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Abstract

Within-host models have been used to successfully describe the dynamics of multiple
viral infections, however, the dynamics of SARS-CoV-2 virus infection remain poorly un-
derstood. A greater understanding of how the virus interacts with the host can contribute
to more realistic epidemiological models and help evaluate the effect of antiviral thera-
pies and vaccines. Here, we present a within-host model to describe SARS-CoV-2 viral
dynamics in the upper respiratory tract of individuals enrolled in the UK COVID-19 Hu-
man Challenge Study. Using this model, we investigate the viral dynamics and provide
timescales of infection that independently verify key epidemiological parameters important
in the management of an epidemic. In particular, we estimate that an infected individual
is first capable of transmitting the virus after approximately 2.1 days, remains infectious
for a further 8.3 days, but can continue to test positive using a PCR test for up to 27 days.

Introduction

The SARS-CoV-2 virus has led to a global pandemic, causing millions of infections world-
wide. Mathematical modelling has been used throughout the pandemic to predict num-
bers of cases, hospitalisations and deaths, as well as the impact of non-pharmaceutical
interventions [1, 2, 3]. In these epidemiological models, the rate at which susceptible
individuals become infected can be thought of as the product of a contact rate and a
transmission probability. The contact rate is simply interpreted as the number of contacts
an individual makes per unit time, with insights provided from social contact studies [4, 5].
The probability of transmission, however, is not as well-defined and depends on many
factors such as the environment in which the contact takes place, the duration of the con-
tact and the infectiousness of the individual. Intuitively, an individual is most infectious
when viral loads in their respiratory tract peak [6, 7], therefore understanding how viral
loads change over time is crucial to understanding infectiousness. Within-host models
can be used to describe how interactions between virus particles, host cells and the im-
mune system affect the viral load over time, with the link to infectiousness then provided
by either dose-response relationships or the assumption that the transmission probability
is an increasing function of viral load [8, 9].

Existing within-host models of SARS-CoV-2 have predominantly focused on describ-
ing the dynamics of the virus in the upper respiratory tract (URT), the primary site of
infection, where data are readily available from nasopharyngeal swabs [10, 11, 12]. In
some cases, these models are extended to include compartments such as the lower res-
piratory tract (LRT), however, observing LRT infection is difficult and is unlikely to play a
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role in person-to-person transmission [13]. Often, swab data are presented in the form
of polymerase chain reaction (PCR) cycle threshold values (Ct values) that are converted
into RNA copies by means of a standard curve. However, since a PCR test captures all
genetic material, it quantifies the total viral RNA and not the amount of viable virus that is
capable of infecting cells [14]. This therefore makes it difficult for models parameterised
using such data to predict the duration that an individual remains infectious; a previous
study has shown that live virus cannot be isolated from respiratory samples 8-9 days after
symptom onset notwithstanding persistently high viral RNA loads [15]. Despite this, some
models have directly estimated the infectiousness of an individual from predictions of total
viral load [16, 17], whilst others have first linked total and infectious viral loads using the
probability that a sample is culture positive [18].

A second limitation of earlier within-host models is that swab samples were under-
standably only collected once an individual first displayed symptoms, so the exact date
of infection is unknown. The majority of models account for this by assuming a fixed in-
cubation period of between 3 and 7 days, however, since symptom onset approximately
coincides with peak viral loads, the models can only reliably predict the decay in viral loads
and not the initial growth [19]. Human challenge studies allow us to study the processes
of infection and immunity from their inception and therefore provide a complete overview
of the disease course [20]. Screening of participants can also ensure that samples are
representative of primary infection, whilst a quarantine setting allows data to be obtained
with a level of detail not achievable in a real-life setting [21].

In this paper, we develop a mathematical model to describe the dynamics of wild-type
SARS-CoV-2 infection in the URT. We make use of infectious and total virus time courses
from participants of a human challenge study, thereby addressing the above limitations of
existing models. Bayesian inference methods are applied to estimate model parameters
and the within-host basic reproduction number. The mathematical model is then used to
predict timescales of infection, such as the duration that an infected individual remains
infectious and PCR positive.

