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ABSTRACT 

Face masking in current COVID-19 pandemic seems to be a deceivingly simple decision-making 

problem due to its multifaceted nature. Questions arising from masking span biomedicine, 

epidemiology, physics, and human behaviors. While science has shown masks work generally, 

human behaviors (particularly under influences of politics) complicate the problem significantly 

given science generally assumes rationality and our minds are not always rational and/or honest. 

Minding minds, a legitimate concern, can also make masking legitimately confusing. To 

disentangle the potential confusions, particularly, the ramifications of irrationality and 

dishonesty, here we resort to evolutionary game theory. Specifically, we formulate and analyze 

the masking problem with a fictitious pair of young lovers, Alice and Bob, as a Sir Philip Sydney 

(SPS) evolutionary game, inspired by the handicap principle in evolutionary biology and 

cryptography figures in computer science. With the proposed ABD (Alice and Bob’s dating 

dilemma) as an asymmetric four-by-four strategic-form game, 16 strategic interactions were 

identified, and six of which may reach equilibriums with different characteristics such as 

separating, pooling, and polymorphic hybrid, being Nash, evolutionarily stable or neutrally 

stable. The six equilibrium types seem to mirror the diverse behaviors of mask believers, 

skeptics, converted, universal masking, voluntarily masking, coexisted and/or divided world of 

believers and skeptics. We suggest that the apparently simple ABD game is sufficiently general 

not only for studying masking policies for populations (via replicator dynamics), but also for 

investigating other complex decision-making problems with COVID-19 pandemic including 

lockdown vs. reopening, herd immunity vs. quarantines, and aggressive tracing vs. privacy 

protection. 

Keywords: Decision Analysis; Alice-and-Bob’s dating dilemma (ABD game); Sir Philip Sydney 

(SPS) game; COVID-19; Evolutionarily stable strategies (ESS); Nash equilibrium; Infection 

probability  

 

INTRODUCTION—Alice and Bob’s Dating Dilemma (ABD)  
“To Be, or Not to Be, That is the Question” from Hamlet by William Shakespeare 

The doubts and uncertainties surrounding masking vs. not-masking dilemma are worthy of 

careful examinations not only because the question per se is important but also it may act as a 

prototype for other potentially more challenging decision-making problems such as lockdowns 
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vs. reopening, herd immunity vs. quarantines, and aggressive contact-tracing vs. privacy 

protection in facing the unprecedented challenges from the COVID-19 pandemic. Here we 

formulate and analyze the dilemma with a fictitious pair of young lovers, Alice and Bob, who 

were ‘professionally hackers’ before the COVID-19 pandemic (http://cryptocouple.com/).  

 

After a few weeks of lockdown during the COVID-19 pandemic, Alice sent Bob a “miss you” 

message and they decided to meet somewhere. Alice could have two states: either healthy or 

infected by COVID-19. However, Bob had no clue on Alice’s state, and indeed, he did not even 

know his own health status. Before departing for the dating, Bob fell in a dilemma—should he 

wear a mask?  He might be concerned with traditional social stigma such as being conceived as 

timid, unfavorable perception from Alice, and/or the infection risk. Alice might also fell in a 

dilemma, in particular, should she be honest to Bob about her health (COVID-19) status?   

 

Time back to five centuries ago, British poet-soldier Sir Philip Sidney (1554-1586), when fatally 

injured in a battle, with the immortal words “thy necessity is greater than mine”, passed his water 

bottle to one fellow soldier who was also a casualty. Whether or not this well-known English 

story is true is less relevant for the topic of this article since the other scenarios are well covered 

by famous evolutionary biologist John Maynard-Smith (1920-2004), who transformed the story 

into a rather successful evolutionary game for investigating the honesty in animal 

communications.  With his words, “the story deserves to be true, although it was based on the 

claims of a close friend of Sir Philip Sidney”. Maynard-Smith (1991, 2003) formulated the Sir 

