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2 

 

Abstract  1 

Traditional surveillance mechanisms for nonmedical prescription medication use (NPMU) involve 2 

substantial lags. Social media-based approaches have been proposed for conducting close-to-real-3 

time surveillance, but such methods typically cannot provide fine-grained statistics about 4 

subpopulations. We address this gap by developing methods for automatically characterizing a 5 

large Twitter NPMU cohort (n=288,562) in terms of age-group, race, and gender. Our methods 6 

achieved 0.88 precision (95%-CI: 0.84-0.92) for age-group, 0.90 (95%-CI: 0.85-0.95) for race, 7 

and 0.94 accuracy (95%-CI: 0.92-0.97) for gender. We compared the automatically-derived 8 

statistics for the NPMU of tranquilizers, stimulants, and opioids from Twitter to statistics reported 9 

in traditional sources (eg., the National Survey on Drug Use and Health). Our estimates were 10 

mostly consistent with the traditional sources, except for age-group-related statistics, likely caused 11 

by differences in reporting tendencies and representations in the population. Our study 12 

demonstrates that subpopulation-specific estimates about NPMU may be automatically derived 13 

from Twitter to obtain early insights. 14 

  15 
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INTRODUCTION  1 

Substance use (SU), including non-medical prescription medication use (NPMU), has 2 

been a major public health problem in the United States (US) for decades. Overdose deaths due 3 

to the SU have steadily increased over the years, regardless of prevention measures.1 In 2019, the 4 

SU-related overdose death rate increased by 4.3% to 21.6 per 100,000 population,2 about 20 5 

times higher than the recorded rate in 1980.1 In the 12 months preceding April 2021, over 6 

100,000 SU-related deaths are expected, the highest ever recorded in a 12-month period.3 Due to 7 

the enormity of the SU epidemic, the US government has announced the deployment of 8 

unprecedented resources.4 9 

There are also significant disparities related to SU disorder (SUD) and the associated 10 

health outcomes. Many recent studies have highlighted the disparities depending on 11 

socioeconomic status, race/ethnicity, gender identity/biological sex, community, criminal 12 

history, and healthcare coverage.5-12 For example, studies have shown that non-Hispanic Blacks 13 

and Hispanics are less likely to receive buprenorphine treatment compared to Whites, and 14 

women are less likely than men.11,13-15 Moreover, non-Hispanic Blacks and American Indians 15 

and Alaska Natives (AIAN) experienced the highest increases in the drug overdose mortality 16 

rates in 2019 and 2020,16 while non-Hispanic Blacks experienced much higher increase of the 17 

mortality rates due to stimulants and opioids co-ingestion compared to non-Hispanic Whites.17 It 18 

has also been reported that people with lower income, living in non-metro urbanized regions, or 19 

uninsured are more likely to suffer from SUD.18 Multiple disparities may co-exist, and 20 

exacerbate the likelihood of SU/SUD. Consequently, non-Hispanic Blacks, Hispanic/Latino 21 

persons, AIAN, and Native Hawaiian and Other Pacific Islanders (NHOPI), who also have low 22 

insurance coverage rates, face substantial SUD related disparities.19 Distinct demographic groups 23 
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may also have their own unique cultural and historical contexts and norms, consequently 1 

increasing the challenges associated with surveillance and response.  2 

A key to effectively tackle the epidemic and alleviate the disparities is to improve 3 

surveillance, specifically to accelerate the data curation process to provide timely, actionable 4 

insights, and improve decision making.20,21 Traditional surveillance approaches and/or sources of 5 

data include surveys, such as those conducted by the National Survey on Drug Use and Health 6 

