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The offering of grocery stores is a strong driver of consumer decisions, shaping their

diet and long-term health. While highly processed food like packaged products, processed

meat, and sweetened soft drinks has been increasingly associated with unhealthy diet,

information on the degree of processing characterising an item in a store is not straight-

forward to obtain, limiting the ability of individuals to make informed choices. Here we

introduce GroceryDB, a database with over 50,000 food items sold by Walmart, Target,

and Wholefoods, unveiling the degree of processing characterizing each food. The goal

of GroceryDB is to empower consumers and policymakers with systematic access to the

degree of processing characterizing the foods they select, and the potential alternatives

in their food environment. GroceryDB indicates that 73% of the US food supply is

ultra-processed, and on average ultra-processed foods are 52% cheaper than minimally-

processed alternatives. We find that the nutritional choices of the consumers, translated

as the degree of food processing, strongly depend on the food categories and grocery

stores. Moreover, the data allows us to quantify the individual contribution of over 1,000

ingredients to ultra-processing. GroceryDB and the associated http://TrueFood.Tech/

website make this information accessible, helping to simultaneously nudge consumers

towards less processed food choices, and aid policymakers to reform the food supply.
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Introduction

Food ultra-processing has drastically increased productivity and shelf-time, addressing

the issue of food availability to the detriment of health and food systems sustainability

[1,2]. Indeed, there is increasing evidence that our over-reliance on ultra-processed food

has fostered unhealthy diet [3,4]. For instance, recent studies have linked the consumption

of ultra-processed food to non-communicable diseases like metabolic syndrome [5–11], and

exposure to industrialized preservatives and pesticides [12–17]. Currently, in developed

nations, up to 60% of consumed calories come from ultra-processed foods [18,19]. Much

of this food reaches consumers through grocery stores, offering an abundance of ultra-

processed food choices. Indeed, in 2020 the average number of items carried by a US

grocery store reached 31,119 [20]. Given the high percentage of ultra-processed items

and their potential adverse impact on health, three important questions arise: How do

we know the degree of processing characterising a particular item on the shelf? How can

we quantify the extent of food processing in the food supply? How do we design food

substitution recommendations that only minimally alter an individual’s diet, but help

reduce the consumption of ultra-processed food? Despite the increasing evidence linking

ultra-processing to adverse outcomes, consumers struggle to translate the information

available on food packaging into the degree of processing characterizing a particular item

on the shelf. The goal of this work is to analyze real-world food composition data, and

translate this wealth of information into the degree of processing for any food product

currently available in grocery stores’ aisles, and its potential alternatives, ultimately

shifting individual dietary patterns towards less processed diets.

A coarse-grained description of the degree of food processing is currently provided

by the NOVA classification system [21], the result of manual curation which defines four

discrete categories: unprocessed or minimally-processed (NOVA1), like fruits, vegetables,

grains, legumes, meat, fish, and milk; processed culinary ingredients (NOVA2), like oils,

fats, table sugars, and salt; processed foods (NOVA3), mainly items with a minimal

number of ingredients and almost no additives, like simple canned foods, some breads,

and cheese. The largest class is ultra-processed foods (NOVA4), that captures multiple

types of breads, cereals, sauces, spreads, hamburgers, carbonated drinks, hot dogs, and

pizzas. The NOVA classification does not differentiate between the degrees of processing

for foods found in the NOVA4 class, considering them equally ultra-processed, and facing

2



the conclusions that 60% of the global, 73% of the USA, and 80% of the South Africa

food supply is ultra-processed [22–25]. This homogeneity in food classification makes

it difficult to address the impact of ultra-processing with substitution or reformulation

strategies [26–29]. To address this issue, SIGA, a recent French food classification effort,

breaks NOVA4 into 5 levels of ultra-processing, offering a finer granularity, but leaving

open questions regarding the appropriate number and types of processing categories, and

the amount of information necessary to reliably identify them [28].

Altering health-related behaviours is a challenging task [30, 31], hence effective and

sustainable food substitution strategies must recommend minimal changes to an individ-

ual’s diet. In an in silico study based on US cross-sectional population data, we recently

showed that substituting only a single ultra-processed food item in a person’s diet with a

minimally-processed alternative from the same category can significantly reduce the risk

of developing metabolic syndrome (12.25% decrease in odds ratio) and vitamin deficiency

(4.83% and 12.31% increase of vitamin B12 and vitamin C blood concentration) [24]. Yet,

the fact that we classify 73% of the food supply in a single ultra-processed NOVA4 cate-

gory significantly limits our ability to design effective food substitution recommendations.

This could be achieved by capturing in a continuous fashion the degree of processing of

any food.

The National Health and Nutrition Examination Survey (NHANES) indicates that

in the USA over 60% of the food consumed comes from grocery stores (Figure S1).

Prompted by this information, here we introduce GroceryDB, a database of foods and

beverages containing over 50,000 products, collected from publicly available online mar-

kets of three major US grocery stores: Walmart, Target, and WholeFoods. For each

food, we determined the extent of food processing using FoodProX, a ML-based classifier

that provides a continuous and fully automated food processing score (FPro) [24]. FPro

translates the nutritional content of a food item, as reported by the nutrition facts, into

its degree of processing [32]. In Figure 1, we illustrate the use of FPro by offering the

processing score of three products in the breads and yogurt categories, allowing us to

compare their degree of processing. Indeed, the Manna Organics multi-grain bread is

made from whole wheat kernels, barley, and rice without additives, added salt, oil, and

even yeast, resulting in a low processing score of FPro = 0.314. However, the Aunt

Millie’s and Pepperidge Farmhouse breads include ‘resistant corn starch’, ‘soluble corn
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fiber’, and ‘oat fiber’, requiring additional processing to extract starch and fiber from corn

and oat to be used as an independent ingredient (Figure 1a), resulting in much higher

processing score of FPro = 0.732 and FPro = 0.997. Similarly, the Seven Stars Farm

yogurt (FPro = 0.355) is a whole milk yogurt made from ‘grade A pasteurized organic

milk’, yet the Siggi’s yogurt (FPro = 0.436) uses ‘Pasteurized Skim Milk’ that requires

more processing to obtain 0% fat. Finally, the Chobani Cookies & Cream yogurt relies

on cane sugar as the second most dominant ingredient, and on a cocktails of additives

like ‘caramel color’, ‘fruit pectin’, and ‘vanilla bean powder’ making it a highly processed

yogurt, resulting in a high processing score FPro = 0.918.

GroceryDB, shared publicly at http://TrueFood.Tech/, provides the data and meth-

ods to quantify food processing and map the organization of ingredients in our food

supply, ultimately, empowering consumers to make informed choice for health purposes.

Results

Processing alters the nutrient profile of food, changes that are detectable and cate-

gorizable using machine learning [24, 32, 33]. Leveraging the mandatory nutritional in-

formation captured by the nutrition facts, we developed FoodProX, a machine learning

classifier that assigns a food processing score (FPro) to each food (see Methods). We

find that the distribution of the FPro scores in the three stores is rather similar: in each

store we observe a monotonically increasing curve (Figure 2a), indicating that minimally-

processed products (low FPro) represent a relatively small fraction of the inventory of

grocery stores, the majority of the offerings being in the ultra-processed category (high

FPro). We do observe, however, systematic differences between the stores: WholeFoods

offers more minimally-processed and fewer ultra-processed items, in contrast with a par-

ticularly high fraction of ultra-processed offerings by Target (high FPro).