Philip Sidney (SPS) game with an objective to resolve a then hotly debated hypothesis—the 

handicap principle first proposed by Zahavi  (1975, 1997), who tackled a fundamental problem 

in evolutionary biology with deep humanity implications. The handicap principle maintains that 

animal signaling (communication) must be costly to be reliable in the existence of conflicts of 

interests. For example, the tail of a male peacock is costly because it attracts the attention of its 

predator, but it also acts as a reliable (honest) signal to female to demonstrate the male’s fitness 

(genetic quality). Similarly, in human society, the luxury goods must be costly to demonstrate its 

value.  The handicap principle also shed light on a question of humanity: are we human beings 

the only creatures that can lie? If not, how the honest signaling was evolved in animal world?  

 

The Sir Philip Sidney (SPS) game is an action-response game and proceeds in two stages with 

two participants (Huttegger & Zollman 2010, Whitmeyer 2020): signaler (the message sender or 

Sir Philip Sidney’s comrade in this case) may send a request to donor (responder or message 
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receiver: Sir Philip) for water bottle and the responder may or may not respond by donating the 

bottle. Signaler could be in one of two states: healthy with probability of (1–m), wounded 

(needy) (m). If he receives the water (resource) from the responder, he will survive. Otherwise, 

his survival probability is (1–b) if healthy, and (1–a) if wounded (a>b). In addition, the signaler 

may need to pay for the cost (c) of sending the request. On the responder side, he can either 

donate the water or do nothing. In the former case, his survival probability is (1–d), and in the 

latter case, the survival probability is unchanged. Note that the ‘cost’ refers to ‘strategic cost’ in 

general, which may include the consequence from dishonest signaling, such as the increased risk 

of infection or decreased survival probability in the case of ABD problem.  

 

There is a relatedness parameter (k), which is defined as the proportion of shared ‘genes’ 

between a signaler and a potential responder. Both the sender and responder behave to maximize 

their own ‘inclusive fitness’ (from kinship theory), which are the k times the payoff of the other 

player plus his or her own payoff. This parameter is critical for the SPS game because it defines 

the level of common interests (the opposite of conflicts of interests) and therefore potentially has 

a critical impact on the reliability of signaling (Maynard Smith & Harper 2003, Cooper et al 

2018). When the k-value is larger, the players are more closely related, the signaler is more likely 

to signal honestly and the donor is more likely to donate. In our ABD model, the relatedness 

parameter (k) represents the closeness of the love relationship between Alice and Bob, and 

measures their shared interests in masking-or-not decision-making.    

 

The SPS game was initially formulated to demonstrate the equilibriums underlying the handicap 

principle, i.e., signaling must be costly to be honest in the existence of conflict of interests. The 

equilibriums (see Box 3) could be evolutionarily stable, neural or unstable. For example, if the 

signaler only signals when in need and if the responder only donates the water in response to a 

signal, there is a signaling Nash equilibrium. It could be easily derived that c=(b–rd) is the 

minimum cost to maintain this equilibrium, i.e., the honest signaling. When b<rd, cost-free 

signaling is possible (c≤0); then, the signaler may signal (lie) even if he is not in need (Maynard 

Smith & Harper 2003). It was rumored that Maynard Smith (1991) designed the simple SPS 

game when he was frustrated with the overly complexity of Grafen’s (1990) game model for 

sexual selection, which for the first time demonstrated the validity of Zahavi’s (1975, 1991) 

handicap principle, but the mathematics was slightly too complex. The SPS is indeed simpler 

than Grafen’s model, still demonstrated the theoretical feasibility of the handicap principle. 

Nevertheless, in the consequent two decades, researchers quickly discovered some initially 
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ignored subtleties of SPS game, and the expanded studies on those intricacies not only 

significantly advanced the field of animal communications (signaling), but also made the SPS 

game one of the most important game theoretic models in evolutionary biology. Whereas the 

well-known prisoner’s dilemma has been a de facto standard model for investigating the 

cooperation in evolutionary biology, it is the SPS game that acts as a de facto standard for 

studying the communication.   