(NSDUH),22 poison control centers,23 hospital data about treatment admissions and discharge,24 7 

overdose-related emergency department visits (EDV),25,26 and overdose death records.27 Such 8 

traditional surveillance systems have considerable lags associated with the cycle of data 9 

collection, organization and release. For example, the 2020 NSDUH Annual National Report 10 

was not available until the end of October 2021. Due to such lags, trends in SU/overdose only 11 

detected and understood retrospectively, often after considerable damage has already been done 12 

and/or SU patterns have shifted. The lag is particularly problematic since the SU/overdose 13 

epidemic has been continuously evolving over the years. For example, the primary contributor of 14 

overdose-related deaths in the early 2000s was cocaine, which was later taken over by 15 

prescription opioids followed by heroin.1 Also, in recent years, there have been notable increases 16 

in deaths due to synthetic opioids (eg., fentanyl) and psychostimulants (eg., methamphetamine),27-17 

30 but the current trajectory will only be known after months based on traditional surveillance. 18 

Therefore, there is an urgent need for close-to-real-time surveillance system for SU. 19 

To address the shortcomings of traditional approaches, social media have been proposed 20 

as potential resources for timely surveillance.31-33 Over 220 million Americans (~70% of the 21 

population) use social media, and many discuss health-related topics. There is thus the potential 22 

to leverage such patient-generated information for conducting timely surveillance via social 23 
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media. Social media data, such as that from Twitter, have been shown to contain self-reported 1 

information about SU, including NPMU, which can be detected in real-time.31,34-38 While social 2 

media are promising data sources for obtaining close to real-time insights, data from them are 3 

typically massive and noisy, and extracting knowledge from them requires the development of 4 

advanced artificial intelligence methods involving natural language processing (NLP) and 5 

machine learning. However, research on social media-based SU surveillance is still in its infancy 6 

and many developments are required. Motivated lags associated with traditional surveillance 7 

systems, we attempted to equip advanced social media-based approaches with effective tools for 8 

providing timely understanding of subpopulation-level statistics, which can be used for close-to-9 

real-time surveillance and for studying disparities. 10 

Ideally, SU surveillance data needs to cover the full range of demographics (eg, race, age, 11 

gender, geographical area, socioeconomic status), and contain sufficient granularity to observe 12 

subtle differences among different demographic groups. Some studies have combined volume of 13 

social media information with meta-data such as geolocation and timestamps to derive 14 

geolocation-specific SU estimates that correlate with statistics from traditional data sources such 15 

as the NSDUH and CDC Wonder database.18,36-39 However, to the best of our knowledge, no past 16 

study has attempted to estimate demographic information, such as age and gender, from a social 17 

media-based cohort. There are multiple reasons why such studies have not been conducted in the 18 

past despite their potential utility—the information is not directly available from meta-data, and 19 

the proposed estimation methods in the literature do not have adequate accuracy or granularity.40-20 

50 This poses a barrier to conducting fine-grained, subpopulation-specific research using such 21 

data—a clear disadvantage compared to the NSDUH and other traditional sources. Methods for 22 

accurately and automatically estimating the distributions of key demographic features in social 23 
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media subscriber cohorts can enable such fine-grained subpopulation-level analyses and 1 

comparisons. 2 

In this paper, we describe the development and validation of methods for automatically 3 

estimating demographic distributions (age-group, gender, and race) in a Twitter cohort consisting 4 

of subscribers who self-reported NPMU. We integrated our developed novel methods to 5 

establish a data-centric cohort characterization pipeline, and applied the pipeline on the Twitter 6 

NPMU cohort. To validate our pipeline, we compared the distributions estimated from Twitter to 7 

those reported in traditional sources [NSDUH 201918 and Nationwide Emergency Department 8 

Sample (NEDS)51] for prescription stimulants, tranquilizers, and opioid pain relievers.  9 

 10 

RESULTS  11 

Twitter nonmedical use cohort 12 

We collected tweets mentioning prescription medications and detected self-reported 13 

NPMU using a supervised classification system.35 Posts were collected from March 6, 2018 to 14 