FPro also captures the inherent variability in the degree of processing per food cate-

gory. As illustrated in Figure 2b, we find a small variability of FPro scores in categories

like jerky, popcorn, chips, bread, biscuits, and mac & cheese, indicating that consumers

have limited choices in terms of degree of processing in these categories (see Section S5

for harmonizing categories between stores). Yet, in categories like cereals, milk & milk-

substitute, pasta-noodles, and snack bars, FPro varies widely, reflecting a wider extent

of possible choices from a food processing perspective.
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We compared the distribution of FPro in GroceryDB with the latest USDA Food

and Nutrient Database for Dietary Studies (FNDDS), offering a representative sample of

the consumed food supply (Figure 2c). The similarity between the distributions of FPro

scores obtained from GroceryDB and FNDDS suggests that GroceryDB also offers a rep-

resentative sample of foods and beverages in the supply chain. Additionally, we compared

GroceryDB with the USDA Global Branded Food Products Database (BFPD), which con-

tains 1,142,610 branded products, finding that the distributions of FPro in GroceryDB

and BFPD follows similar trends (Figure 2c). While BFPD contains 22 times more foods

than GroceryDB, surprisingly only 44% of the products in GroceryDB are present in

BFPD (Section S4). This indicates that while BFPD offers an extensive representation

of branded products, it does not map into the current offering of stores. Furthermore,

we compared GroceryDB with Open Food Facts (OFF) [34], another extensive collection

of branded products collected through crowd sourcing, containing 426,000 products with

English ingredient lists. We find that less than 30% of the products in GroceryDB are

present in OFF (Figure S4), a small overlap suggesting that monitoring the products

currently offered in grocery stores may offer a more accurate account of the food supply

available to consumers.

Food Processing Offers Cheap Calories

Prior studies suggest that ultra-processing may result in the production of cheaper

calories [19,22]. We confirm and quantify this hypothesis by finding that a 10% increase

in FPro results in 8.7% decrease in the price per calorie of products in GroceryDB, as

captured by the dashed line in Figure 3A. Yet, the relationship between FPro and price

per calorie strongly depends on the food category (Section S6). For example, in soups

& stews the price per calorie drops by 24.3% for 10% increase in FPro (Figure 3b), a

trend observed also in cakes, mac & cheese, and ice cream (Figure S8). This means

that on average, the most processed soups & stews, with FPro ≈ 1, are 66.87% cheaper

per calories than the minimally-processed alternatives with FPro ≈ 0.4 (Figure 3e).

In contrast, in cereals price per calorie drops only by 1.2% for 10% increase in FPro

(Figure 3c), a slow decrease observed also for seafood and yogurt products (Figure S8).

Interestingly, we find an increasing trend between FPro and price in the milk & milk-

substitute category (Figure 3d), partially explained by the higher price of plant-based
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milk substitutes, that require more extensive processing than the dairy based milks.

Taken together, we find that relying on cheap ingredients like sugar, emulsifiers, preser-

vatives and highly processed oils can help the production of cheap calories [35, 36]. Yet,

the relationship between ultra-processing and food price depends on the food categories,

and deserves more in-depth analyses to determine the success or failure of intervention

strategies in real-world food environments.

Choice Availability and Food Processing

The inventory of grocery stores is a strong driver of consumer decisions [37–39], eventu-

ally shaping our diet. Not surprisingly, GroceryDB documents differences in the offering

of the three stores we analyzed: while WholeFoods offers a selection of cereals with a

wide range of processing levels, from minimally-processed to ultra-processed, in Walmart

the available cereals are limited to products with higher FPro values (Figure 4a). To un-

derstand the roots of these differences, we investigated the ingredients of cereals offered

by each grocery store, one of the most popular staple crops, consumed by 283 million

Americans in 2020 [40]. We find that cereals offered by WholeFoods rely on less sugar,

less natural flavors, and added vitamins (Figure 4b). In contrast, cereals in Target and

Walmart tend to contain corn syrup, a sweetener associated with enhanced absorption

of dietary fat and weight gain [41, 42]. Corn syrup is largely absent in the WholeFoods

cereals, partially explaining the wider range of processing scores characterising cereals

offered by the store (Figure 4a).

The brands offered by each store could also help explain the different patterns. We

found that while Walmart and Target have a large overlap in the list of brands they

carry, WholeFoods relies on different suppliers (Figure 4c), largely unavailable in other

grocery stores. In general, WholeFoods offers less processed soups & stews, yogurt &

yogurt drinks, and milk & milk-substitute (Figure 4a). In these categories Walmart’s

and Target’s offerings are limited to higher FPro values. Lastly, some food categories like

pizza, mac & cheese, and popcorn are highly processed in all stores (Figure 4a). Indeed,

pizzas offered in all three chains are limited to high FPro values, partially explained

by the reliance on substitute ingredients like “imitation mozzarella cheese,” instead of

“mozzarella cheese”.

While grocery stores offer a large variety of products, the offered processing choices
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can be identical in multiple stores. For example, GroceryDB has a comparable number

of cookies & biscuits in each chain, with 373, 451, and 402 items in Walmart, Target, and

WholeFoods, respectively. The degree of processing of cookies & biscuits in Walmart and

Target are nearly identical (0.88 < FPro < 1), limiting consumer nutritional choices in a

narrow range of processing (Figure 4a). In contrast, WholeFoods not only offers a large

number of items (402 cookies & biscuits), but it also offers a wider choices of processing

(0.57 < FPro < 1)

Organization of Ingredients in the Food Supply

Strategies to reformulate the food supply with the aim to offer less ultra-processed

choices require an in-depth understanding of how food producers use the over 12,000

ingredients found in branded products (Section S7.2) [43]. Food and beverage companies

are required to report the list of ingredients in the descending order of the amount used in

the final product. When an ingredient itself is a composite, consisting of two or more in-

gredients, FDA mandates parentheses to declare the corresponding sub-ingredients (Fig-

ure 5a-b) [44]. We organized the ingredient list as a tree (see Methods), allowing us to

compare a highly processed cheesecake with a less processed alternative (Figure 5). In

general, we find that products with complex ingredient trees are more processed than

products with simpler and fewer ingredients (Section S7.3). For example, the ultra-

processed cheesecake in Figure 5a has 42 ingredients, 26 additives, and 4 branches with

sub-ingredients. In contrast, the minimally-processed cheesecake has only 14 ingredients,

5 additives, and 1 branch with sub-ingredients (Figure 5b). As illustrated by the cheese-

cakes example, ingredients used in the food supply are not equally processed, prompting

us to ask: which ingredients contribute the most to the degree of processing of a product?