Methods

Model structure
The viral dynamics in the mid-turbinates of human challenge study participants are de-
scribed using a target-cell limited model that has successfully been used to describe the
dynamics of other viral infections, and makes use of measurements of both infectious and
total viral loads [22, 23, 24]. In this model, target cells (T ) become infected with infectious
virus (Vinf) at rate β and enter a non-productive eclipse phase (E) for 1/k days, after which
they enter a productively infectious phase lasting for a further 1/δ days. Whilst cells are in
the infectious phase, they produce infectious virus at rate pinf which in turn loses infectivity
at rate cinf. Viral RNA is produced by an infectious cell at rate ptot and lose viability with
rate ctot. To represent an adaptive immune response, we note that effector cell responses
(C), such as those of CD8+ T cells, go through an antigen-dependent activation stage,
followed by a virus-independent expansion phase. The growth rate of the effector cell pop-
ulation is therefore initially dependent on the total viral load (Vtot), but once this becomes
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large enough, exponential growth of the effector cell population follows [25]. Effector cells
help to resolve infection through the mass action killing of infected cells with rate kC and
survive for an average of 1/δC days. The model is described by the system of ordinary
differential equations:

dT

dt
= −βTVinf

dE

dt
= βTVinf − kE

dI

dt
= kE − δI − kCCI

dVinf

dt
= pinfI − cinfVinf

dVtot

dt
= ptotI − ctotVtot

dC

dt
=

rCVtot

Vtot + s
− δCC

(M1)

where s determines the viral load at which effector cell growth becomes virus independent
and r is the maximal growth rate of effector cells [25].

Parameter inference and model selection
An Approximate Bayesian Computation Sequential Monte Carlo (ABC-SMC) algorithm is
used to infer model parameters from the human challenge data [26, 27]. This method
is an extension of the original ABC algorithm and uses a sequence of decreasing toler-
ances to obtain intermediate distributions that ultimately converge on the target posterior
distribution. Parameter sets are sampled from the intermediate distribution of the previ-
ous generation and perturbed using a multivariate normal kernel, the covariance matrix
of which is selected here to be the optimal local covariance matrix introduced in [28].
Choosing a suitable sequence of tolerances is important since tolerances that decrease
too slowly will result in slower convergence, whilst a sequence that decreases too quickly
will lead to lower acceptance rates. To avoid manually setting the tolerances beforehand,
an adaptive approach is implemented where the tolerance for the current generation is
equal to the 0.25 quantile of the distances from the previous generation [26]. For the first
generation, the tolerance is equal to the N th smallest distance from 5N iterations of an
ABC rejection sampling algorithm, where N = 5× 103 is the desired sample size [29].

Solutions of the mathematical model (MM) for infectious virus and total virus are com-
pared to the measurements of viral load from the human challenge (HC) nasal samples
using the following distance metric:

d(MM,HC)2 =
∑
t∈T

[
log10(V

(MM)
inf (t))− log10(V

(HC)
inf (t))

]2
+
[
log10(V

(MM)
tot (t))− log10(V

(HC)
tot (t))

]2
,

where T is the set of times at which samples were taken. At times when the model
solution falls below the limit of quantification (6× 102 RNA copies/mL and 5 PFU/mL), the
solution is instead set equal to this limit. In doing so, no penalty is incurred when solutions
drop far below the limit of quantification.
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Given that the human challenge study collected samples from the first 14 days of
infection, there is unlikely to be a significant decline in the adaptive immune response,
therefore δC = 0. For the length of the eclipse phase, in vitro studies have showed that
virus is released from infected cells 8 hours after infection, suggesting that it is suitable
to fix k = 3 day−1 [30]. The viral load at which effector cell growth becomes independent
of virus also remains constant at s = 104 RNA copies/mL. For the remaining parameters,
prior distributions are chosen as follows:

log10 β ∼ U(−7,−2) δ ∼ U(0, 5) log10 pinf ∼ U(−1, 3) log10 ptot ∼ U(1, 6)

cinf ∼ U(0, 50) ctot ∼ U(0, 10) r ∼ U(0, 2) log10 kC ∼ U(−5,−2)