April 30, 2021. Our system detected 482,902 NPMU-indicating tweets and extracted their 15 

authors’ meta-data, including post history, if available. In this manner, we collected 288,562 16 

Twitter subscribers’ posts (NPMU cohort).  17 

Gender, age, and race distribution  18 

The gender, age, and race proportions for Twitter subscribers, estimated from the 2018 19 

Twitter Survey conducted by the Pew Research Center,52 and those reported in the US Census18 20 

are shown in Figure 1. The estimated gender and race proportions from the two sources are 21 

comparable, while the age proportions are substantially different. Compared to the US Census 22 
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data, Twitter has marginally lower proportions of females (4% less) and Whites (1.5% less), and 1 

more Hispanics (1.5% more), which may be explained by the overcount of Whites and 2 

undercount of Hispanics in Census.53 The closeness of the proportions from the two sources 3 

suggest that Twitter-based estimates specific to gender and race may be representative of the 4 

country’s population. In contrast, in terms of age, Twitter has an overrepresentation of younger 5 

people compared to the census estimates. Specifically, the proportion of people in the 18-25 6 

group is approximately 10% higher, and the proportion for the 55+ years group is 20% lower on 7 

Twitter compared to the census estimates. The overrepresentation of younger people on Twitter, 8 

and social media in general, is a well-known phenomenon.  9 

Figure 1. Gender, age, and race proportions estimated from Twitter and those reported in US 10 

census. 11 

 12 

Gender distribution estimates 13 

The estimated gender proportions from Twitter data and the gender proportions from 14 

traditional sources, including NSDUH and NEDS, are given in Figure 2 (details in Supplement 15 

Table S1). The three categories of medications included were opioid pain relievers, tranquilizers, 16 

and stimulants. For NPMU of tranquilizers, the estimated Twitter proportions are within the 95% 17 

confidence intervals of the proportions reported in the NSDUH. For stimulants, the Twitter 18 

proportion estimate for females is slightly higher than the NSDUH reported number (~5%). For 19 
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opioids, the estimated proportions are substantially different between Twitter and the NSDUH 1 

(~10%).  Specifically, the proportion for females from Twitter is lower than the NSDUH 2 

estimates. Interestingly, however, we found that the numbers reported by the NSDUH also differ 3 

in terms of proportions from the opioid-related EDVs reported in NEDS, but the estimates from 4 

the latter are very close to the Twitter proportions (no significant difference). This suggests that 5 

estimates derived from Twitter may be more predictive of overdose-related events rather than 6 

nonmedical use for this category. 7 

Figure 2. Gender distributions for nonmedical prescription medication use estimated from 8 

Twitter and those reported in the NSDUH. For opioid pain relievers, the gender distribution of 9 

overdose-related emergency medicine visits is also provided.  10 

 11 

 12 

 13 

Race distribution estimates 14 

The estimated race proportions from Twitter and the proportions from the NSDUH are 15 

shown in Figure  (details in Supplement Table S2). The estimated distributions are similar 16 

between the two data sources, and each proportion from Twitter is either within or close to the 17 

95% confidence interval of the corresponding proportion reported in the NSDUH. For all 18 

medication categories, the majority of people who reported nonmedical use are White, followed 19 
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by Hispanic and Black. Asians who reported nonmedical use only represent about 4% or less of 1 

the cohort; American Indian and Alaska Native (AIAN) and the Native Hawaiian or Other 2 

Pacific Islander (NHOPI) groups each represent less than 1% of the cohort. Importantly, the 3 

Twitter data had representation from all of the minority races. The most prominent differences 4 

between Twitter and the NSDUH are for the White and Hispanic stimulant groups, and for 5 

Blacks across all medications (Twitter estimates are higher than NSDUH).   6 

Figure 3. Race distributions for nonmedical prescription medication use estimated from 7 

Twitter and those reported in the NSDUH. 8 

 9 

 10 

Age-group distribution estimates 11 

The estimated age-group proportions from Twitter data and the proportions from the 12 