 

From a broad perspective, it was argued that the three processes, i.e., competition, cooperation 

and communication, are three fundamental manifestations of animal behaviors under the natural 

selection that drives the evolution of organisms (Ma 2015a, 2015b). While the roles of 

competition have been extensively investigated ever since Darwin’s evolutionary theory, those of 

cooperation have also been widely approached since the 1960s thanks to pioneering works such 

as Hamilton (1964). The study of cooperation took off in the 1980s and it also popularized the 

applications of prisoner’s dilemma (PD) game (Axelrod	&	Hamilton	1980). Zahavi’s handicap 

principle (1975, 1997) suggested that communication was a missing piece in Darwin’s 

evolutionary theory, but it was initially rejected until Grafen (1990) and Maynard-Smith (1991, 

2003) game-theoretic analyses in the early 1990s formally demonstrated its theoretical validity. 

Both PD and SPS games belong to the so-termed evolutionary games, which can be considered 

as a marriage between Darwin’s evolutionary theory and game theory, and in fact, it was George 

Price and Maynard Smith (1973) who invented the evolutionary game theory (EGT), while they 

were inspired by the observations of animal communication behavior. Today, the EGT has 

become one of the most actively pursued branches of game theory and has found applications 

well beyond its original field of evolutionary biology. In addition, the communication behaviors 

are not limited to animals and microbes, and indeed, plants communicate too (Baluska	 et	 al.	

2006). Obviously, we humans are likely to be the most capable creatures on the earth planet, in 

both communicating honestly and deceivably. Today, in facing the COVID-19 pandemic, being 

one of the biggest challenges recent decades, we believe it is worthy to carefully examine the 

implications of the dilemma faced by Alice and Bob because the problem is sufficiently general 

for us to gain insights into other more severe challenges posed by the pandemic, besides the 

theoretical and practical implications of the dilemma per se.  

 

The objective of this study is to present a game-theoretic approach for investigating complex 

decision-making problems in devising public health policies, particularly in dealing with the 

COVID-19 pandemic, by demonstrating its application to solve the problem of Alice-Bob dating 
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dilemma (ABD) outlined previously. Specifically, we transform the ABD as a SPS evolutionary 

game. Furthermore, we adopt arguably the most general form of the SPS game, as expanded by 

Bergstrom & Lachmann (1997, 1998), Huttegger & Zollman (2010) and Whitmeyer (2020). 

These existing works significantly expanded the domain of SPS game by considering all possible 

strategies between the players. In particular, the results of pooling equilibriums (in which 

signalers in different states “pool” and send the same message, or no communications between 

players in this article) or strategic inattention can be particularly powerful for analyzing our 

ABD and other COVID-19 problems because of the need for dealing with privacy concerns. An 

even more compelling reason is that Huttegger & Zollman (2010) analyses with replicator 

dynamics actually puts the SPS game onto population scale. In other words, it can be used to 

study the masking policies for a region or country’s whole population, rather than for Alice and 

Bob only. In addition, the polymorphism, where players mix between being honest and being 

deceptive while the signaling costs can be very low, can also be more realistic in capturing the 

enormous controversies and uncertainties surrounding mask wearing today. To the best of our 

knowledge, this article should be the first application of game theory for investing masking 

strategies. Furthermore, our approach is particularly suitable for dealing with the issues of 

irrationality and deception (dishonesty) in modeling masking strategies because (i) evolutionary 

game theory is not plagued by the rationality assumption as in classic game theory and (ii) the 

handicap principle and its evolutionary game model (SPS game) is designed to effectively deal 

with possible deception (dishonesty) in communications.				

 

MATERIAL AND METHODS 
This game-theoretic study does not involve any experimental/survey experiments, except for 

simulations. For this, a standard section of material and methods is hardly applicable for 

organizing this article. In the Introduction section, the problem of masking strategy is 

introduced with a fictitious pair of young lovers (Alice and Bob) as Alice and Bob’s dating 

Dilemma (ABD), and the problem is formulated as an extended Sir Philip Sydney (SPS) game, 

originally invented in evolutionary biology. In the consequent Results section, the analytic and 

simulation analyses of the ABD are presented, respectively. The article is completed with the 

section of Conclusions, Discussion and Perspective.   

