 

BED from a smaller cohort of individuals with clinician-diagnosed BED using a hypothesis-free supervised model 

that relied on many factors previously associated with BED. 

 

Fig. 1: Machine learning model to predict BED within the MVP. 

a, Top 10 predictors from the machine learning lasso logistic regression model for predicting BED (y axis). The 

strength of the statistical association is represented by on the x axis as beta and in the size and color of the data 

points, corresponding to the negative log10 of uncorrected two-sided P value (-log10p). The dashed gray line is at 

0 on the x axis. P values smaller than 10-50 are capped at that value. b, Receiver operating characteristic (ROC) 

curve (thick black line) for predicting BED in a stratified test set consisting of 10% of the data. The x axis shows 

the false positive rate and the y axis shows the true positive rate. The dashed gray line represents chance 

performance. The area under the curve (AUC) is 0.97. c, Precision recall (PR) curve (thick black line) for 

predicting BED in a stratified test set containing 10% of the data. The x axis shows the recall rate and the y axis 

shows the precision. Positive predictive value (PPV) is 0.11 with a phenotype prevalence of 0.001. The dashed 

gray line represents change performance. 

 

Genetic Architecture of BED independent of BMI 

A strong genetic correlation has been reported between a BED-inclusive phenotype and BMI8. Therefore, we 

sought to examine the genetic underpinnings of BED while controlling for BMI by leveraging our machine learning 

model-derived (MD) BED scores to perform ancestry-specific GWAS on the African ancestry (AFR; n = 77,574; 

Fig. 2a) and European ancestry (EUR; n = 285,138; Fig. 2b) populations within the MVP: AFR-MD-BED*BMI, 

EUR-MD-BED*BMI (Table 1). From our EUR-MD-BED*BMI GWAS, we discovered two genome-wide significant 

loci at the HFE gene (p = 1.88×10-9) and nearest to the MCHR2 (p = 5.57×10-10) gene (Fig. 2b, Table 1). One of 

the secondary SNPs at the HFE locus, rs1800562, corresponds to the C288Y missense mutation with 
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pathogenicity for hemochromatosis. MCHR2 is a G protein-coupled receptor for melanin-concentrating hormone, 

a conserved cyclic peptide involved in eating behavior and metabolic homeostasis 26. Next, we utilized MAGMA16 

to identify protein coding genes associated with the EUR-MD-BED*BMI phenotype and found a correlation 

between the EUR-MD-BED*BMI phenotype and the APOE gene (p = 7.03×10-7). We calculated heritability using 

LD-Score (LDSC) Regression for the EUR-MD-BED*BMI GWAS to assess the amount of variation explained by 

an additive SNP model and attained an h2 of 2.14% (SE = 0.23%, p = 6.74×10-21). No loci achieved genome-

wide significance in the AFR-MD-BED*BMI as it was relatively underpowered (Fig. 2b, Table 1). 

We then performed cross-ancestral validation of our genome-wide significant SNPs from the EUR-MD-BED*BMI 

GWAS. For rs17789218, located near MCHR2, we found a consistent effect in the AFR-MD-BED*BMI GWAS 

(Table 1), but the replication was not significant due to low power. Additionally, we could not replicate the results 

for the lead SNP at the HFE locus, rs79220007, as the minor allele frequency was substantially lower in the AFR 

(1.1% vs. 6.4% in EUR) cohort and, therefore, the replication was underpowered. Nevertheless, the effect sizes 

for all SNPs at the HFE locus from the AFR cohort had the same sign and similar magnitude to those from the 

EUR cohort (Table 1). Looking beyond the genome-wide significant loci, we computed Spearman correlation 

coefficients for clumped SNPs between the EUR and AFR GWAS across the whole genome. We plotted the 

Spearman correlation between the EUR and the AFR cohorts’ effect sizes for lead SNPs using a series of p 

value thresholds as computed from our EUR-MD-BED*BMI GWAS (Fig. 2d). By limiting our analysis to SNPs 

with negative log10 p values below 5, we obtained a correlation of 0.33 between the AFR- and EUR-MD-BED*BMI 

GWAS. When we further restricted our selection of SNPs to those with lower p values, we found progressively 

increasing correlations from 0.44 to 1 while adjusting the negative log10 p value threshold from 5.5 to 7.0. As we 

progressively restricted our analysis to those SNPs with the strongest association to BED in the EUR-MD-

BED*BMI GWAS, the increased correlation between the AFR and the EUR MD-BED*BMI GWAS beta 

coefficients suggest a common genomic signal for BED shared by the EUR and AFR ancestries. 

To investigate further the cross-ancestral genetics of BED, we conducted fixed-effects meta-analysis27 from the 

summary statistics of the two ancestry-specific GWAS (FEMA-MD-BED*BMI; Fig. 2; Table 1). In the FEMA-MD-

BED*BMI, both of our lead SNPs from the genome-wide significant loci identified in the EUR-MD-BED*BMI 

GWAS and one additional loci, associated with LRP11, achieved genome-wide significance (Table 1). We also 

performed a Multi-Ancestry Meta-Analysis28 and found similar results (MAMA-MD-BED*BMI; Supplementary Fig. 

1). 