NSDUH are shown in Figure  (details in Supplement Table S3). For most age-groups, the 13 

Twitter and the NSDUH estimates are similar. The most prominent differences are for young 14 

adults (18-20 and 21-25) and the elderly (65+). The estimated proportions from Twitter are 15 

consistently lower for the 18-20 group and higher for the 21-25 group. For the 65+ group, the 16 

estimated Twitter proportion is higher for stimulants, similar for tranquilizers, and lower for pain 17 

relievers compared to the NSDUH numbers. For opioid pain relievers, the estimated Twitter 18 

proportion for the 21-25 group is approximately 10% higher and for the 65+ group 6% lower 19 
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compared to the NSDUH. For tranquilizers, the estimated Twitter proportion for the 18-20 group 1 

is approximately 6% lower compared to the NSDUH, but the proportions for the 65+ group are 2 

not significantly different. For simulants, the estimated Twitter proportion for the 18-20 group is 3 

approximately 10% lower and for the 65+ group 6% higher compared to the NSDUH.  4 

Figure 4. Age-group distributions for nonmedical prescription medication use estimated from 5 

Twitter and those reported in the NSDUH. 6 

 7 

 8 

 9 

DISCUSSION 10 

To the best of our knowledge, our current work is the first to automatically estimate the 11 

distribution of demographic characteristics in a large Twitter cohort—in this case a cohort of 12 

subscribers who self-reported NPMU—and compare the automatically-obtained distributions 13 

with those reported in traditional sources. Our experiments validate that most of the estimates 14 

derived from Twitter are consistent with those reported in traditional sources, such as the 15 

NSDUH and NEDS. The major differences were in the age-group-based estimates, specifically 16 

for young adults (18-20 and 21-25) and the elderly (65+).  17 

The NSDUH is conducted as a survey among noninstitutionalized population in the US 18 

and thus is limited by the respondents’ truthfulness and exclusion of individuals in hospitals, 19 
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prisons, or even treatment centers.54 It is reported that the respondents tend to under-report or 1 

over-report on surveys, and this tendency is influenced by their demographics including gender, 2 

race, or age.55-59 For example, among surveyed Cocaine users, African American, young adults 3 

(18-30), and female are more inclined to under-report.55 Though Twitter data also relies on 4 

individual users’ truthfulness and willingness to share, we suspect that the default anonymity of 5 

Twitter accounts renders the Twitter data suffer less demographic-wise under-reporting than the 6 

NSDUH and, thus, might be better suited for analyzing subpopulation differences than the 7 

NSDUH. We speculate that the closeness of the gender and race distributions for Twitter 8 

subscribers and the US population, as depicted in Figure 1, is a key reason for the Twitter-based 9 

estimates to be similar to the NSDUH, while the differences might be explained by the 10 

under/over-reporting tendency. For example, the under-reporting tendency of females on 11 

Cocaine might help explain the apparent overestimation of female stimulant users on Twitter, 12 

and the under-reporting tendency of African American might be crucial to understand the 13 

overestimation of African American users for all three medication categories on Twitter.55 14 

Similarly, the different tendencies of under/over-reporting and Twitter usage among age groups 15 

might contribute to the differences in the age-wise estimates. Also, though the Twitter data is 16 

limited to those who have internet access, it may capture a certain portion of the institutionalized 17 

or before/after their institutionalized periods. It is even possible that Twitter is less biased against 18 

the incarcerated Black population than the NSDUH.    19 

 20 

Evaluation of performance as a surveillance system 21 

Our pipeline is advantageous in its timeliness, flexibility, simplicity, and stability. The 22 

data collection can be done near-real time and continuously on a personal desktop with internet 23 
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connection while requiring minimal human supervision. Instead of structured answers to 1 

questionnaires, our collected data contain salient unstructured text information, allowing data 2 