Previous studies have noted that only the product of T (0) and the viral production rate is
identifiable from measurements of viral load [30]. Since it is more common to estimate
viral production rates, the initial number of target and effector cells is set to T (0) = 106

cells/mL and C(0) = 1 cell/mL respectively, whilst all other cell populations are initially
zero. Local sensitivity analysis indicated that Vtot(0) did not have a large impact on the
viral load, likely because Vtot is not directly involved in the infection of target cells, and
is therefore fixed at Vtot(0) = 102 RNA copies/mL. Participants of the human challenge
study received a challenge dose of 10 TCID50 via intranasal drops, which approximately
corresponds to 275 PFU/mL. However, it is unknown whether this level of virus reaches
cells in the mid-turbinate. For this reason, the initial condition Vinf(0) is also inferred with
prior distribution Vinf(0) ∼ U(−2, 2). The inference has been repeated using different prior
distributions for Vinf(0), but this did not result in significantly different approximate posterior
distributions for the remaining model parameters (see Figure S1).

The ABC-SMC algorithm is used to infer parameters for each individual separately and
therefore produces 16 separate approximate posterior distributions. To obtain a single
distribution that is representative of all participants, a mixture distribution is constructed.
Suppose that f(θ) is the probability density function for the true posterior distribution,
where θ is the vector of model parameters. The density function for the mixture distribution
is then given by:

m(θ) =
P∑
i=1

wifi(θ) ,

where P = 16 is the number of individuals that developed infection and wi are the weights
for each individual. Here, wi = 1/P for all i since there is no evidence to suggest that
any single participant is preferred over the others. Approximate samples from the mixture
distribution can be obtained by first sampling an individual and then sampling from the
corresponding approximate posterior sample.

To compare the mathematical model in M1 to an equivalent model without an immune
response, an ABC-SMC model selection algorithm is used [27]. Model M2 is defined
using the same system as M1 but removes the final ODE describing the effector cell
population and therefore also ignores the clearance of infected cells by effector cells.
The model selection algorithm follows the same procedure as the ABC-SMC algorithm
for parameter inference but introduces a step prior to sampling candidate parameter sets
where a candidate model is sampled. At the end of each generation, the Bayes factor for
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model M1 in favour of model M2 is calculated as follows:

BM1,M2 =
P (M1|x)
P (M2|x)

,

where the prior probabilities for model M1 and M2 are assumed to be equal. For each
participant, the sequence of tolerances used in the model selection algorithm is the same
as that obtained from the inference using model M1. A Bayes factor greater than 3 indi-
cates positive evidence, whilst a value greater than 20 indicates strong evidence in favour
of model M1 [27].

Results

Measurements of viral load were obtained from the human challenge study described
in [31]. In this study, 36 healthy, young participants were inoculated intranasally with a
wild-type SARS-CoV-2 virus following a screening process that ruled out previous SARS-
CoV-2 infection and recent respiratory infections. Two of these participants seroconverted
between screening and inoculation and were removed from the study. Of the 34 individ-
uals that continued in the study, 18 developed an infection. Six of these individuals were
treated with remdesivir once two consecutive nose or throat swabs showed quantifiable
SARS-CoV-2 detection by PCR, however, their viral loads were comparable to those of
untreated participants and therefore no distinction was made between the treated and
untreated participants in previous analyses [31]. Here, we continue to analyse the treated
and untreated participants as a single cohort. Due to concentrations of viral RNA in the
mid-turbinate remaining below the limit of quantification until day 6 and day 8, a further two
participants are excluded since the model is not able to explain such long delays before
viral growth. Although both nasal and throat swabs were collected, only measurements
from the nasal swabs are used to parameterise our model.

The Bayesian inference provides us with a quantitative description of the in-host dy-
namics of SARS-CoV-2 virus. Model predictions for the infectious and total viral loads for
16 participants of the human challenge study are provided in Figure 1. From the poste-
rior mixture distribution (Figure 2), we estimate that during the early stages of infection,
productively infected cells are lost at an average rate of 1.17 day−1. By day 14, once
an adaptive immune response is more established, this rate increases to 16.12 day−1.
Individual infected cells produce infectious virus at rate 3.74 PFU/ml day−1 which is con-
siderably lower than the production of viral RNA at rate 2.57× 103 RNA copies/mL day−1.
The within-host basic reproduction number represents the number of secondary cellular
infections a single infected cells causes in a population of fully susceptible cells, and is
given here by R0 = βT (0)pinf/δcinf. Using the mixture distribution to derive an estimate
of the within-host basic reproduction number gives R0 =11. Note that this estimate will
likely decrease as the infection progresses due to the shortened lifespan of productively
infected cells.