We attempted fine-mapping29 to better identify causal/effect variants; however, our findings were limited by the 

extended linkage disequilibrium blocks within which the index SNPs for the LRP11 and HFE loci reside, the latter 

falling within the major histocompatibility complex (MHC) locus. Fine-mapping of the locus near MCHR2 was 

constrained by the limited coverage quality of this region by the MVP genotyping arrays (Supplementary Table 

4). 
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Fig. 2: Bi-ancestral GWAS of BED. 

a-b, Miami plot for the AFR-MD-BED*BM (top) and EUR-MD-BED*BMI (bottom) GWAS (a); Manhattan plot for 

the FEMA-MD-BED*BMI GWAS (b). The x axis denotes the chromosome and position of the corresponding 

SNP. The strength of the SNP-phenotype association is on the y axis as the  negative log10 of uncorrected two-

sided P value (-log10p). The red lines represent genome-wide significance (p = 5.0×10-8). The blue lines represent 

the suggestive genome-wide association threshold (p = 5.0×10-5). Genome-wide significant hits shared by EUR 

and FEMA GWAS are labeled blue; the unique genome-wide significant hit in FEMA is labeled red. c, Correlation 

between the effect sizes of AFR-MD-BED*BMI and EUR-MD-BED*BMI with progressive restriction of the SNP 

inclusion threshold. The Spearman correlation for clumped SNPs is shown on the y axis. The threshold below 

which lead SNPs were included in the correlation analysis is shown on the x axis as the uncorrected two-sided 

P value. The size of the point denotes the log10 count of the included loci. 

GWAS validation 
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After cross validating our results between the EUR and the AFR cohorts, we performed additional internal and 

external validations using only the EUR ancestry cohort due to inadequate numbers of AFR ancestry subjects in 

the validation cohorts. As internal validation, we tested the relationship between our primary GWAS methodology 

(MD-BED), BMI and an alternative ICD-based BED phenotype (ICD-BED) comprised of individuals reliably 

diagnosed with BED and/or diagnosed with an ambiguous eating disorder and a with a high probability of having 

BED based on a second machine learning algorithm designed to discriminate BED from other eating disorders 

(Methods). 

We computed the genetic correlation across five BED-related GWAS on EUR individuals in the MVP: Model-

Derived BED (EUR-MD-BED; n = 285,138), Model-Derived BED adjusted for BMI (EUR-MD-BED*BMI; n = 

285,138), ICD-based BED (EUR-ICD-BED; n = 549 cases, n = 284,648 controls; Supplementary Fig. 2a), ICD-

based BED adjusted for BMI (EUR-ICD-BED*BMI; n = 549 cases, n = 284,648 controls; Supplementary Fig. 2b) 

and BMI (EUR-BMI; n = 291,593). We observed reasonably high correlations between the EUR-ICD-BED GWAS 

and the other GWAS, with Pearson’s r ranging from 0.48 to 0.86 (Fig. 3a). We note that the EUR-MD-BED*BMI 

GWAS achieved high genetic correlation (rg = 0.85) with the EUR-ICD-BED*BMI GWAS. In contrast, when we 

did not adjust our MD-BED phenotype for BMI, we observed that EUR-MD-BED GWAS achieved greater genetic 

correlation with BMI (rg = 0.93) than it did with any of the BED GWAS (rg = 0.71 with EUR-ICD-BED). These 

results confirm that the two approaches to classification of BED identify common genetic factors, but suggest 

that without adjustment, our machine learning approach inflated the influence of BMI-associated genetic 

determinants. 

While the genetic correlations between the EUR-MD-BED*BMI GWAS and the two ICD-BED GWAS were high, 

the ICD-based approach identified different genome-wide significant loci (Supplementary Results; 

Supplementary Table 5). However, heritability of the EUR-ICD-BED GWAS was only nominally significant (h2 = 

22.3%-29.5%, p = 0.05) and heritability of the EUR-ICD-BED*BMI GWAS was not significant (h2 = 16.9%-22.4%, 

p = 0.11). 

We also validated our EUR-MD-BED*BMI approach using three external cohorts with BED-inclusive phenotypes 

by leveraging our GWAS summary statistics to compute PRS. In the UKBB30, we defined a BED-inclusive 

phenotype (n = 461; prevalence 0.1%) using the mental health questionnaire and included subjects who self-

reported a diagnosis of “psychological over-eating or binge-eating,” while excluding subjects with self-reported 

diagnoses or inpatient hospital ICD-9/ICD-10 codes of AN or BN. Controls comprised those answering no to 

these three eating disorder questions and those without ICD codes corresponding to AN or BN (n = 385,624; 

Supplementary Table 6). For the PNC, we identified individuals with a BED-inclusive phenotype based on 

questions modified from the Kiddie-Schedule for Affective Disorders and Schizophrenia (K-SADS)18: we included 

subjects who reported a history of out-of-control eating and denied compensatory behaviors (e.g. purging; n = 

531, prevalence 10.9%). Controls comprised those who answered no to the binge-eating and purging questions 

and screened negative for AN (n = 4,330; Supplementary Table 6). For the ABCD, diagnosis of BED was 

obtained using the K-SADS (n = 94, prevalence 2%). Controls comprised those who did not receive a diagnosis 

of BN (n = 4,565; Supplementary Table 6); there was insufficient information to identify subjects with AN. Our 

EUR-MD-BED*BMI PRS significantly predicted BED in the UKBB (p = 0.03) and in the PNC (p = 0.02; Fig. 3b), 

but did not reach significance in the ABCD cohort (p = 0.13, Fig. 3b). However, the effect sizes were similar in 

all validation sets (log odds ratios: 0.09-0.12) and the inverse variance-weighted meta-analysis across the UKBB, 

ABCD and PNC was robust (p = 1.39×10-3; Fig. 3). The EUR-ICD-BED*BMI PRS failed to validate in any of the 

individual cohorts or through meta-analysis (Fig. 3), likely due to the low power and non-significant heritability of 

this GWAS. 
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Fig. 3: Validation of the MD-BED phenotype. 

a, At the top is a hierarchical clustering of five EUR-BED related phenotypes. On the bottom is a heat map of the 

genetic correlation matrix. The diagonal genetic correlation entries in yellow represent a correlation of 1 between 

each GWAS and itself. b, PRS validation of EUR-MD-BED*BMI and EUR-ICD-BED*BMI GWAS with UKBB, 

PNC, ABCD and a meta-analysis of those cohorts. The MVP (vertical) and external (horizontal) cohorts are 

shown on the y axis. The log odds ratio for the PRS predictor is shown on the x axis. Confidence intervals are 

one-sided standard errors. *p < 0.05. **p < 0.01. 