mining with research questions evolving over time. For example, the collected tweets contain 3 

information regarding how and why the authors are using the medications. To collect similar 4 

information from surveys usually requires incorporating prior knowledge into question design, 5 

but that is not necessary for our pipeline. However, since the data is usually massive, the data 6 

analysis is typically done using NLP and machine-learning methods. The advantage is that, once 7 

the tailored scripts are developed, it can often be run automatically and on the fly. To expand the 8 

pipeline (eg, to collect users of illicit drugs), it would only require a university informatics team 9 

to dedicate a few months from initial exploration to operational prototypes. These advantages of 10 

our system fit nicely into the CDC’s Data Modernization Initiative, Priority 2 - Accelerate Data 11 

into Action to Improve Decision-Making and Protect Health.  12 

However, the data quality, acceptability, sensitivity, the predicted value positive, and 13 

representativeness for our pipeline are inevitably limited by Twitter’s user base and Twitter 14 

users’ willingness to share their information publicly and their truthfulness. Demographic 15 

information is often not disclosed and we have no method to validate the users’ claims. Notably, 16 

our data does not rely on memory as much as surveys, as the time leap is limited to the time of 17 

non-medical use to the time of posting. Also, we speculated that the users might be more truthful 18 

in their self-disclosure because they have more power to choose what they are willing to share 19 

publicly. Therefore, though our method does have disadvantages, we believe it is an important 20 

complimentary surveillance system with high potential.   21 

 22 

Related work 23 
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Our work is not the first that aims to detect demographic information from social media 1 

data, although it is the first to develop and apply such methods for characterizing a specific 2 

cohort. Past studies have proposed cohort characterization methods, including gender,40-43 3 

age,42,44-46 and race.47-50 Typically, these pipelines comprised supervised classification methods, 4 

and used subscribers’ meta-data including names, usernames, bio, past tweets, or even images as 5 

features. Among these, the gender detection methods were reported to be the most accurate, with 6 

classifiers achieving accuracies above 94%.60 In contrast, race and age estimation pipelines 7 

proposed in past research had not obtained high accuracies. They also often do not provide 8 

enough granularity. The race estimation pipelines reported in the literature usually focus only on 9 

four categories (White, Black, Asian, and Hispanic/Latino) or less, leaving out AIAN and 10 

NHOPI,47-50 although AIAN has the highest overdose mortality rate among all race group.16,61 11 

For age detection, the groupings often do not match those defined in the NSDUH, making 12 

comparisons impossible.44-46 Though re-grouping is possible for a few methods, they were not 13 

developed based on Twitter and thus may have limited applicability.42 In our work, we 14 

developed age and race estimation pipelines with high precision and fine granularity (11 for age 15 

and six for race) based on our Twitter data.  Due to the paucity of annotated datasets, we applied 16 

a search-based approach that employs text pattern matching for detecting self-disclosed age and 17 

race. Because there is no gold-standard for the negative case (ie., subscribers who have not self-18 

disclosed their age or race using the specified pattern), we focused on improving precision while 19 

maintaining acceptable retrieval rate. Precision is preferred over recall (ie., some cohort 20 

members will be missed) since the number of Twitter cohort members is large and growing over 21 

time, so obtaining sufficient numbers of people from each category is not a bottleneck. 22 

 23 
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Potential applications and future work 1 

There are several aspects of our automatic pipeline that can be improved in the future. 2 

First, we can improve the performance of the classifier that detects the self-disclosures of 3 

NPMU. One potential route is to examine if the classifier underperforms for any demographic 4 

group due to different self-disclosure behaviors, and then fine-tune the classifier accordingly. 5 

Second, we may make our findings more reliable by further improving the age group and race 6 

characterization methods. Three potential directions include (i) annotating more tweets matched 7 

by the text patterns, (ii) enriching the set of the text patterns, and/or (iii) replacing the rule-based 8 

method with a machine-learning based classifier. Third, the pipeline can be extended to illicit 9 

substances, including opioids such as heroin, and stimulants such as methamphetamine. 10 