 

RESULTS—Analysis and Simulation of ABD  
Formulation of the ABD game  
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Table 1 illustrates the formulation of ABD (Alice and Bob’s dating dilemma) problem as a SPS 

game. It listed the four possible options (strategies) Alice and Bob each may have and their 16 

possible interactions, mirrored the options of Sir Philip and his comrade in the traditional SPS 

game. Fig 1 further displays the ABD as a decision-tree and strategy matrix. In consideration of 

the counter-intuitive nature of the strategy set, Box 1 further exposes the formulation and 

transformation of the ABD game from the classic SPS game, including the three elements (who, 

what, and how) of the SPS/ABD game. Box 2 exposes the parameters of the SPS/ABD game.  

 

Table 1. From Sir Philip Sidney (SPS) game to Alice-Bob Dating Dilemma (ABD) game* 

Sir	Philip	Sydney	(SPS)	Game	and	its	Extensions		
(Maynard-Smith	1992,	Huttegger	&	Zollman	2010,	Ma	&	Krings	2011,	Whitmeyer	2020)	
Sender	(Signaler)	Strategies	 Responder	(Receiver	or	Donor)	Strategies	

S1:	Signal	only	if	healthy		 R1:	Donate	only	if	no	signal		
S2:	Signal	only	if	needy		 R2:	Donate	only	if	signal	
S3:	Never	signal	 R3:	Never	donate		
S4:	Always	signal		 R4:	Always	donate	

Alice	and	Bob’s	Dating	Dilemma	(ABD)	Formulated	as	an	Extended	SPS	Game	

Alice’s	Strategies		 Bob’s	Strategies		

A1:	Not	masking	only	if	healthy		 B1:	Not	masking	only	if	Alice	masks		
A2:	Not	masking	only	if	infected		 B2:	Not	masking	only	if	Alice	does	not	mask	
A3:	Always	masking		 B3:	Always	masking		
A4:	Never	masking		 B4:	Never	masking		
For	examples,	A1:	Alice’s	strategies:	
Not	masking	=	Signaling:	“I	am	healthy”	(Not	
infected)	with	probability	(1–m).	
Masking	=	Not	Signaling:	“I	am	infected	with	
COVID-19”	(needy)	with	probability	m.	

For	examples,	B1:	Bob’s	strategies:	
Not	Masking=Responding	to	Alice’s	signal	(not	
masking)	with	potential	loss	of	d	(get	infected).		
Masking=Not	responding	to	Alice’s	signal	(of	not	
masking)	without	loss.	

The	4x4	combinatorial	asymmetric	strategies	of	the	discrete	extended	SPS/ABD	game	
with	the	letters	(A-P)	representing	for	possible	strategy	pairs	as	shown	in	Fig	1	

										Responder’s	strategies	
			(Bob’s	strategies)	

	
	
Sender	strategies																		
(Alice’s	Strategies)	

R1	(B1)	
Donate	only	if		
no	signal	

(Not	masking	
only	if	Alice	
masks)	

R2	(B2)	
Donate	only	if	

signal	
(Not	masking	only	
if	Alice	does	not	

mask)	

R3	(B3)	
Never		
Donate	
(Always	
masking)	

R4	(B4)	
Always	
donate	
(Never	
masking)	