Shared genetic architecture between BED and other traits 

To investigate the genetic overlap between BED and other traits, we computed the genetic correlation between 

the EUR-MD-BED*BMI GWAS and a set of psychiatric disorders, behavioral phenotypes and health-related traits 

and contrasted it with the results of our EUR-BMI (Fig. 4a; Supplementary Fig. 3). We found significant positive 

genetic correlations between EUR-MD-BED*BMI and lobar intracerebral hemorrhage (rg = 0.56, p = 2.02×10-6), 

depression (rg = 0.52, p = 2.46×10-45), bipolar disorder (rg = 0.42, p = 7.63×10-21), neuroticism (rg = 0.38, p = 

5.43×10-10), attention-deficit/hyperactivity disorder, (rg = 0.34, p = 1.26×10-7), schizophrenia (rg = 0.24, p = 

2.94×10-9) and AN (rg = 0.21, p = 4.00×10-4), as well as a cross-psychiatric disorder GWAS (rg = 0.44, p = 

1.58×10-11). The strength of the genetic correlation between these traits was greater with the EUR-MD-BED*BMI 

GWAS than with the EUR-BMI GWAS (Supplementary Fig. 3). We found significant negative genetic correlations 

between EUR-MD-BED*BMI and educational attainment (rg = -0.11, p = 0.001), intelligence quotient (rg = -0.12, 
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p = 0.019), cognitive performance (rg = -0.13, p = 8.00×10-4) and subjective well-being (rg = -0.21, p = 0.006). To 

validate the negative genetic association between BED and cognitive functioning, we assessed the relationship 

between our EUR-MD-BED*BMI PRS and neurocognitive measures obtained in the UKBB31 and found strong 

negative associations across nearly all domains tested (Supplementary Fig. 4). 

 

Fig. 4: Genetic correlation with other traits. 

All traits with significant genetic correlation to EUR-MD-BED*BMI at the FDR significant threshold (q < 0.05) are 

ranked by rg on the y axis. The strength of the genetic correlation is shown on the x axis as rg with the 95% 

confidence interval for each trait shown and through the color of the error bar corresponding to the uncorrected 

two-sided P value. P values smaller than 10-10 are capped at that value. 

 

Pathways and cell types 

We used FUMA, excluding the MHC to ensure that results were not driven by the high LD structure and gene 

density in this region, to identify enrichment in the overlap of gene sets from our EUR-MD-BED*BMI and a large 

database of published GWAS (Supplementary Fig. 5). Apart from enrichment for neuropsychiatric, obesity-

related, autoimmune and cancer traits, we found enrichment for gene sets involved in heme metabolism and 

biosynthesis and uric acid metabolism. Phenome-wide association studies (PheWAS) of the lead SNPs from the 

FEMA-MD-BED*BMI GWAS were also consistent with iron dysregulation through associations with disorders of 

iron metabolism and iron deficiency anemia (Supplementary Fig. 6). 

To elucidate the role of iron and heme metabolism in BED, we assessed the relationship between the PRS from 

our EUR-MD-BED*BMI and EUR-BMI GWAS with both an iron deficiency and an iron overload phenotype 

derived from the UKBB (Fig. 5a). BED was very strongly positively correlated with iron overload (β = 0.66, p = 

1.62×10-60) and negatively correlated with iron deficiency (β = -0.025, p = 0.01). In contrast, BMI was positively 

correlated with iron deficiency (β = 0.05, p = 1.03×10-7) and was not significantly correlated with iron overload (β 

= -0.01, p = 0.73). To test for a putative causal relationship between BED and iron overload we performed 

Generalized Summary based-data Mendelian Randomisation (GSMR)32, where we leveraged summary statistics 

from our EUR-MD-BED*BMI and an extant transferrin saturation GWAS33 based on an independent cohort 

comprising subjects from deCODE genetics and the INTERVAL study (Fig. 5b). From the GSMR analysis, we 

confirmed a statistically robust relationship (β = 0.02, p = 5.45×10-6), further supporting that transferrin saturation, 

a biomarker of whole body iron stores, affects the model derived BED scores. After linking BED with iron 

overload, we hypothesized that if iron/heme metabolism is critical for BED we would also see independent 
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downstream enrichment of EUR-MD-BED*BMI risk variants for regions of the genome regulated by heme. Thus, 

we tested the relationship between enrichment of BED risk variant-homologs and heme-regulated open 

chromatin regions from a murine erythroid cell 𝛽-estradiol stimulation model34. After correcting for multiple 

comparisons, we found significant enrichment of our BED risk variant-homologues in wild-type mice exposed to 

𝛽-estradiol (induced high heme state; FDR adjusted p = 0.03), but not in mutants with reduced heme expression 

(Fig. 5c), suggesting enrichment of BED risk variants in heme-regulated open chromatin regions. 

Based on our gene set enrichment findings, we also attempted to explore the relationship between uric acid 

metabolism and BED. We found genetic associations with urate and gout; however, in contrast to iron/heme 

metabolism dysregulation, observed BMI heavily confounded these associations (Supplementary Results; 

Supplementary table S7). 