Collecting a cohort of people who self-report the use of illicit substances is an important and 11 

natural extension to our current work, as Literature suggests that people who report NPMU may 12 

also be exposed to illicit substances.62 Fourth, our pipeline provides access to targeted minority 13 

groups, which is of great interest to the communities and several government agencies.63-65 14 

Exacerbated by the war on drugs and inequalities in enforcement and incarceration, some of 15 

these groups are extremely hard to reach by traditional means. As Twitter features the default 16 

anonymity, our pipeline can reach, for example, Black males, to create an unprecedentedly large 17 

cohort and to understand their unique challenges and potential effective interventions. 18 

Furthermore, our pipeline allows longitudinal study, in comparison to the cross-sectional nature 19 

of NSDUH. 20 

 21 

Limitations  22 
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Our work is largely limited by the data source. The demographic distribution of Twitter 1 

subscribers is different than the US population, especially for age groups. Though we adjust the 2 

estimates according to the 2018 Twitter survey, it only partially solves the issue. For people who 3 

do not use Twitter or do not discuss their non-medical use, we have no other means to collect 4 

their data and, thus, there may be groups of people that are not represented in our analyses. Also, 5 

social media data is noisy and may contain false information (eg., fake races or genders), which 6 

we have no alternative approach to verify. Additionally, tweets are short (limited by 280 7 

characters) and consist of colloquial words, posing significant limitations on the classifier 8 

development, and thus the performance of the overall pipeline.  9 

Our proposed methods cannot and should not be used for identifying the age group, race 10 

or gender identity of individual Twitter subscribers. Their performances are not perfect so there 11 

is no guarantee that they will not incorrectly characterize a single subscriber. Our methods 12 

essentially estimate the distributions of demographic information within a given cohort. Due to 13 

the large size of the cohort, we anticipate that the small numbers of incorrect characterizations 14 

are eclipsed. 15 

Finally, an important limitation of our current work is that it excludes certain segments of 16 

the population who have been underrepresented in past research—such as those with non-binary 17 

gender identities. Our current work could not achieve such level of granularity due to lack of 18 

available data. The promising findings from our current work is the first step and our planned 19 

future work includes improving the inclusive of our analysis (eg., by inclusion of non-binary 20 

population, the uninsured, and those unreachable via traditional means). 21 

 22 

METHODS  23 
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 1 

Twitter nonmedical use cohort 2 

Twitter data was collected through a data processing pipeline that we have described in 3 

past research.34,35 The components of the pipeline include collecting publicly available streaming 4 

data about prescription medications, classifying the data, and then retrospectively collecting the 5 

metadata of subscribers who are detected to self-report NPMU. We collected English tweets 6 

mentioning at least one of over 20 PMs (including generic and trade names, street names, and 7 

common misspellings)66 that have the potential for nonmedical use (see Supplement Table S4).34 8 

We developed annotation guidelines with our domain expert (JP), and annotated a subset 9 

consisting of 16,443 tweets into four categories: non-medical use, consumption, information, or 10 

non-relevant (see Supplement Table S5 and S6 for annotation details).34 We used the annotated 11 

data to train machine-learning classifiers, and the best performing classifier (based-on 12 

RoBERTa-Large, with an accuracy of 82.3%) was deployed in our data collection pipeline. Our 13 

cohort consists of tweets that were signaled as non-medical use by the machine-learning 14 

classifier. 15 

 16 

Gender distribution estimates 17 

The genders of the Twitter subscribers were estimated based on the meta-1 classifier in 18 

our prior work.60 The genders are treated in a binary framework (excluding those with non-19 

binary gender identities due to lack of available data) and should be interpreted as how users 20 

represent themselves online and thus are closer to the user’s gender identities than biological 21 

sexes. We developed the classifier based on gender-labeled datasets made available by Liu & 22 