To answer this we introduce the Ingredient Processing Score (IgFPro), defined as

IgFPro(g) =

∑
f∈Fg

rfg ∗ FProf∑
f∈Fg

rfg
, (1)

where rfg ranks an ingredient g in decreasing order based on its position in the ingredient

list of each food f that contains g (Section S7.5). IgFPro ranges between 0 (unprocessed)

and 1 (ultra-processed), allowing us to rank-order ingredients based on their contribution

to the degree of processing of the final product. We find that not all additives contribute
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equally to ultra-processing. For example, the ultra-processed cheesecake (Figure 5a)

has sodium tripolyphosphate (a stabilizer used to improve the whipping properties with

IgFPro = 0.926), polysorbate 60 (an emulsifier used in cakes for increased volume and

fine grain with IgFPro = 0.922), and corn syrup (a corn sweetener with IgFPro =

0.909) [45], each of which emerging as signals of ultra-processing with high IgFPro scores.

In contrast, both the minimally-processed and ultra-processed cheesecakes (Figure 5)

contain xanthan gum (IgFPro = 0.817), guar gum (IgFPro = 0.806), locust bean

gum (IgFPro = 0.780), and salt (IgFPro = 0.771). Indeed, the European Food Safety

Authority (EFSA) reported that xanthan gum as a food additive does not pose any safety

concern for the general population, and FDA classified guar gum and locust bean gum

as generally recognized safe [45].

By the same token, we looked into the oils used as ingredients in branded products

to assess which oils contribute the most to ultra-processed foods. IgFPro identifies brain

octane oil (IgFPro = 0.573), flax seed oil (IgFPro = 0.686), and olive oil (IgFPro =

0.712) as the highest quality oils, having the smallest contribution to ultra-processing.

In contrast, palm oil (IgFPro = 0.890), vegetable oil (IgFPro = 0.8676), and soy bean

oil (IgFPro = 0.8684) represent strong signals of ultra-processing (Figure 6a). Indeed,

flax seed oil is high in omega-3 fatty acids with several health benefits [46]. In contrast,

the blending of vegetable oils, a signature of ultra-processed food, is one of the simplest

methods to create products with desired texture, stability, nutritional properties, and

affordable price [47–49].

Finally, to illustrate the ingredient patterns characterising ultra-processed foods in

Figure 6b, we show three tortilla chips, ranked from the “minimally-processed” to the

ultra-processed. Relative to the snack-chips category, Siete tortilla is minimally-processed

(FPro = 0.477), made with avocado oil and blend of cassava and coconut flours. The

more processed El Milagro tortilla (FPro = 0.769) is cooked with corn oil, grounded corn,

and has calcium hydroxide, generally recognized as a safe additive made by adding water

to calcium oxide (lime) to promote dispersion of ingredients [45]. In contrast, the ultra-

processed Doritos (FPro = 0.982) have corn flours, blend of vegetable oils, and rely on 12

additives to ensure a palatable taste and the texture of the tortilla chip, demonstrating

the complex patterns of ingredients and additives needed for ultra-processing (Figure 6b).

In summary, complex ingredient patterns accompany the production of ultra-processed
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foods (Section S7.4). IgFPro captures the role of individual ingredients in the food sup-

ply, enabling us to diagnose the processing characteristics of the whole food supply as

well as the contribution of individual ingredients.

Discussion

Governments increasingly acknowledge the impact of processed foods on population

health, and its long-term affect on healthcare. For example, the United Kingdom spends

18 billion £ annually on direct medical costs related to non-communicable diseases like

obesity [50]. To reduce obesity and cardiovascular diseases, the UK recently introduced

limitations on the promotion of foods high in fat, sugar and salt [51], common features of

ultra-processed food. GroceryDB offers crucial information to both consumers and policy

makers, helping them assess the extent of processing in the food supply, which is difficult

to derive from the declared ingredients on food packaging. For instance, in categories

like cereals, milk & milk-substitute, pasta-noodles, and snack bars, FPro varies widely,

indicating that should consumers be aware of processing information, they could choose

between items with significantly different degrees of processing (Figure 2B).

Evidence on ultra-processing is also hidden by the unrealistic serving sizes and subtle

shifts in nutrient profiles printed with small fonts on food packages, limiting the ability

of individuals to make informed decisions and better food choices. Indeed, nutrition facts

are not reported per 100 grams, and the reported amount and unit vary from product to

product. Our goal in translating all this wealth of information into an actionable score is

to facilitate the consumers in making healthier food choices, enabling the implementation

of effective substitution strategies that seek minimal changes in an individual’s diet.

The differences in the distribution of the FPro scores (Figure 2A) indicate that mul-

tiple factors drive the range of available choices in grocery stores, from the cost of food

and the socio-economic status of the consumers, to the distinct declared missions of the

supermarket chains: “quality is a state of mind” for WholeFoods Market and “helping

people save money so they can live better” for Walmart [52,53]. By the same token, our

results confirm that there is no single ingredient that serves as a “bio-marker” of ultra-

processing (Figure 6b), but ultra-processing introduces complex changes in ingredients

and subtle shifts in nutrient profiles. This finding is in line with SIGA classification, that

found that multiple markers of ultra-processing exist within food additives and ingredi-
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ents [28]. Moreover, similar observations were also reported in relation to the complex

patterns of exposure and distribution of food additives in the French food market [54,55].

Designing strategies to reduce our reliance on ultra-processed food is a very chal-

langing task. Indeed, prioritizing which products or ingredients should be the target of

policy reforms is not trivial due to the lack of technologies to quantify the extent of food

processing and the large number of ingredients in the branded products. For example,

the GS1 UK data crunch analysis on the impact of bad data on profits and consumer

service in the UK grocery industry reports an average of 80% inconsistency in products

data [56]. GroceryDB has over 12,000 ingredients annotated with over 500 descriptors

(Section S7.2), helping decide which group of branded products and ingredients should

be prioritized to ultimately reduce the extent of ultra-processing in the supply chain, and

in population diet.

A sheer number of peer-review articles have been published on the topic of ultra-

processing, embodying a general degree of consensus among independent academic re-

searchers on the health relevance of ultra-processed food [57–68]. However, a precise

definition for ultra-processed food, informing effective reformulation strategies, has yet

to be achieved [26]. So far, expertise-based classification approaches have been purely

descriptive in nature, leaving room for ambiguity and differences in interpretation [69].

For instance, in [26] the comparison under similar conditions of four different classifi-

cation systems led to conflicting results. Beyond number and types of classes, the lack

of structured data describing food processing methods, as well as a unified ontology for

the ingredients printed on food labels, are major sources of ambiguity in the literature

(Section S8) [3, 29].

Despite the limited amount of information reported in the nutrition facts and reg-

ulated by FDA, GroceryDB and FPro offer a data-driven approach that enabled the

substitution algorithm implemented at http://TrueFood.Tech/. Leveraging the continu-

ous nature of FPro, the algorithm recommends similar, but less processed choices for any

food in GroceryDB. The recommendation system, based on the normalized labels in in-

gredient trees (Figure 5), offers a natural way to compare branded products. GroceryDB

along with the TrueFood platform demonstrate the value of data transparency on the

inventory of grocery stores, a factor that directly influences consumer decisions.
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Methods

Calculation of Food Processing Scores (FPro)

We developed FoodProX [24], a ML-based classifier that can translate the combina-

torial changes in the nutrient densities induced by food processing into a food processing

score (FPro). FoodProX takes as input 12 nutrients reported in the nutrition facts (Table

S1), and returns FPro, a continuous score ranging between 0 (unprocessed foods like fruits

and vegetable) and 1 (ultra-processed foods like instant soups and shelf-stable breads).