Finally, to identify cell types in which the genetic drivers of BED are likely to have an effect, we performed 

partitioned heritability analysis for our EUR-MD-BED*BMI GWAS with two chromatin accessibility atlases35,36 

and found nominal enrichment across several neural lineages including from limbic system neurons, inhibitory 

neurons, astrocytes, enteric neurons and enteric glia (Supplementary Results; Supplementary Fig. 7). These 

results point to a potential pleiotropic effect of the genetic drivers across neural tissues and suggest shared 

dysfunction across the central and enteric nervous systems. 

 

Fig. 5: Iron overload in BED. 

a, PRS associations between EUR-MD-BED*BMI and EUR BMI GWAS and iron-related phenotypes in the 

UKBB. The PRS scores (vertical) and iron phenotypes (horizontal) are shown on the y axis. The coefficients, as 

log odds ratio, from the logistic regression analyses for the PRS predictor are shown on the x axis. Confidence 

intervals are two-sided standard errors. *p < 0.05. ***p < 0.001. b, Scatter plot with generalized linear regression 

from GSMR between the lead SNPs in the transferrin saturation GWAS from the deCODE genetics and 

INTERVAL studies and EUR-MD-BED*BMI. Betas from the lead SNPs of the transferrin saturation GWAS are 

plotted on the x axis. Corresponding betas from the EUR-MD-BED*BMI are plotted on the y axis. c, Enrichment 

of BED risk variant-homologs in genomic regions of open chromatin in wild type (WT) and heme-deficient mutant 

murine erythroid cells treated with 𝛽-estradiol and/or 5-aminolevulinic acid hydrochloride (5-ALA). Cell lines are 

represented on the y axis. Heritability coefficient is represented on the x axis. A positive coefficient signifies 

enrichment in heritability. Dot size reflects negative log10 of uncorrected two-sided P value (-log10p) of the LD-

score regression. Error bars indicate standard errors from the LD-score regression. #p < 0.05 after FDR 

correction. 

Discussion 

We report the first GWAS of BED from 362,712 individuals in the MVP, including individuals with AFR and EUR 

ancestries, and identify three loci that have a genome-wide significant association with BED independent of BMI. 

We further implicate APOE in BED through MAGMA. To power our study, we developed a machine learning 

approach to identify the probability of individuals having BED across the MVP based on clinician-diagnosed 
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cases. We leveraged the diversity of the MVP to conduct separate GWAS in AFR and EUR cohorts and perform 

both cross-cohort and meta-analytic validation of our results. Our machine learning approach was effective in 

performing a GWAS on a common, yet underdiagnosed disorder in a very large cohort. With the limited number 

of identified cases, our algorithm-based approach shared high genetic correlation (rg = 0.85) with our more 

traditional case-control GWAS, while outperforming it on both SNP heritability (p = 6.74×10-21 vs. p = 0.11) and 

PRS validation across external cohorts (p = 1.39×10-3 vs. p = 0.44).  

We found significant association between our MD-BED phenotype built on clinically diagnosed veterans and 

gender-balanced civilian cohorts. Of the three cohorts, only the ABCD used DSM-based criteria for BED 

diagnosis; however, it contains only 94 cases as the cohort is substantially younger than the typical age of onset 

of BED17. Thus, the ABCD replication, the only one that did not achieve significant validation, was severely 

underpowered. The PNC cohort was also younger than the mean age of onset of BED18 and the closest available 

phenotype captured a much larger population than would be expected to have BED. Despite these limitations, 

our PRS significantly predicted BED in two of the three civilian cohorts (PNC and UKBB) and through meta-

analysis. Consequently, we provide strong evidence for the external validity of our GWAS approach, even in the 

presence of demographic confounders. 

A recent UKBB study confirmed the expected partial genetic association between BMI and over-eating/binge-

eating in a EUR-only cohort but was not powered to detect associations with individual loci, was not based on 

diagnosed BED and did not examine the BMI-independent genetic contributions to over-eating/binge-eating8. 

However, their phenotype was similar to the UKBB phenotype that we used as one of the validations of our 

approach. As expected, we found a high-degree of genetic correlation between BED and BMI using both our 

machine learning and ICD-based approaches. 

While there is substantial epidemiological and genetic overlap between BED and obesity, most obese individuals 

do not have BED and many people with BED are not obese3. Therefore, we examined the genetics of BED while 

adjusting for BMI. When comparing our EUR-MD-BED*BMI PRS to a number of behavioral and psychiatric traits, 

we revealed genetic correlations between BED and depression, bipolar disorder and attention-

deficit/hyperactivity disorder, all common comorbidities of BED7, along with AN. Together, these cross-disorder 

genetic commonalities provide biological validation of the epidemiological evidence that the BED subpopulation 

within obesity is a nexus for enhanced psychopathology. We also identified a strong association with 

intracerebral lobar hemorrhage. This risk may be mediated through shared associated factors including 

hypertension and through APOE mutations37. 