Ruths41 and Volkova et al.67 In total, we were able to retrieve the meta-data of 67,181 23 
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subscribers, consisting of 35,812 (53.3%) females and 31,369 (46.7%) males, which we used to 1 

develop the pipeline. We validated the performance on people who use prescription medications 2 

nonmedically from Twitter on a set of 412 subscribers whose genders were identified using their 3 

linked, public Facebook profiles. The classifier achieved accuracy of 94.4% (95%-Confidence 4 

Intervals: 92.0%-96.6%). 5 

 6 

Age distribution estimates 7 

A rule-based approach, which searches for text patterns that are self-disclosures about the 8 

subscribers’ ages, was employed to detect age-groups. Further rules are applied to resolve 9 

inconsistencies among detected information. The pattern matching is done using regular 10 

expressions. Sample text patterns include “(\d\d) birthday to me” or “i’m (\d\d)” where “\d” 11 

denotes digits (0-9). We also constructed a filter to remove irrelevant statements that are not 12 

associated with ages, such as “I’m 20 weeks pregnant.” The pipeline was developed based on a 13 

set of 2,000 subscribers, among which 1,540 tweets from 609 subscribers matched with the text 14 

patterns and were annotated. The annotation agreement based on an overlapping set of 346 15 

subscribers (952 tweets) is 89.3% with Cohen’s Κ=0.89 (95.8% with Cohen’s Κ=0.96 on tweets). 16 

The test accuracy is 0.88 (95% CI: 0.84-0.92) [0.90 (95% CI: 0.86-0.94) if allowed 1 year age 17 

discrepancy] on the subscribers who have matched tweets (referred as precision in the text) and 18 

0.93 (95% CI: 0.90-0.95) on the matched tweets.  19 

 20 

Race distribution estimates 21 

The race estimation module is similar to the age estimation one and applies rules and 22 

patterns. Relevant expressions indicating race are searched using regular expressions. Example 23 
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text patterns include “i’m (black)” or “i’m (white)”. We also constructed a filter to remove 1 

irrelevant statements such as “I’m black salmon.” The pipeline was developed based on a set of 2 

4,000 tweets, among which 1,124 tweets from 578 subscribers matched with the text patterns and 3 

were annotated. The annotation agreement based on an overlapping set of 293 subscribers (533 4 

tweets) is 87.7% with Cohen’s Κ=0.78 (94.0% with Cohen’s Κ=0.88 on tweets). The test 5 

accuracy of the pipeline is 0.90 (95% CI: 0.85-0.95) on the subscribers who have matched tweets 6 

(referred as precision in the text) [0.94 (95% CI: 0.91-0.97) on the matched tweets]. Since the 7 

pipeline is not designed for subscribers who have more than 1 race (“more” in the 2018 Twitter 8 

Survey68 and the NSDUH18), we did not include those subscribers when reporting the results and 9 

comparing with the references. 10 

Baseline for Twitter subscribers’ demographics  11 

We established the baseline for the US Twitter subscribers based on the 2018 Twitter 12 

Survey conducted by Pew Research Center.68 We focused on Twitter subscribers who have at 13 

least used Twitter once a week and calculated the proportions of the targeted demographics (eg., 14 

age, gender, race) among these subscribers. We noted that the survey was conducted only among 15 

the adults (aged 18+) and the Asian, AIAN, and NHOPI races were grouped into “others.” 16 

Baseline for Twitter age and race characterization  17 

We established the baseline for Twitter Age and Race characterization based on a data set 18 

of 156,368 general Twitter subscribers. We first collected streaming tweets with stopwords in 19 

nltk package as keywords on Aug 27, 2021. Data collection using stopwords is an attempt to 20 

collect a random set of Twitter subscribers. We then collected the subscribers’ metadata and 21 

applied the age and race pipelines. Our objective was to calibrate our pipeline by estimating how 22 

many of the subscribers within certain age or race groups actually self-disclosed their age and 23 
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race on Twitter and were captured by our pipeline. The estimated rates (of detection/self-1 

disclosure) were then used as weights to normalize the age/race proportions obtained from the 2 