We used the manual NOVA classification applied to the USDA Standard Reference (SR)

and FNDDS databases to train FoodProX. In the original classification, NOVA labels

were assigned by inspecting the ingredient list and the food description, but without

taking into account nutrient content. More details on the training dataset are available

in Section S3.

Ingredient Trees

An ingredient list is a reflection of the recipe used to prepare a branded food item. The

ingredient lists are sorted based on the amount of ingredients used in the preparation of

an item as required by the FDA. An ingredient tree can be created in two ways: (a) with

emphasis on capturing the main and sub-ingredients, similar to a recipe, as illustrated in

Figure S18A; (b) with emphasis on the order of ingredients as a proxy for their amount

in a final product, as illustrated in Figure S18B, where the distance from root, d, reflects

the amount of an individual ingredient relative to all ingredients. We opted for (b) to

calculate IgFPro, as ranking the amount of an ingredient in a food is essential to quantify

the contribution of individual ingredients to ultra-processing. In Eq. 1, we used rfg = 1/dfg

to rank the amount of an ingredient g in food f , where dfg captures the distance from the

root (see Figure S18B for an example). Finally, IgFPro shows a remarkable variability

when compared to the average FPro of products containing the selected ingredient (Figure

S19), suggesting the presence of distinctive patterns of associations between ingredients’

FPro and their rank in the ingredient list.
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Figure 1: Degrees of Food Processing in Three Categories. FPro allows us to assess
the extent of food processing in three major US grocery stores, and it is best suited to rank
foods within the same category. (a) In breads, the Manna Organics multi-grain bread,
offered by WholeFoods, is mainly made from ‘whole wheat kernels’, barley, and brown
rice without any additives, added salt, oil, and yeast, with FPro = 0.314. However, the
Aunt Millie’s (FPro = 0.732) and Pepperidge Farmhouse (FPro = 0.997) breads, found
in Target and Walmart, include ‘soluble corn fiber’ and ‘oat fiber’ with additives like
‘sugar’, ‘resistant corn starch’, ‘wheat gluten’, and ‘monocalcium phosphate’. (b) The
Seven Stars Farm yogurt (FPro = 0.355) is made from the ‘grade A pasteurized organic
milk’. The Siggi’s yogurt (FPro = 0.436) declares ‘Pasteurized Skim Milk’ as the main
ingredients that has 0% fat milk, requiring more food processing to eliminate fat. Lastly,
the Chobani Cookies & Cream yogurt (FPro = 0.918) has cane sugar as the second most
dominant ingredient combined with multiple additives like ‘caramel color’, ‘fruit pectin’,
and ‘vanilla bean powder’, making it a highly processed yogurt.
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Figure 2: Food Processing in Grocery Stores. (a) The distribution of FPro scores
from the three stores follows a similar trend, a monotonically increasing curve, indicating
that the number of low FPro items (unprocessed and minimally-processed) offered by the
grocery stores is relatively lower than the number of high FPro items (highly-processed
and ultra-processed items), and the majority of offerings are ultra-processed (see Meth-
ods for FPro calculation). (b) Distribution of FPro scores for different categories of
GroceryDB. The distributions indicate that FPro has a remarkable variability within
each food category, confirming the different degrees of food processing offered by the
stores. Unprocessed foods like eggs, fresh produce, and raw meat are excluded (Section
S5). (c) The distributions of FPro scores in GroceryDB compared to two USDA nation-
ally representative food databases: the USDA Food and Nutrient Database for Dietary
Studies (FNDDS) and FoodData Central Branded Products (BFPD). The similarity be-
tween the distributions of FPro scores in GroceryDB, BFPD, and FNDDS suggests that
GroceryDB offers a comprehensive coverage of foods and beverages (Section S4).
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Figure 3: Price and Food Processing. (a) Using robust linear models, we assessed the
relationship between price and food processing (see Figure S8 for regression coefficients of
all categories). We find that price per calories drops by 24.3% and 1.2% for 10% increase
in FPro in soup & stew and cereals, respectively. Also, we observe a 8.7% decrease across
all foods in GroceryDB for 10% increase in FPro. Interestingly, in milk & milk-substitute,
price per calorie increases by 1.6% for 10% increase in FPro, partially explained by the
higher price of plant-based milks that are more processed than regular dairy milk. (b-
d) Distributions of price per calorie in the linear bins of FPro scores for each store
(Figure S7 illustrates the correlation between price and FPro for all categories). In soup
& stew, we find a steep decreasing slope between FPro and price per calorie, while in
cereals we observe a smaller effect. In milk & and milk-substitute, price tends to slightly
increase with higher values of FPro. (e) Percentage of change in price per calorie from
the minimally-processed products to ultra-processed products in different food categories,
obtained by comparing the average of top 10% minimally-processed items with the top
10% ultra-processed items. In the full GroceryDB, marked with the red star, on average
the ultra-processed items are 52.15% cheaper than their minimally-processed alternatives.
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Figure 4: The Difference between Stores in Term of Processing. The nutritional
choices offered to consumers, translated into FPro, varies depending on the grocery store
and food category. (a) The degree of processing of food items offered in grocery stores,
stratified by food category. For example, in cereals, WholeFoods shows a higher variability
of FPro, implying that consumers have a choice between low and high processed cereals.
Yet, in pizzas all supermarkets offer choices characterised by high FPro values. Lastly,
all cheese products are minimally-processed, showing consistency across different grocery
stores. (b) The top 30 most reported ingredients in cereals shows that WholeFoods tends
to eliminate corn syrup, uses more sunflower oil and less canola oil, and relies less on
vitamin fortification. In total, GroceryDB has 1,245 cereals from which 400, 347, and
498 cereals are from Walmart, Target, and WholeFoods, respectively. (c) The brands
of cereals offered in stores partially explains the different patterns of ingredients and
variation of FPro. While Walmart and Target have a larger intersection in the brands of
their cereals, WholeFoods tends to supply cereals from brands not available elsewhere.
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Ingredients: sour cream (cultured cream, modified food starch, 
sodium tripolyphosphate, locust bean gum, guar gum, 
carrageenan), sugar, wheat flour, water, shortening (palm oil and 
soybean oil), milk, cream cheese (pasteurized milk and cream, 
cheese culture), hydrogenated palm kernel oil, corn syrup, 
contains 2% or less: modified food starch, baking soda, salt, 
carob bean gum, natural flavors, monoand diglycerides, sodium 
caseinate, maltodextrin, xanthan gum, cheese culture, dextrose, 
polysorbate 60, sorbitan monostearate, guar gum, sodium citrate, 
citric acid, soy lecithin, malic acid, potato maltodextrin, whey 
protein concentrate, colored with beta carotene and 

apocarotenal.