Examining the individual genes, pathways and cell-types implicated in BED provides further insight into the 

biology underlying BED and evidence against the theory that BED is merely an associated feature of the co-

occurrence of obesity and general psychopathology38. Several lines of evidence implicate dysfunctional iron 

metabolism, heme signaling and resultant iron overload as a driver of BED. We identified multiple SNPs with 

significant association to BED at the HFE gene, including rs1800562, a missense variant pathogenic for 

hemochromatosis39. We identified iron and heme-related phenotypes using both FUMA and PheWAS. We 

confirmed that BED is genetically associated with iron overload through a PRS association study in the UKBB, 

transferrin saturation via GSMR in an independent cohort, and further implicated heme metabolism by 

demonstrating that BED risk variants are enriched for heme-induced open chromatin regions. Heme metabolism 

has been implicated in insulin resistance40 and could partially mediate the association between BED and 

metabolic dysfunction. Iron deficiency is implicated in pica, another eating disorder in which individuals 

repetitively eat non-nutritive, nonfood substances41. This contrasts with BED in which we implicate iron overload 

and where patients repetitively engage in consumption of highly nutritive food substances. Iron load may be a 

partial driver of consumptions on a spectrum from non-nutritive to binge eating through an undiscovered 

pathway. Iron overload has also been associated with cocaine use disorder42, which shares several key features 

with BED including loss-of-control and impulsivity and animal models have shown an association between binge 
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eating and cocaine craving43. Peripheral iron excess may lead to iron accumulation in the basal ganglia, causing 

oxidative damage and dysfunction of reward circuitry42. 

We implicate the melanin-concentrating hormone system in BED through the identified genome-wide significant 

loci near MCHR2. Melanin-concentrating hormone plays an important role in energy and glucose metabolism 

through action at two receptors, MCHR1 and MCHR226, and including regulating impulsive eating 44. While 

MCHR1 is conserved across mammals, MCRH2 exists in only a subset and is less well-studied26. Interestingly, 

a candidate gene study found an association between MCHR2 and atypical depression, which is characterized 

by increased appetite/weight gain, hypersomnia and mood reactivity45. We also implicate lipid signaling through 

identification of LRP11 and APOE through GWAS and MAGMA respectively. Validating our genetic approach, 

obese individuals with BED have an unfavorable lipid profile compared to obese control subjects46. 

In conclusion, we report the first GWAS in BED and implicate four genes and iron metabolism in the 

pathophysiology of BED independent of BMI. We demonstrate that BED is a complex, metabolic-psychiatric 

disorder by inculpating both neural tissues and peripheral metabolic pathways known to influence brain function. 

Through identification of the melanin-concentrating hormone system and iron metabolism, we find actionable 

targets for future translational research. 

Online Methods 

Participants 

The MVP cohort has been previously described15,47,48. Analysis of MVP data was conducted using electronic 

medical data v20.1 comprising 819,417 patients with demographic information. Of the 819,417 patients, release 

3 of the genomics data consists of 459,777 patients with diverse genetic ancestries. Ancestry was assigned 

using the HARE program49 with the 1000 Genomes project50 as a reference panel. Confirmatory analysis was 

performed on the UKBB31 (n = 386,085), ABCD17,51 (n = 4,659) and the PNC18 (n = 4,861), all previously 

described (Supplementary Table 6). 

Phenotyping 

We developed a series of eating disorder phenotype definitions from data available from the subjects’ associated 

VA electronic medical records available through the MVP. For eating disorder prevalence estimates by diagnostic 

code within the MVP, we counted subjects that had at least 1 instance of any individual eating disorder coded in 

either ICD-9-CM or ICD-10-CM (Supplementary Table 1). 

We built our BED machine learning model (MD-BED) by leveraging available diagnostic codes, medication 

prescriptions, BMI measurements and demographic data. The set of reliably diagnosed BED subjects comprised 

those with either two ICD-10-CM BED codes (F50.81) or a single BED code and no other specific eating disorder 

codes (Supplementary Table 2). The set of control subjects comprised all MVP subjects with available EMR 

data, excluding those with any specific eating disorder diagnosis code (Supplementary Table 2) and those who 

self-reported having an eating disorder on the enrollment questionnaire (“Do you have an eating disorder?”). 

We trained a machine learning model to calculate a BED probability score across the MVP utilizing the cohort of 

reliably diagnosed BED cases described above (n = 822). We first mapped ICD diagnoses to Clinical 

Classification Software codes and computed log counts for diagnoses for each subject. Next, we computed 25th, 

50th and 75th percentile BMI measures using height and weight values from each record. We removed records 

with nonsensical height, weight and BMI values, where we required BMI to range from 9 to 150 kg/m2, median 

height to range from 35 to 95 inches, and weight entries to range from 40 to 1400 pounds. We further removed 

patients with less than two valid, distinct BMI measurements. Of the 767,527 patients that passed these filters, 
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we constructed a 90%-10% split of our data to train our model. Due to the large number of medication ingredients 

(3,456) available for analysis, we used a LASSO regression model (using the cv.glmnet function with parameters 

alpha = 1, family = binomial and nfolds = 10) prior to the creation of the final model to reduce the number of the 

medication ingredients included. For this step, we took a random sample of 90,000 control subjects to identify 

the relevant medications, while retaining all of our cases from the training set. To compute the area deprivation 

index for patients with missing zip codes, we imputed the median value. Subjects without any prescriptions or 

diagnoses were filtered out. We constructed our final MD-BED model by incorporating log counts of medications 

at the ingredient level, demographic variables at enrollment (self-reported sex, age, race, and ethnicity, and 

zipcode-associated deprivation index), log counts for diagnoses and BMI (as calculated above) as model 

predictors and trained it on the remaining subjects. Ranking of top variables was based on p values from the 

analogous unpenalized logistic regression model, trained on all of the 767,527 patients using only the variables 

that were retained in the LASSO regression model. The ranking of top variables was only performed to identify 

important predictors in the model and did not impact downstream analyses. 