S1	(A1):	Signal	only	if	healthy	
(Not	masking	only	if	healthy)	 A	 B	 C	 D	

S2	(A2):	Signal	only	if	needy	
(Not	masking	only	if	infected)	 E	 F	 G	 H	

S3	(A3):	Never	signal	
(Always	masking)	 I	 J	 K	 L	

S4	(A4):	Always	signal	
(Never	masking)	 M	 N	 O	 P	

*Notes: See Box 1, and Fig 1 for the exposition of the ABD game formulation/transformation from the 
extended SPS, and Box 2 for the interpretations of the SPS/ABD game parameters.  
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Fig	 1.	 A	 decision-tree	 of	 ABD	 (Alice-Bob	 masking	 dilemma)	 formulated	 as	 a	 4-by-4	
asymmetrical	SPS	(Sir	Philip	Sidney)	game:	The	terminal	nodes	show	the	payoffs	of	Alice	
and	Bob,	respectively.	The	dotted	lines	depict	the	Alice’s	information	sets,	but	Bob	may	not	
be	able	to	distinguish	the	decision	nodes	connected	by	the	dotted	lines.	In	other	words,	the	
dotted	lines	indicate	that	Bob	does	not	know	Alice’s	health	status	ahead	of	their	dating.		
	
In Table 1 the top section is the Sir Philip Sidney (SPS) game proposed by Maynard-Smith 

(1991) and further extended by Huttegger & Zollman (2010) and Whitmeyer (2020). In 

formulating the ABD as a SPS game, we adopted slightly different symbols with the original 

SPS game, with Alice for ‘Signaler’ (‘Sender’) and Bob for ‘Responder’ (‘Donor’). As explained 

in Table 1 and Fig 1, we map ‘not masking’ in the ABD to ‘signaling’ in the original SPS game 

transmitting signal—“I am healthy or not infected with COVID-19.” This is equivalent to use 

‘masking’ for transmitting signal—I am infected with COVID-19. Regarding Bob’s response, 

‘not masking only if Alice masks’ is translated into ‘donate only if no signal,’ and ‘not masking 

only if Alice does not mask’ is translated into ‘donate only if signal.’ 	
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Obviously, since all 16 strategies from the 4-by-4 combinatorial options of Alice and Bob’s 

interactions are covered by the mapping to a SPS game, specific mapping between the strategies 

of ABD and existing SPS game is less important in analyzing the games. Nothing is really 

special about the mapping scheme we adopt in Table 1 other than considering/accommodating 

intuitions. For example, the very first mapping ‘not masking’ in the ABD game to ‘signaling’ in 

SPS game was in consideration of an intuition (opinion) of some people, i.e., there is not a need 

to mask if I am healthy, transmitting a signal of the healthy state. However, others may not agree 

with this opinion, and the alterative opinions (intuitions) are covered by other strategies in our 

translation scheme illustrated in Table 1 and Fig 1.   

 

The bottom sections of Table 1 and Fig 1 assign a series of labels (A-P) for 16 combinatorial 

strategies of Alice and Bob, which makes it convenient for discussing the analytical results of the 

ABD game such as its equilibriums (Table 2) and payoff (fitness) (Table 3). Box 3 and Box 4 

introduce some essential terminologies used for discussing the equilibriums and payoff (fitness) 

of the ABD game. See Box 1 for further clarifications of the remaining issues regarding the 

formulation of the ABD game, as well as the exposition of the ABD parameters (Box 2).  

 

Equilibriums and Stabilities of the ABD Game   
Here we take advantage of the Huttegger & Zollman (2010) extensions and analytical works on 

the SPS game, and summarize the equilibriums of the ABD game in Table 2, and the payoff of 

the ABD game in Table 3, respectively.  
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Table	2.	The	necessary	conditions	and	stabilities	of	various	equilibriums	with	the	ABD	
game	

Equilibrium	Type		
(see	Box	3)	

Necessary	conditions	for	the	
existence	of	the	equilibriums		

(see	Box	2	for	the	ABD	parameters)		

Stability	
Property	
(see	Box	4)	

F—Signaling	ESS	(Separating	
equilibrium)	

€ 

a > c + kd > b 	and	

€ 

a >
d
k

> b 	

ESS	(Evolutionary	
Stable	Strategy)	and	
is	Asymptotically	
stable.	

L—Pooling	equilibrium	   

€ 

d < k ma + 1−m( )b[ ]

€ 

	 Neutrally	stable	

A—Nash	equilibrium	(Apparently		
		rational	equilibrium)		

€ 

a > kd − c > b	and	

€ 

a >
d
k

> b 	 Asymptotically	
stable	

*	J	and	K	are	behaviorally	
equivalent.	