For many participants, the mathematical model predicts that infectious and total viral
loads follow an initial exponential growth phase followed by an exponential decay phase.
Since this behaviour can be captured by a model that excludes immune responses, a
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Figure 1: Posterior predictions: Predicted viral dynamics of infectious virus (blue) and total
virus (green) for participants of the human challenge study, constructed using approximate poste-
rior samples from the ABC-SMC. Solid lines represent pointwise median predictions and shaded
regions indicate 95% credible regions. Horizontal dashed lines indicate the limit of quantification.

model selection algorithm was used to determine if the inclusion of effector cells was
necessary (see Methods). For six individuals, there was very strong evidence in favour
of the model with the immune response, whilst for a further individual there was positive
evidence (see Figure S2). For the remaining nine participants, there was not sufficient
evidence to suggest that either model was preferable over the other. As a result of this,
we believe that the inclusion of an adaptive immune response is appropriate.

Predictions from the mathematical model can also be used to estimate timescales of
infection. Here, we define the time that an individual first tests positive by a PCR test as
the time at which total virus (Vtot) first exceeds the limit of quantification. Similarly, the
first time a sample is culture positive is assumed to be equivalent to the first time the
level of infectious virus (Vinf) exceeds the limit of quantification, and can be thought of
as the earliest time an individual is capable of transmitting the virus. The duration that
an individual remains PCR (culture) positive is then defined as the number of days the
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Figure 2: Inferred parameter distributions for human SARS-CoV-2 infection: Approximate
posterior distributions for model parameters inferred using an ABC-SMC algorithm from mid-
turbinate viral loads of human challenge study participants.

total (infectious) viral load continuously exceeds the limit of quantification. Estimates of
these timescales are provided in Figure 3, along with an estimate of the incubation period,
defined as the time to reach peak RNA copies/mL. Individuals are first PCR positive 1.1
days (interquartile range: 0.8–1.7 days) after infection and become infectious after 2.1
days (1.7–3 days). The incubation period lasts for 5.7 days (4.6–7.8 days) and is therefore
consistent with the idea of pre-symptomatic transmission. Individuals remain infectious
for 8.3 days (7.5–9.6 days) but would continue to test positive using a PCR test for 12.4
days (10.6–14.3 days). Some individuals remain PCR positive for up to 27 days following
infection.

Whilst human challenge studies have many advantages, the strict screening process
results in a relatively homogeneous population and so predictions from our model may
not be representative of a more general population. For this reason, model predictions
are validated against the Assessment of Transmission and Contagiousness of COVID-19
in Contacts (ATACCC) study, a longitudinal cohort study of community contacts of SARS-
CoV-2 cases [32]. Whilst this study spanned multiple waves to capture the viral dynamics
of unvaccinated and vaccinated individuals infected with different variants of SARS-CoV-
2, we only consider those individuals who are unvaccinated and infected with a pre-alpha
variant, since these will be the most similar to participants of the human challenge study.

To determine if our mathematical model can describe the viral dynamics of ATACCC
participants, a brute force approach is used that initially involves sampling 104 parameter
sets from the mixture distribution provided in Figure 2, in order to evaluate the model.
Since participants are first contacted following symptom onset of the index case, the ex-
act date of infection is unknown. Therefore, delays of up to 10 days between infection
and enrolment are introduced to the model solutions in increments of 0.1 days. Solutions
for log10(Vtot) are then compared to log-RNA copies/mL from URT samples using the Eu-
clidean distance, where only pairs of parameter sets and delays that yield the lowest 1% of
distances are retained. These retained values are used to create the predictions in Figure
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Figure 3: Timescales of infection: Estimates for the time of first positive test and the duration
an individual remains positive. The timescales are derived from model predictions of both total
(green) and infectious (blue) virus.

4. For the majority of ATACCC participants, the model and its existing parameterisation
is able to explain the data well, suggesting that results derived from the human challenge
study may be applicable to a general population. Furthermore, the median delay between
infection and enrolment is 5.4 days which is plausible given that in most individuals we
only observe the decay in the viral load and this decay begins around the time of symptom
onset.