To construct our MD-BED*BMI model, after assessing the performance of the LASSO logistic regression model 

for various parameter choices through cross-validation, we initially retained both the model with the lowest 

binomial deviance (Min) as well as the simplest model that had a mean binomial deviance within one standard 

deviation of the best performing model (1SE) to avoid overfitting. We then completed GWAS (as described 

below) on both models adjusting for BMI and retained the model with mean binomial deviance within one 

standard deviation of the best performing mode (MD-BED*BMI) as it outperformed the model with the lowest 

binomial deviance (MD-Min-BED*BMI) in SNP heritability (2.14% (s.e. = 0.23%) compared to 1.65% (s.e. = 

0.22%)) and did not differ on predictive performance (Supplementary Fig. 8). 

For all GWAS utilizing BMI (i.e. EUR-BMI), participant BMI quartile was calculated as above and all participants 

with distinct and valid BMI measurements at the 25th and 75th percentile were retained. 

For privacy reasons, the MVP places a restriction on case-control GWAS requiring at least 500 cases for the 

summary statistics to be shared with the scientific community for reproducibility, and there are less than 500 

individuals of a single ancestry with both an ICD-10-CM BED code and available genetic information. Therefore, 

to identify enough BED-probable subjects to perform an ICD-based case-control GWAS for the EUR-ICD-BED 

phenotype, we developed a second machine learning classifier to identify probable BED cases from within the 

subpopulation of all patients with eating disorder diagnoses. To generate the ICD-BED score, we followed the 

same procedure as above with cases defined as all reliably diagnosed BED cases. We again built a LASSO 

regression model, this time training it on the entire cohort of reliably diagnosed BED subjects and training it to 

distinguish them from within the subpopulation of all subjects with any eating disorder diagnosis. Cases for the 

GWAS were then then defined as the set of reliably diagnosed subjects with BED as above plus subjects with at 

least one ambiguous eating disorder code (307.50, 307.59, F50.89, F50.9) and a within-eating disorders BED 

score greater than the 25 percentile of reliably diagnosed BED cases (n = 549). Controls were defined as all 

remaining subjects excluding those with any eating disorder diagnosis code and those who self-reported having 

an eating disorder as above (n = 284,648). 

For the UKBB, inclusion and exclusion was based on the Mental Health Questionnaire and associated ICD-9 

and ICD-10 codes. Subjects reporting a “diagnosis of psychological over-eating or binge-eating” were included 

as cases. Those with a self-reported or ICD coded diagnosis of AN or BN were excluded from both the case and 

control groups. All remaining subjects were retained as controls. For ABCD (data release 4.0), case-control 

definitions were based on the K-SADS. Cases were subjects who received a K-SADS diagnosis of BED and 

controls were subjects who did not receive a K-SADS diagnosis for either BED or BN. A diagnosis of AN could 

not be made from the available data from ABCD as it could not be determined whether an individual met all 

criteria or had been formally diagnosed. For the PNC, case-control definitions were based on a modified version 

of the K-SADS (third study accession, dbGaP phs000607.v3.p2). Cases were those who answered yes to 
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EAT007 (lifetime binge eating) and no to EAT008 (lifetime purging after a binge-eating episode). Subjects were 

excluded from the control group if they answered yes to EAT007 or EAT008 or screened positive for an AN-like 

phenotype (yes to EAT001, EAT002 & EAT003 AND either 1) male 2) no to EAT004 3) no to EAT005 or 4) yes 

to EAT004, EAT005 and EAT006). 

In the UKBB, the gout, iron overload, and iron deficiency phenotypes were defined by the presence of at least 

one relevant phecode or self-reported diagnosis code. Hospital inpatient ICD-9 and ICD-10 codes were 

converted to phecodes using previously established methods.52,53 Gout phenotype cases included individuals 

with phecodes 274.1 (gout) or 274.11 (gouty arthropathy), as well as self-reported gout at the baseline 

assessment. Iron overload phenotype cases included individuals with phecodes 275.1 (disorders of iron 

metabolism) or 277.1 (disorders of porphyrin metabolism). Iron deficiency phenotype cases included individuals 

with phecodes 262 (mineral deficiency NEC) or 280.1 (iron deficiency anemias, unspecified or not due to blood 

loss), as well as self-reported iron deficiency anemia at baseline. 

Genotyping, quality control and imputation 

Genotyping, quality control and imputation in MVP is handled by a dedicated data team The MVP v3.0 data 

release used in this study includes genotyping data from 455,789 individuals; DNA was extracted from whole 

blood (which was collected during enrollment to the MVP) and genotyping was performed with the MVP 1.0 

Genotyping array15. Ancestry (EUR) as determined by HARE (Harmonized ancestry and race/ethnicity) 

analysis49. Prephasing was performed using EAGLE v254 and genotypes were imputed using Minimac v3 with 

the 1000 Genomes Project phase 3, version 5 reference panel55. Relatedness between MVP participants was 

inferred using kinship coefficient calculated using software KING52. Related individuals are removed using a 

kinship coefficient cut off >= 0.0884.. PCA to generate ancestral PCs was performed using EIGENSOFT v.656,57. 

Genome-wide association studies 

GWAS analysis was conducted employing either logistic regression for binary traits (case-control definition of 

BED from the ICD model) and linear regression for continuous traits (BMI, MD-BED scores) using PLINK 2.0. 

We conducted separate analyses for AFR and EUR genetic ancestries and included age, sex, record density 

and the top 10 principal components to adjust for potential confounders. SNPs with minor allele frequency less 

than 0.5% or an effective minor allele count < 30 were removed from the analysis per MVP regulation. SNPs 

with a HWE p value less than 5×10-8 or an imputation r2 < 0.4 were removed from the analysis. To assess 

whether a SNP was genome-wide significant, we used the standard multiple-testing correction threshold, p < 

5×10-8. To satisfy the model assumptions of performing linear regression, we applied an inverse-rank normal 

transformation of the MD-BED scores to ensure the prediction errors follow an approximately normal distribution 

for all model derived GWAS. 