Ingredients: Cream Cheese (Pasteurized Milk 
and Cream, Salt, Stabilizers [Carob Bean Gum 
and/or Xanthan, Locust Bean, and Guar Gums], 
Cheese Culture), Maltitol, Eggs*, Lemon Juice*, 

Vanilla., *Non-GMO Ingredient

a b
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Figure 5

Figure 5: Ingredient Trees. GroceryDB organizes the ingredient list of products into
structured trees, where the additives are marked as orange nodes (Methods and Section
S7). (a) The highly processed cheesecake contains 42 ingredients from which 26 are
additives, resulting in a complex ingredient tree with 4 branches of sub-ingredients. (b)
The minimally-processed cheesecake has a simpler ingredient tree with 14 ingredients, 5
additives, and a single branch with sub-ingredients.
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Figure 6: Ingredient Processing Score (IgFPro). To investigate which ingredients
contribute most to ultra-processed products, we extend FPro to the ingredients listed on
the nutrition fact labels using Eq. 1. (a) The IgFPro of all ingredients that appeared in
at least 10 products are calculated, rank-ordering ingredients based on their contribution
to ultra-processed foods. The popular oils used as an ingredient are highlighted, with the
brain octane, flax seed, and olive oils contributing the least to ultra-processed products.
In contrast, the palm, vegetable, and soybean oils contribute the most to ultra-processed
products (Section S7.5). (b) The patterns of ingredients in the least-processed tortilla
chips vs. the ultra-processed tortilla chips. The bold fonts track the IgFPro of the
oils used in the three tortilla chips. The minimally-processed tortilla chips (FPro =
0.477) uses avocado oil (IgFPro = 0.812), and the more processed El Milagro tortilla
(FPro = 0.769) has corn oil (IgFPro = 0.866). In contrast, the ultra-processed Doritos
(FPro = 0.982) relies on a blend of vegetable oils (IgFPro = 0.868), and is accompanied
with a much more complex ingredient tree, indicating that there is no single ingredient
“bio-marker” for ultra-processed foods.
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1 Food Sources in NHANES

The majority of people rely on grocery stores as the primary source of food. To

investigate this hypothesis, we looked into the National Health and Nutrition Exami-

nation Survey (NHANES), offering the variable DR1FS that corresponds to “Where did

you get (this/most of the ingredients for this)?”, found at (https://wwwn.cdc.gov/Nchs/

Nhanes/2017-2018/DR1IFF J.htm#DR1FS). We find that over 60% of all foods reported

by NHANES 2017-2018 participants are from stores (Figure S1), indicating the high

degree of reliance of the US population on grocery stores.

Figure S1: Proportion of Food Sources Reported in NHANES 2017-2018.

2 Data Collection and Processing

We built GroceryDB by collecting information regarding branded products from the

publicly available data on the online websites of Walmart, Target, and WholeFoods. For

data storage, we used MongoDB that offers highly flexible data structures with high

input/output throughput.
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2.1 Identification of Additives

We used the “Substances Added to Food” database provided by the US Food and

Drug Administration (FDA) as our primary dictionary to identify additives and their

synonyms in food products [1]. We also used the “Dictionary of Food Ingredients” (DFI)

to further enrich and categorize the identification of additives [2]. Non-trivially, many

substances declared on the nutrition fact labels have a broad range of synonyms. Thus, in

addition to the synonyms provided by FDA, we also manually identified many synonyms

of additives to better clean and normalize ingredient lists.

A major issue with cleaning ingredient lists is the high level of mismatch between

labels provided by the FDA and the declared ingredients on nutrition fact labels printed

by food producers. This is aligned with the GS1 UK data crunch analysis, reporting

80% inconsistency in products data in the UK grocery industry [3]. This inconsistency

could be partially explained by the high level of difficulty to find the common name of an

additive. For example, the FDA food labeling guide encourages the use of common names,

stating “always list the common or usual name for ingredients unless there is a regulation

that provides for a different term. For instance, use the term ‘sugar’ instead of the

scientific name ‘sucrose’ [4].” However, the FDA does not provide a strictly standardized

database on the common names and synonyms of additives. While building GroceryDB,

we frequently faced the issue that common ingredient names were not used on food

packages. For example, the additive commonly known as “baking soda” is frequently

declared as “sodium bicarbonate” on product labels. Similarly, “carmine”, a common

coloring additive, is found in GroceryDB both as its standard name, “carmine”, and as

“cochineal extract”, named after the insect at the origin of its red color.

Lastly, as a note on terminology, the FDA distinguishes between “additives” and

“substances added to food.” In our analysis we equate the label “additive” to the FDA’s

“substance added to food.”

3 Food Processing Score (FPro)

We used FoodProX, a random forest classifier, to calculate FPro for the branded

products in GroceryDB [5]. To train FoodProX, we used the manual NOVA classification

on two USDA datasets, namely, FNDDS and Standard Reference (SR). For items with

manual NOVA1, NOVA2, and NOVA3, we combined all unique nutrient profiles (12
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nutrients) from FNDDS 2001-2018 (9 cycles), plus all the unique nutrient profiles from SR

20-28 (9 versions). This enables us to have more nutrient profiles among unprocessed and

processed foods. However, for items with manual NOVA4, we only combined the latest

nutrient profile for each food code from FNDDS 2001-2018 and SR 20-28. The reason for

not including all unique nutrient profiles in NOVA4 class is to balance the training dataset,

otherwise including all unique profiles in NOVA4 would make the training data from

NOVA4 extremely dominant, not giving the classifier a chance to learn the characteristics

of nutrient profiles in NOVA1-2-3 classes. The fraction of foods in each NOVA class is

represented in Figure S2. The addition of SR database to the training data increased the

number of training samples for NOVA1 and NOVA3 classes, hence balancing the training

dataset.

We used the 12 nutrients in Table 1 to train FoodProX, since FDA requires reporting

these nutrients on nutrition fact labels [6]. Although providing the minimum of 12 nutri-

ents is mandated by the law, not all food labels declare those nutrients. Hence, we decided

to rely on 10 nutrients and assume value 0 for Vitamins C and A, if these vitamins are

not reported. The number of products that reported at least 10 nutrients in GroceryDB

is shown in Figure 3. For consistency, we decided to ignore all foods that do not meet the

minimal requirement of 10 nutrients [7]. If necessary, the value of missing nutrients could

be imputed to measure the degree of food processing for all foods currently excluded.

Table S1: 12 Nutrient Panel for Branded Products

Nutrients

Protein

Total Fat

Carbohydrate

Sugars, total

Fiber, total dietary

Calcium

Iron

Sodium

Fatty acids, total saturated

Cholesterol

Vitamin C

Total Vitamin A

4



Figure S2: Fraction of NOVA Classes in the Training Dataset. We used the NOVA
classification to train FoodProX [5], our machine learning classifier that assigns a FPro
score to each food.

Figure S3

Figure S3: Number of Products with Missing Nutrients in GroceryDB. The
products that did not report one of the following 10 nutrients are marked as ‘missing
nutrient’: protein, total fat, carbohydrate, total sugars, total dietary fiber, calcium, iron,
sodium, total saturated fatty acids, and cholesterol.
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4 Comparison with USDA FoodData Central and Open Food
Facts Databases

Initially, with the goal of obtaining the missing nutrition facts, we matched Gro-

ceryDB with the USDA FoodData Central Global Branded Food Products Database

(BFPD) according to the ingredient lists. However, BFPD only covered 44% of the prod-

ucts in GroceryDB (with Similarity Score ≥ 0.95), lacking also nutrition facts for the

products with missing nutrients in GroceryDB (Figure S4A). Similarly, OFF covers 38%

of GroceryDB (Figure S4B).