€ 

A3 , 1− λ( )B2 + λB3( ) 	
—Pooling	equilibrium	

€ 

d > k ma+ 1−m( )b[ ] 	
and	

€ 

λ ≥1− c
a − kd

	
Neutrally	stable	

*	I	and	L	are	behaviorally	
equivalent.	

€ 

A3 , 1− µ( )B1 + µB4( ) 	
—Pooling	equilibrium	

€ 

d < k ma+ 1−m( )b[ ] 	
and

    

€ 

µ ≥1− c
kd − b

	
Neutrally	stable	

€ 

λA2 + 1− λ( )A4 , µB2 + 1− µ( )B3( )	
—Polymorphic	Hybrid	equilibrium	

€ 

λ =
k ma+ 1−m( )b[ ] − d
1−m( ) kb − d( )

	&	

€ 

µ =
c

b − kd
	

€ 

a >
d
k

> b 	&	

€ 

b − kd > c 	&	

  

€ 

d > k ma + 1−m( )b[ ]	

Lyapunov	stable	
(Asymptotically	
stable	or	unstable)	

*J	&	K	mean	that	(A3,	B2)	and	(A3,	B3)	are	behaviorally	equivalent.	Similarly,	I	&	L	mean	that	(A3,	B1)	
and	(A3,	B4)	are	behaviorally	equivalent.	See	Box	3	for	the	interpretations.		
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Table	3.	The	expected	payoffs	for	Alice	and	Bob	at	the	equilibriums	of	the	ABD	game	
Equilibrium	Type	(Box	3)	 Alice’s	Payoff	(Fitness)	 Bob’s	Payoff	(Fitness)	

A	—	(A1:	Not	masking	only	if	
healthy;	B1:	Not	masking	only	if	
Alice	masks)	

  

€ 

1− b − c + k + m b + c − dk( ) 
  

€ 

1+ k 1− b − c( ) + m kb + kc − d( )	

B	—	(A1:	Not	masking	only	if	
healthy;	B2:	Not	masking	only	
if	Alice	does	not	mask)	

  

€ 

1− c + k 1− d( ) + m −a + c + kd( )  
  

€ 

1+ k 1− c( ) − d + m −ak + ck + d( ) 	

C	—	(A1:	Not	masking	only	if	
healthy;	B3:	Always	masking)	   

€ 

1− b − c + k + m −a + b + c( ) 	   

€ 

1+ k 1− b − c( ) + mk −a + b + c( )	

D	—	(A1:	Not	masking	only	if	
healthy;	B4:	Never	masking)	   

€ 

1− c + k 1− d( ) + mc 	   

€ 

1− d + k 1− c( ) + mkc 	

E	—	(A2:	Not	masking	only	if	
infected;	B1:	Not	masking	only	
if	Alice	masks)	

  

€ 

1+ k 1− d( ) + m −a − c + kd( )	   

€ 

1− d + k + m −ka − kc + d( )	

F	—	(A2:	Not	masking	only	if	
infected;	B2:	Not	masking	only	
if	Alice	does	not	mask)	

  

€ 

1− b + k + m b − c − kd( ) 	   

€ 

1− bk + k + m bk − ck − d( ) 	

G	—	(A2:	Not	masking	only	if	
infected;	B3:	Always	masking)	   

€ 

1− b + k + m −a + b − c( )	   

€ 

1+ k 1− b( ) + mk −a + b − c( ) 	

H	—	(A2:	Not	masking	only	if	
infected;	B4:	Never	masking)	   

€ 

1+ k 1− d( ) −mc 	   

€ 

1− d + k −mkc 	

I	—	(A3:	Always	masking;	B1:	
Not	masking	only	if	Alice	
masks)	
L	—	(A3:	Always	masking;	B4:	
Never	masking)	

  

€ 

1+ k 1− d( ) 	   