Enrichment Analyses 

We utilized FUMA (v1.3.7)58 and its implementation of MAGMA (v1.0.8)16 to determine genes and gene sets that 

are linked to the MD BED phenotype. We used a Bonferroni-corrected P value threshold of 2.684×10-6 to account 

for multiple testing of 18,626 protein coding genes using the 10k UKBB European reference panel (release 2b) 

to account for linkage disequilibrium. In addition, we considered 54 tissue types from GTEx V8 to assess for 

gene enrichment across different tissues. We employed the default parameters for excluding annotations from 

the MHC region, between the MOG and COL11A2 genes. 

LD Score Regression, Heritability and Genetic Correlation 

We estimated SNP heritability and genetic correlation using the LDSC package59,60. Heritability for case-control 

phenotypes were computed on the liability scale for a range of plausible population prevalence, while continuous 
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phenotypes were computed on the observed scale. To compute the heritability and genetic correlation estimates, 

the 1000 Genomes Project - European Project was used to construct the reference panel. 

Meta-Analysis 

We used the inverse-variance weighting method to meta-analyze both the AFR and EUR MD-BED*BMI GWAS 

and the log odds ratio for the PRS on the external cohorts (UKBB, ABCD and PNC). To account for the LD 

structure and the possibility of different effect sizes between different populations, we also employed Multi-

ancestry Meta-analysis (MAMA)28 using 1000 Genomes Project as a reference panel. For meta-analysis with 

MAMA, we filtered out SNPs with minor allele frequencies that were smaller than 1% to ensure our sample size 

from the reference panel was large enough to attain sufficiently accurate linkage disequilibrium scores. MAMA 

did not yield any additional hits and as such was not discussed in the main paper. 

Fine-mapping 

For each of our loci, where we have a genome-wide significant hit and the minor allele frequency is sufficiently 

large (> 1%), we performed fine-mapping to identify candidate causal variants using SUSIE with the UKBB as a 

reference panel. We ran SUSIE29,61 both including and excluding outlying SNPs flagged by the algorithm, where 

we specified the upper bound for the number of causal variants to be 5 and the window to span 1 megabase 

pairs. 

Phenome-Wide Association Studies 

PheWAS were conducted leveraging EUR subjects in the MVP (n = 296,407). We then filtered imputed 

genotypes by minor allele frequency (> 0.01), variant level missingness (< 0.02) and imputation R2 (> 0.9). 

Phenotypes were derived by aggregating ICD Codes in the EMR data using the categorizations provided in the 

Phecode Map v1.262; phenotypes with less than 500 cases were removed from the analysis. We then performed 

a logistic regression, adjusted for sex, age and top 10 ancestry PC’s, to assess the presence of an association 

between the flagged SNP and the phenotype. We assessed significance using a Bonferroni corrected two-sided 

p value at the 0.05 level. 

Polygenic Risk Scores and Validation 

The quality control (QC) and population stratification steps performed on UKBB genotypes used for PRS 

generation have been described elsewhere63. Following these steps, 387,392 samples with European ancestry 

and 557,369 variants were retained. Processing and imputation performed on the PNC genotypes has also been 

previously characterized, and resulted in 4,973 European ancestry samples and 4,903,082 variants retained64. 

The ABCD Data Analysis, Informatics & Resource Center (DAIRC) performed initial genotype QC according to 

the Ricopili pipeline recommendations, resulting in 11,099 samples and 516,598 variants retained in data release 

3.065. ABCD genotypes were then lifted-over to GRCh38 using PLINK 1.9 and merged with 1000 Genomes 

Project genotypes for population stratification50. PLINK 2.0 was used to calculate principal components on the 

merged genotypes, following filtering (minor allele frequency ≥ 0.01, HWE p value < 1 × 10−10, variant-level 

missingness ≤ 0.01, regions with high LD removed) and pruning (--indep-pairwise 1000 10 0.02) steps. An 

ellipsoid with a radius of three standard deviations was calculated from the first three PCs of the 1000 Genomes 

Project European superpopulation, and ABCD samples that fell outside of this ellipsoid were removed. KING 

kinship coefficients were calculated in PLINK 2.0 on filtered (minor allele frequency ≥ 0.05, variant-level 

missingness ≤ 0.1, regions with high LD removed) and pruned (--indep-pairwise 50 5 0.2) genotypes, and only 

unrelated individuals (KING coefficient ≤ 0.125) were retained52. Finally, samples genotyped on plate 461 were 

removed (as recommended by the ABCD DAIRC team). This resulted in a final sample of 4,676 European 

ancestry ABCD genotypes.  
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The Polygenic Risk Score-Continuous Shrinkage (PRS-CS)66 method was used to compute PRS for the external 

cohorts from the GWAS summary statistics derived from the MVP cohort. The European LD reference panel 

used was generated from UKBB data. We set the parameters as follows: parameter a in the γ-γ prior = 1, 

parameter b in the γ-γ prior = 0.5, MCMC iterations = 1000, number of burn-in iterations = 500, and thinning of 

the Markov chain factor = 5. In addition, the global shrinkage parameter phi was derived using Bayesian 

methodologies. We then employed PLINK 2.0 to compute the individual-level PRS. We assessed the association 

between scaled (mean = 0, sd = 1) PRS and the BED-inclusive phenotype in each cohort through logistic 

regression, where we adjusted for age, age squared, genotyping batch, sex and ancestry (first 20 principal 

components obtained from European ancestry samples in UKBB/ABCD, first 10 MDS dimensions obtained from 

European ancestry samples in PNC). P values for PRS were computed using a one-sided hypothesis test. In the 

UKBB we additionally assessed PRS association with gout, iron overload, and iron deficiency phenotypes using 

logistic regression, as well as blood urate levels at baseline and neurocognitive phenotypes using linear 

regression. Urate levels were square-root-transformed, while neurocognitive phenotypes were scaled (mean = 

0, sd = 1). Models were generated both with and without BMI as a covariate, and P values were computed using 

a two-sided hypothesis test.  