Specifically, within the 22,900 items with missing nutrition facts, only 9,600 were

matched with Similarity Score ≥ 0.95 from which only 537 had full nutrition facts.

These findings suggest that GroceryDB offers a more up to date picture of the food

supply, and many products do not report the full nutrient panel required by the FDA.

A BSimilarity between USDA BFPD and GroceryDB Similarity between OpenFoodFacts and GroceryDB

Figure S4
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Figure S4: Coverage Comparison with USDA BFPD and OpenFoodFacts. Gro-
ceryDB offers a complementary picture of the food supply compared to BFPD and
Open Food Facts (OFF). (A) We derived similarity scores based on ingredient lists
declared in USDA BFPD and GroceryDB, using the the TF-IDF (Term Frequency-
Inverse Document Frequency) algorithm. The USDA BFPD (April 2021 version) has
1,142,610 branded products and GroceryDB has 50,467 items from which 2,754 items
are excluded because of not having an ingredient list. We calculated the similarity score
for the remaining 47,713 items, finding that BFPD only covers 44% of the products in
GroceryDB with Similarity Score ≥ 0.95. (B) Similarly, we investigated the overlap
between OFF and GroceryDB. Among 426,479 products in OFF with English list of in-
gredients (as of January 2022), only 18,948 products exist in the entire GroceryDB with
Similarity Score ≥ 0.95, covering 38% of the products in GroceryDB.

5 Category Harmonization

Grocery stores classify foods into multiple categories and sub-categories, for a total of

over 200 main categories and 866 sub-categories that are hierarchically organized in levels.

Grocery store categories tend to be organized according to the store layout, helping con-

sumers navigate the store. In contrast, epidemiological databases tend to categorize foods

based on processing methods and the origin of food (type of plant or animal parts). For

instance, FNDDS 2017-2018 has multiple categories for milk: ‘Milk and Milk Products’,

‘Milks, milk drinks, yogurts, infant formulas’, ‘Milk, fluid, evaporated and condensed’,

and ‘Milk, fluid, imitation’ (declared by first 5 digits of food codes). Another approach

to food classification is used by the What We Eat in America (WWEIA) database, aim-

ing to provide categories that better resonate with consumers. For example, WWEIA

contains 10 categories for milks, separating milk flavors and fat concentrations, ranging

from ‘Milk, whole’, ‘Milk, reduced fat’, and ‘Milk substitutes’, to ‘Flavored milk, whole’,

‘Flavored milk, nonfat’, and ‘Milk shakes and other dairy drinks’ [8]. In GroceryDB,

we followed a similar approach as WWEIA, with additional emphasis on the consumer’s

use of products to enable effective food substitution strategies. For instance, we placed

meat-based and plant-based burgers into a single category, ‘Prepared Meals & Dishes’,

since from the consumer perspective these are both ready-to-cook burgers. This method

of categorization leads to broader food categories and higher food variability, allowing

more opportunities for meaningful food substitution recommendations.

We harmonized foods from grocery stores into 42 broad categories designed for assist-

ing food recommendation algorithms that aim at finding alternative food choices within

the same category. For instance, in grocery stores the frozen-foods category includes
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items ranging from frozen fruits and vegetables to frozen lasagna and breakfast egg bites.

We therefore broke the frozen-foods category into “Packaged Produce”, “Breakfast”, and

“Prepared Meals & Dishes”. The list and size of the harmonized categories in GroceryDB

are shown in Figure S5.

The reason for observing such a large number of categories in stores is due to the

lack of a standard classifying method across the stores. For example, breads as Level

1 category are marked as “bread bakery”, “bakery bread”, and “breads rolls bakery” in

Walmart, Target, and WholeFoods, respectively (Figure S6).

Lastly, since the focus of this paper is investigating the extent of food processing in

grocery stores, we decided to not include the categories that are naturally unprocessed in

all analysis, except in Figure 2A and Figure 2C that illustrate the distributions of FPro.

Food categories such as fresh produce, raw beans, eggs, and raw meat are example of

categories that are naturally unprocessed.
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Figure S5: Fraction of Foods in Harmonized Categories. We harmonized foods
from the three grocery stores into coarse-grained categories to represent foods from the
perspective of individuals searching for alternative food choices. A comparison between
store categories and GroceryDB categories is illustrated in Figure S6.
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Figure S6: Store Categories vs Harmonized Categories. (A-F) Breakdown of
frozen and pantry foods commonly found in the category hierarchy of grocery stores
(inner cycles), mapped onto the GroceryDB harmonized categories (outer cycle).

6 Price and Food Processing

To investigate the hypothesis that processing impacts food prices, we calculated the

PricePerCalories of the branded products as the total package price divided by the pack-

age calories (Figure S7A-B). Items with zero calories like Coke Zero are ignored in this

analysis. Next, we calculated the Spearman’s correlation coefficient between FPro and

PricePerCalories, as captured by the correlation matrix in Figure S7C. We find that de-

pending on the store and categories, food processing correlates with cheaper calories, as

in case of the strong negative correlation for breakfast, mac-cheese, pudding-jello, cakes,

and pastry-chocolate-candy. Finally, in a few categories like milk-milk-substitute, pasta-

noodles, cheese, and jerky the more processed foods tend to have a higher price (Figure

S7C).

To further assess the relationship between PricePerCalorie and FPro, we used robust

linear models [9, 10]. The regression coefficients and p-values are illustrated in Figure

S8. Note that in Figure 3, we did not include the pasta-noodles category. The reason is

lack of data in this category, as out of 256 items we have price for 164 that are highly

segmented (Figure S9), leading to the observation that on average the highly processed

pasta-noodles are 46% more expensive than minimally processed-alternatives (comparing

the averages in the top and bottom 10% of FPro).
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Figure S7: Correlation between Price and Degree of Food Processing. (A) The
distribution of price per item in GroceryDB. (B) The distribution of price per calorie
obtained by dividing an item’s price by its total calories (zero calories items are not
included in this analysis). (C) The Spearman’s rank correlation coefficient between price
per calorie and FPro across food items. An higher extent of food processing tends to
decrease cost in many categories, but not in all of them.

Regression Coefficient

Milk-Milk-Substitute

Figure S8: Price and Degree of Processing. The regression coefficients and p-values
for log(PricePerCalorie) ∼ log(FPro) using robust linear models are illustrated to
assess the relationship between price and FPro in GroceryDB [9, 10]. The regressions
with p-value ≤ 0.05 are marked with stars, otherwise the p-values are represented in
parenthesis.
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Figure S9: PricePerCalorie vs. FPro for Pasta & Noodles Category. Of the 256
items in the pasta-noodles category, we have price per calorie for 164 items. Given the
limited number of data points in this category, we decided to exclude pasta-noodles from
Figure 3.

7 Organization of Ingredients

This section describes the methods we developed to quantify the organization of in-

gredients in the food supply.

7.1 Cleaning Ingredient Lists

The ingredient lists are regulated by the FDA food labeling guidelines, however there

are numerous nuances that cause inconsistency and require normalization [11]. For ex-

ample, corn starch is reported as “cornstarch”, “corn-starch”, and “corn starch” in the

ingredient lists, and needs to be normalized to one format. Similarly, FDA allows using

a variety of synonyms for an ingredient, like the common synonyms “soybean”, “soy”,

and “soya” used for soybeans. Additionally, ingredient lists often provide a variety of

information for individual ingredients, like the processes involved in their preparation

or the intended purpose of their use. We normalized these information by identifying

the general name of an ingredient and using descriptors to mark any extra information

provided in each ingredient label (Figure S10).