NPMU dataset. 3 

Calculation of the proportions for PWUS based on Twitter data  4 

For each subscriber’s characteristics (gender, age, and race), we used the number of 5 

Twitter subscribers in each category, inferred by the corresponding pipelines, to estimate the 6 

proportion. For age and race, this calculation was limited on the Twitter subscribers whose age 7 

or race can be inferred. The proportions were further normalized via the rates of detection as: 8 

𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛 =
1

𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟
×

(𝑟𝑎𝑤 𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛)

(𝑟𝑎𝑡𝑒 𝑜𝑓 𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛)
 9 

For example, if 10% of the Twitter subscribers are black and only 1% of the random Twitter 10 

subscribers disclose that they are black, then we can estimate that roughly 1 in 10 black Twitter 11 

subscribers self-disclose their race (rate of detection). Then if we captured 100 people who 12 

reported the nonmedical use of stimulants and disclosed that they are black, we infer that roughly 13 

1000 people who use stimulants captured in our pipeline are black and use this number to 14 

calculate the normalized proportion. For the race proportions, since AIAN, NHOPI, and Asian 15 

were combined into “others” category in the 2018 Twitter Survey, we only calibrated for the 16 

“others” category as a whole and assumed that their relative proportions are the same as obtained 17 

using the race characterization pipeline.  18 

 19 

Calculation of proportions for the NSDUH data  20 

We established the baseline for the NSDUH/US Census based on Table 12.1A (age) and 21 

Table 12.2A (gender and race) in the 2019 NSDUH. We calculated the gender, age, and race 22 

proportion through the estimated “Numbers in Thousands.” For age, we used the “Total (2019)” 23 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 28, 2022. ; https://doi.org/10.1101/2022.04.27.22274390doi: medRxiv preprint 

https://doi.org/10.1101/2022.04.27.22274390
http://creativecommons.org/licenses/by-nc/4.0/


20 

 

column. For the age and gender, we used the “Age 12+ (2019)” column. For the gender and race 1 

for people who report NPMU, we again used the “Age 12+ (2019)” column on Table 1.47A 2 

(stimulants), Table 1.53A (tranquilizers), and table 1.44A (pain relievers). For age, we used the 3 

“Misuse in the past Year (2019)” column on Table 1.14A (stimulants), Table 1.16A 4 

(tranquilizers), and table 1.13A (pain relievers). 5 

 6 

Calculation of proportions for the NEDS data 7 

We calculated the gender proportion of the EDV by using the “No.” column for all opioid 8 

poisoning on the Supplemental Table 2C in the Annual Surveillance Report of Drug-related 9 

Risks and Outcomes.51 The weighted estimates provided in the table are from the NEDS 2016. 10 

 11 

Estimation of 95% confidence intervals 12 

For the Twitter data and the test performance of the pipelines, the confidence intervals 13 

are estimated via bootstrapping. For the NSDUH and NEDS data, the 95% confidence intervals 14 

are estimated using simulation. For each category, we approximate the distribution as a normal 15 

distribution with the reported number as mean and the standard error as standard deviation. We 16 

then repeatedly sampled the joint distribution for all the categories in the targeted demographics 17 

and calculated the proportions, assuming each category is independent of each other. The 95% 18 

confidence intervals were then constructed using the 0.025 quantile and the 0.975 quantile within 19 

the list of proportions of the given category. For the NEDS data, the standard errors for estimated 20 

numbers (“No.” column) were estimated through the standard errors (“SE” column) for rates 21 

(“Rate” column) as (No. ) ×
(SE)

(Rate)
. 22 

 23 
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