The neurocognitive phenotypes assessed included numeric memory (UKBB data-field 4282), reaction time (data-

field 20023, log-transformed and reverse-coded so higher scores indicate better performance), pairs matching 

(data-field 399, trial 2 only, log+1-transformed and reverse-coded), matrix pattern completion (data-field 6373 

divided by data-field 6374), tower rearranging (data-field 21004), numeric trail making (data-field 6348, log-

transformed and reverse-coded), alphanumeric trail making (data-field 6350, log-transformed and reverse-

coded), symbol digit substitution (data-field 23324), and fluid intelligence/reasoning (data-field 20016). 

Neurocognitive results recorded at the participants’ first imaging follow-up assessments were used, except in 

the case of numeric memory, reaction time, pairs-matching, and fluid intelligence/reasoning phenotypes where 

baseline data was instead used. We adjusted reported p values using the false discovery rate to account for the 

number of tests performed. 

Concordance of EUR and AFR GWAS hits 

To assess the similarity between the AFR- and EUR BED-MD*BMI GWAS, we clumped lead SNPs in Plink67 

using the European 1k Genomes reference panel. In particular, we required that all SNPs in the same clump 

must have an R2 of at least 0.2 with the lead SNP and be at most 250 kbp away from the lead SNP. We then 

computed the Spearman correlation between the linear regression coefficients for the respective GWAS using 

different P value filters, (e.g. p < 10-4) as described in the main text.  

Generalised Summary-data-based Mendelian Randomisation  

We leveraged the GCTA software tool68 to perform GSMR using the European participants from the 1000 

Genomes Project as a reference panel with the default parameters. Since GSMR requires at least 10 genome 

wide significant loci, we could only conduct forward GSMR to assess if a given phenotype (transferrin saturation, 

baseline urate levels) influences our model derived BED phenotype, and not backward GSMR as our MD-BED 

GWAS lacks the requisite number of genome-wide significant loci. We used available summary statistics for the 

transferrin saturation33 and urate level69 phenotypes. As part of GSMR, pleiotropic SNPs were filtered out using 

the HEIDI-outlier method before assessing the correlation of lead SNPs from the summary statistics for 

transferrin saturation phenotype with the model derived BED phenotype. 

Partitioned Heritability  

We examined an overlap of common genetic variants of BED and open chromatin from (i) wild-type and heme-

deficient mutant murine erythroid cells treated with 𝛽-estradiol and/or 5-aminolevulinic acid hydrochloride (5-

ALA)34, (ii) a sciATAC-seq3 study of human fetal cell types35, (iii) a scATAC-seq study across six human adult 

brain regions36 using an LD-score partitioned heritability approach70. We used LD-scores with a baseline model 

of general genomic annotation (such as conserved regions and coding regions) that corrects for the general 

genetic context of tested sets of open chromatin regions. All regions of open chromatin were extended by 500 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted April 29, 2022. ; https://doi.org/10.1101/2022.04.28.22274437doi: medRxiv preprint 

https://sciwheel.com/work/citation?ids=6824546&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=431749&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=824895&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=10417416&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=12680056&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=12674006&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=10019246&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=9909252&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=2297651&pre=&suf=&sa=0
https://doi.org/10.1101/2022.04.28.22274437


base pairs in either direction. The broad MHC-region (chr6:25-35MB) was excluded due to its extensive and 

complex LD structure, but otherwise default parameters were used for the algorithm. In the case of mouse cell 

lines, we merged all peaks of open chromatin for all replicates belonging to the same type of experiment (i.e. 

untreated / 𝛽-estradiol treated wild-type, untreated / 𝛽-estradiol mutant and untreated / 𝛽-estradiol treated 

double mutant) and converted mice genome coordinates of resulting peak sets to human genome coordinates 

using liftOver (https://genome.ucsc.edu/cgi-bin/hgLiftOver). 

Data Availability 

Data will become available on dbGaP when paper is accepted. 
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Table 

Table 1 Genome-wide significant loci for MD-BED*BMI GWAS 

 AFR-MD-BED*BMI EUR-MD-BED*BMI Fixed-MD-BED*BMI 

SNP Chr Position 
Closest 

Gene 
Reference 

allele 
Effect 

allele EAF 
Beta 

(s.e.) P EAF Beta (s.e.) P P 

rs79220007 6 26098474 HFE T C 0.011 
0.023 

(0.017) 0.22 0.064 0.021 (0.004) 1.9 x 10-9 8.8 x 10-10 
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rs17789218 6 100600097 MCHR2 T C 0.045 
0.007 

(0.009) 0.41 0.249 0.013 (0.002) 
5.6 x 10-

10 4.7 x 10-10 

rs2275046 6 150157001 LRP11 A G 0.804 
0.016 

(0.005) 8.3 x 10-4 0.358 0.009 (0.002) 1.3 x 10-6 1.1 x 10-8 

 

Abbreviations: Chr: chromosome; EAF: effect allele frequency; s.e.: standard error 
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