The heterogeneity and variability of declared labels in the ingredients lists requires
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a base-knowledge to organize the list of ingredients into ingredient trees. Hence, we

built a set of semantic trees by leveraging the dictionary of food ingredients [2], and by

Pre-Processing

Replace replace-words (e.g., ‘vit. b’ with ‘vitamin b’)

Remove html tags

Handle allergen and foot note information

Syntax cleaning and splitting

Split ingredients with “and” and handle exceptions

Remove non-ascii characters

Process Colons into Parentheses

Initiate Tree Structure (i.e., branches and labels)

Replace Word Mapping

“And” Dictionary

Normalize Labels and Build Tree

Normalize a Single Ingredient Label

Identify node type Additive List

Build Tree

Loop through labels

None Marker Amount Additive Ingredient

Standardize Standardize

(and return additive descriptor)

Descriptor List

Completed Tree

Tag Faulty Trees

Finalized Label 

Identify Descriptors

Ingredient 
Dictionary

Standardize & Semantic Cleaning
& Identify Descriptors

Figure S10: Pipeline for Transforming an Ingredient List into an Ingredient
Tree. An extensive data engineering and cleaning is needed to harmonize the list of
ingredients declared on foods in grocery stores. The lack of a standardized ontology of
ingredients makes this task more difficult.
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manually investigating the ingredient list of products in GroceryDB. The purpose of a

semantic tree is to capture the common forms representing the same ingredient label by

distinguishing the differences in the origin of an ingredient, the alterations caused by

food processing, and the semantic synonyms. For instance, we have a semantic tree for

oil that covers 25 types of oils ranging from seed and vegetable oils (like sesame and corn)

to fruit based oils (palm and avocado), also annotating the markers of processing such as

expeller pressed, hydrogenated, and partially hydrogenated (Figure S11A). Similarly, we

obtained a semantic tree for common generic terms like ‘starch’, that captures various

types of starches declared on food labels, from potato starch (organic or modified) to corn

starch (native or non-GMO, Figure S11B). Lastly, we organized this extra information

with descriptors, annotated as “<descriptor>” in cleaned ingredient labels.

Finally, the breakdown of raw ingredients normalized to structured labels is illus-

trated in Figure S12. The raw format of ingredients as reported on product packages

contains over 32,000 unique labels, including a broad range of heterogeneous synonyms

and semantically duplicate labels. Through text curation, we were able to reduce this

number to approximately 20,000 labels corresponding to about 12,000 unique ingredi-

ents. See Section S7.2 for a robust assessment of the number of ingredients, additives,

and descriptors in GroceryDB.
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Figure S11

Figure S11: Semantic Trees. Two example of semantic trees used to organize ingredient
lists into ingredient trees, with the number of products and ingredients for ingredients
and their descriptor.
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Figure S12

Figure S12: Normalization of Ingredient Labels. Breakdown of the raw labels ob-
tained from the declared ingredients on branded products normalized into structured
labels in GroceryDB.

7.2 Approximating the Number of Ingredients in GroceryDB

Given the high level of data inconsistency in the grocery industry [3], it is difficult

to find the exact number of ingredients and additives in GroceryDB. Hence, we use

the population proportion estimation statistics (Cochran’s sample size formula) to esti-

mate the number of ingredients, additives, and descriptors. We estimate the number of

unique ingredients to be 12,475 (Figure S13A), including 2,639 additives (Figure S13B).

We present two quantities, one considering descriptors and another without descriptors,

providing two levels of ingredient specificity. With descriptors, for example, the string

“bleached wheat flour” is counted separately from “enriched wheat flour.” Without de-

scriptors, both are considered “wheat flour.” Counts become considerably larger when

considering descriptors. Through this analysis we found additives like “corn starch” which

appears in Grocery DB with 13 different unique descriptors like “modified,” “non-gmo”

and “resistant.”

The FDA identifies 3,972 total substances added to food [1], 1,316 of which are clas-

sified as direct, approved additives [12]. The Dictionary of Food Ingredients (DFI), an

industry standard encyclopedia of food ingredients in the U.S. [2], lists 609 additives.

The DFI is based on the FDA’s Title 21 in the Code of Federal Regulations [12], and
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there is thus a considerable overlap between the two sources. With our current pipeline

and duplicate removal, DFI adds 205 additives beyond the FDA source. We use both

DFI and the FDA’s database of additives to identify additive ingredients in GroceryDB,

resulting in an estimated 914 unique additives not considering descriptors.

This task is difficult as there is not a one-to-one mapping between unique strings in

the ingredient lists, and an actual ingredient. For example, for the ingredient “vitamin

b12”, we found typos like “vitemin b12”, branded strings (“Walmart vitamin b12”),

and synonyms (“vit. b12”), which all point to the same ingredient. A full cleaning of

ingredient strings to achieve a one-to-one mapping is a goal of future work, but we can

approximate the number of unique ingredients in the U.S. food system with the current

state of GroceryDB.

To estimate the number of ingredients and additives, we collected samples of ingredient

labels after running our data cleaning pipeline (Figure S10) and selected ingredients

present in at least two products. Then, we manually investigated these samples to count

the number of labels that are correctly classified vs. incorrectly classified (due to the lack

of a comprehensive dictionary of synonyms and the large level of data inconsistency in

the grocery industry). Next, we used the Cochran’s formula to estimate the number of

ingredients and additives based on the proportion of correctly classified labels. Lastly,

the limitations of this approach are presented in Section S8.
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Figure S13: Estimated Number of Ingredients, Additives, and Descriptors in
GroceryDB. (A-B) Estimation for the unique number of ingredients and additives in
GroceryDB based on Cochran’s formula with 95% confidence interval. The descriptors
add a significant complexity in estimating the number of ingredients and additives in
the food supply. Examples of ingredients with descriptors are “bleached wheat flour”
and “enriched wheat flour” where ‘bleached’ and ‘enriched’ are descriptors. (C) The
number of descriptors that appeared at least in 10 products. Although we manually
created a dictionary of descriptors with 168 labels, we mainly relied on natural language
processing to automatically identify descriptors. This process resulted in identifying
new descriptors. (D) Ahuja et al in [13] analyzed a subset of BFPD, resulting in the
identification of 6,500 ingredients from 5 out of 31 food categories in BFPD. Our data
cleaning led to the identification of a smaller number of ingredients without descriptors,
for a total of 4,201 ingredients.

7.3 Characteristics of Ingredient Trees

The branded products with more complex list of ingredients are more likely to be

highly processed. To test this hypothesis, first we introduce two measures characterizing

ingredient trees: tree width and depth. The tree width, denoted by W , represents the

number of main ingredients in a product, and the tree depth, D, approximates the extent

of the reliance on mixtures of sub-ingredients. We define depth-sum of an ingredient
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tree, denoted by Ds, as the sum of the depth of all its branches. Figure 5 presents

two cheesecakes with FPro = 0.953 and FPro = 0.720 along with their corresponding

ingredient trees. The highly processed cheesecake has a complex ingredient tree with

W = 10 and Ds = 4 (Figure 5A). In contrast, the less processed cheesecake has a simpler

ingredient tree with W = 5 and Ds = 2 (Figure 5B).