Discussion

In this paper, we have used viral load measurements from a human challenge study to pa-
rameterise a mathematical model of SARS-CoV-2 infection. Whilst existing models have
distinguished between infectious and non-infectious virus, to the best of our knowledge
this is the first modelling study that makes use of infectious virus titres during parameter
inference. Our estimate of the within-host basic reproduction number (R0=11) is similar to
estimates from previous modelling studies (8.5–14.2), as is our estimate of 0.85 days for
the lifespan of productively infected cells during the early stages of infection (0.53–1.66
days) [11, 17, 33].

A review of existing studies determined that the median duration of wild-type SARS-
CoV-2 virus detection in the URT is 14.5 days following symptom onset [19]. Whilst this
estimate falls within the range of our PCR-positive distribution, it is based off studies from
early on in the pandemic with small sample sizes and is therefore unlikely to be robust.
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Figure 4: ATACCC validation: Predicted URT viral loads for participants in the ATACCC study.
Predictions are constructed using samples from the mixture distribution presented in Figure 2 and
allowing for a delay between infection and enrolment of up to 10 days. Solid lines represent point-
wise median predictions and shaded regions indicate 95% credible regions. Horizontal dashed
lines indicate the limit of detection.

A more comparable study involved measuring the viral RNA trajectories of basketball
players and estimated that acute infection lasted for 11.2 days in asymptomatic cases
and 14.3 days in symptomatic cases, both of which are consistent with our predictions
[34]. One limitation of our current analysis is that in some participants, RNA copies/mL
remained high after the end of the 14-day study period. As a result, there is greater
uncertainty in our predictions after this time which leads to greater uncertainty in the tail
of the PCR positive distribution. In order to obtain accurate estimates for the duration of
infection, regular sampling must be extended past 14 days.

Previous estimates of an individual’s infectiousness have been based on the ability to
successfully culture virus samples, however, such studies identify the presence of replica-
tive competent virus and do not quantify the viral load [14]. Infectious virus may therefore
be detectable but not at sufficient levels for someone to be infectious. As a result, es-
timates of the infectious period based on these studies are generally longer than that
predicted here [14, 35]. A recent within-host model defines the infectious period to be the
time when an individual’s transmission probability exceeds 10% of its maximum value,
obtaining estimates ranging between 1.9 days and 7.9 days that lie towards the lower end
of our predicted distribution [18]. Ultimately, the duration of the infectious period depends
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on how infectiousness is defined. Approaches based on viral load are preferable because
they can be used to represent infectiousness on a continuous scale (such as a probabil-
ity), whereas culture positivity only provides a binary outcome. Furthermore, viral load
curves for infectious virus are beneficial as they provide a measure of the amount of virus
capable of causing infection. Therefore, whilst our assumption that an individual is infec-
tious if their infectious viral load exceeds 5 PFU/mL may be too simple, the predictions of
infectious virus obtained here can be used alongside existing dose-response methods to
provide more accurate estimates of infectiousness [8, 36].

Future work can use infectiousness curves as a link between within-host and popula-
tion dynamics to develop more realistic multi-scale models of SARS-CoV-2 [9, 37]. With
further information regarding T-cell responses and antibody levels following vaccination,
such multi-scale models could be extended to consider the impact of waning immunity on
susceptibility and transmission [38]. The results presented here are specific to wild-type
SARS-CoV-2 virus, however, there is wide interest in variants of the virus since these
have been associated with increased transmission and can rapidly spread throughout a
population. One advantage of mechanistic models is that the parameters have simple
interpretations, therefore, when the Delta variant reportedly showed a 10-fold increase
in spike-mediated entry compared to a wild-type strain, this can be explicitly accounted
for in the cellular infection rate [39]. The viral dynamics framework described here has
also been extended to account for the genetic drift of viruses caused by mutations that
occur during replication [40]. Applying this to SARS-CoV-2 virus may help understand
the potential for new variants to arise within-host, with a recent report suggesting that the
spike protein evolves to resist antibodies in immunocompromised individuals that have
persistent infections [41]. Altogether, within-host models offer important insights into the
interaction between SARS-CoV-2 virus and the host, however, it is the subsequent appli-
cations of these models that are most relevant for informing policy and decision making.
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