Theoretically, by the definition of branch depth sum, Ds may be considered as another

representation of W , if most main ingredients of products have sub-ingredients. Yet, we

find that W and Ds show varying characteristics, depending on food categories. For

example, cheeses tend to have high W and low Ds, whereas cakes have relatively lower

W and higher Ds, showing distinct behaviors as illustrated in Figure S14A. In contrast,

when comparing cakes and pizzas (Figure S14B), the difference between W and Ds is less

striking. Moreover, the distributions of W and Ds show more differences than similarities

as illustrated in Figure S15A-B, indicating that they are presenting different information.

Interestingly, we find that WholeFoods tend to offer foods with both smaller W and

shorter Ds compared to the other stores. That is, products in WholeFoods tend to have

less ingredients and also rely less on mixing sub-ingredients.

Finally, We analyzed the relationship between W and Ds of ingredient trees in all

categories. The Spearman’s correlation between W and Ds suggests that these metrics

capture unique information about the products. We find both positive and negative corre-

lations between W and Ds, depending on the categories (Figure S15C). The strongest cor-

A B

Figure S14: Tree Width vs Depth-Sum (Ds). The ingredient trees behave differently
according to food categories. (A) In the cheese category the ingredient lists tend to rely
less on the mixture of sub ingredients (wider trees), whereas in cakes we observe that
more sub-ingredients are defined. (B) The ingredient trees of cakes and pizzas show
similar structures.
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relation between W and Ds is in the culinary ingredients and spices-seasoning, since these

are the categories that in principle should least rely on the mixture of sub-ingredients,

as generally spices and culinary ingredients are made of simple ingredients. In milk &

milk-substitutes, we also find a strong correlation between W and DS, partially explained

by the transition from simple whole milk to chocolate and milk-substitutes (like almond

and oat milks), increasing the number of main ingredients and sub-ingredients (Figure

S15). On the other hand, in breads, ice cream, and sausage, we find a negative corre-

lation between W and Ds partially explained by the use of more complex ingredients.

For instance, flour, dough conditioner, and cookie dough are often reported with a long

mixture of sub-ingredients, resulting in a higher Ds in breads and ice creams.
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Figure S15: Characteristics of Ingredient Trees. (A) The distribution of the width
of ingredient trees for each store, indicating that products in WholeFoods tends to have
fewer ingredients compared to other stores. (B) The distribution of Ds for all ingredient
trees, reflecting the extent to which products rely on sub-ingredients. WholeFoods tends
to rely less on mixing sub-ingredients compared to the other stores. (C) The Spearman’s
correlation coefficient between the width and Ds of ingredient trees for each harmonized
category and store.

7.4 Correlation between Characteristics of Ingredient Lists and
FPro

To test the hypothesis that branded products with more complex list of ingredients

are more likely to be highly processed, we also investigate the relationship between W ,

Ds, and FPro. For example, in cereals, pasta-noodles, and baking categories, the items

that have simpler ingredient trees also have a significantly lower FPro (Figure S16A-C).

However, this effect is weaker in prepared Meals & dishes, where we find lower values of

FPro with relatively large ingredient trees (Figure S16D).

Lastly, we further investigate the Spearman’s correlation between W , Ds, and FPro.

Generally, we find a strong correlation between W , Ds, and FPro indicating that prod-

ucts with complex ingredient trees tend to have a higher FPro (Figure S17). Also,

some categories show stronger correlation with Ds and FPro, signaling that mixing many

sub-ingredients may drive food processing. For example, in breakfast products, pizzas,

popcorn, we find that Ds has a stronger correlation with FPro compared to W and even

the total number of ingredients (defined as the sum of all ingredients and sub-ingredients

including additives, Figure S17).
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Cereals Pasta & Noodles

Baking Prepared Meals & Dishes

Figure S16: The Relationship between FPro and Characteristics of Ingredient
Tree. Complex ingredient trees tend to have a higher FPro. (A-C) In cereals, pasta-
noodles, and baking categories, we find that FPro increases as tree width W and Ds

increases. (D) This effect is weaker in prepared meals & dishes.
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Figure S17: Correlation between FPro and the Characteristics of Ingredient
Trees. The Spearman’s correlation between FPro and the ingredient trees width, Ds,
and total number of ingredients. The features of ingredient trees are not always positively
correlated with FPro, depending on the food category. In some categories like seafood
and milk-milk-substitute, there is a strong positive correlation between FPro and the
characteristics of ingredient trees. However, we also observe negative correlations in
mac-cheese and pudding-jello.
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7.5 Ingredient Processing Score (IgFPro)

This section provides complementary information on the methods to create ingredient

trees (Figure S18), and compares IgFPro with FPro (Figure S19).

A B

FPro = 0.720

Ingredients: Cream Cheese (Pasteurized Milk and Cream, Salt,

Stabilizers [Carob Bean Gum and/or Xanthan, Locust Bean, and

Guar Gums], Cheese Culture), Maltitol, Eggs*, Lemon Juice*,

Vanilla., *Non-GMO Ingredient

cream cheese

maltitol

egg

lemon juice

vanilla

milk <pasteurized>

cream

salt

stabilizers

cheese cultures

carob bean gum

Xanthan gum

locust bean gum

guar gum

𝑑 = 5

𝑑 = 1

𝑑 = 2

𝑑 = 3

𝑑 = 4

𝑑 = 6

𝑑 = 2

𝑑 = 3

𝑑 = 4

𝑑 = 5

𝑑 = 9

𝑑 = 6

𝑑 = 7

𝑑 = 8

Figure S18: Two Types of Ingredient Trees. An ingredient list can be represented
by two types of ingredient trees. (A) A recipe-like structure to better demonstrate the
main and sub-ingredients. (B) A sequential approach to capture the order of ingredients
in the tree structure. In this approach, the distance d from the root reflects a ranking for
the amount of ingredients used in the preparation of an item.
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Figure S19: IgFPro vs FPro. The general form of ingredients is used without de-
scriptors. For example, the general name of ‘milk <pasteurized>’ without descriptors
is ‘milk.’ Also, only the general ingredients that are present in at least 10 products are
considered, resulting in IgFPro measures for over 1,200 ingredients, as ranked in Figure
6.
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8 Limitations

GroceryDB paves the way towards systematically quantifying the organization of in-

gredients in the food supply. Indeed, the level of data inconsistency is estimated to be

80% in the grocery industry [3,13]. Given this high level of data inconsistency, future work

will extend the current efforts on data cleaning, integration, and normalization, to better

approximate the number of unique ingredients and additives in the food supply. Yet,

GroceryDB provides the data structure, methods, and pipeline needed to systematically

unify the ingredient lists in the food supply, and unveil the organization of ingredients.

Finally, the analysis conducted in this paper are based on a single snapshot from the

online stores of three major grocery stores. The current study may not contain all infor-

mation about the inventory of products in grocery stores. Yet, GroceryDB provides an

updated picture of the food supply when compared to USDA BFPD and OpenFoodFacts

(Section S4).
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