€ 

1− d + k 	

J	—	(A3:	Always	masking;	B2:		
Not	masking	only	if	Alice	does	
not	mask)	
K	—	(A3:	Always	masking;	B3:	
Always	masking)	

  

€ 

1− b + k + m −a + b( )	   

€ 

1+ k 1− b( ) + mk −a + b( ) 	

M	—	(A4:	Always	masking;	B1:	
Not	masking	only	if	Alice	
masks)	
O	—	(A4:	Always	masking;	B3:		
Always	masking)	

  

€ 

1− b − c + k + m −a + b( )	   

€ 

1+ k 1− b − c( ) + mk −a + b( ) 	

N	—	(A4:	Always	masking;	B2:	
Not	masking	only	if	Alice	does	
not	mask)	
P	—	(A4:	Always	masking;	B4:	
Never	masking)	

  

€ 

1− c + k 1− d( )	   

€ 

1− d + k 1− c( ) 	
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To analyze the dynamic stabilities of ABD game, the two-population replicator dynamics model 

of SPS game can be formulated as follows, according to Huttegger	&	Zollman	(2001): 

 

Assuming xi is the relative frequency of Alice’s strategy type i, and yj is the relative frequency of 

Bob’s strategy type j, where i, j=1, 2, 3, 4, the replicator dynamics is as follows: 

    

€ 

x
•

i = xi[π i(y
→

) −π(x
→

,  y
→

)]    (1) 

    

€ 

y j

•

= y j[π j (x
→

) −π(y
→

,  x
→

)]    (2)  

where 

€ 

x
→

=(x1, x2, x3, x4) and 

€ 

y
→

=(y1, y2, y3, y4), are the strategy sets of Alice and Bob respectively; 

€ 

π i(y)
→

 is the payoff of i strategy against 

€ 

y
→

 and 

€ 

π(x
→

,  y
→

)  is the average payoff in Alice’s 

population; 

€ 

π j (x)
→

 is the payoff of j strategy against 

€ 

x
→

 and

€ 

π(y
→

,  x
→

) is the average payoff in Bob’s 

population.  

 

We first interpret the equilibriums of the ABD game as follows: 

 

Strategy A is a Nash equilibrium: With the strategy pair A of (A1 vs. B1), Alice does not wear a 

mask only if she is healthy and Bob does not wear a mask only if Alice wears a mask. This 

strategy pair is a Nash equilibrium and is asymptotically stable (see Box 3 and Box 4 for the 

terminology interpretations). The rational for Alice may be that, if she was healthy, she would 

not need to wear a mask since there was no risk to spread virus, and Bob would wear a mask 

anyway to be cautious (in case Alice’s hid her healthy status). In this case, Alice is sending a 

message (“she is healthy”) by not wearing a mask, but Bob tends to be cautious; in particular, he 

does not necessary trust Alice’s signal.  

 

Overall, the strategy pair A seems to mirror the behaviors of those who generally believe the 

benefits of mask wearing and tend to be cautious. Furthermore, since A is a Nash equilibrium, 

those believers do not regret for their decisions once they are committed.  

 

Strategy F is an ESS (evolutionary stable strategy) and is asymptotically stable: With the 

strategy pair F of (A2 vs. B2), Alice does not wear a mask only if she is infected, and Bob does 

not wear a mask only if Alice does not wear a mask. With this strategy, if Alice is infected, both 

Alice and Bob do not wear masks. This strategy is an ESS, which means it is resistant to 
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‘mutation’ or ‘invasion’—such as random change of individual behavior.  However, it is not 

unbreakable. When external selection forces are too strong, the equilibrium may be overturned 

(Box 3 and Box 4).  The apparent irrationality with this strategy is not totally out of touch with 

reality. For example, when Alice is overly concerned with possible social stigma associated with 

masking then she may choose not to wear a mask. Similarly, Bob may be concerned more with 

Alice’s perception on him than with the infection risk, particularly, when the overall infection 

probability is extremely low. Other possible scenarios in real world of such masking strategies 

may include the influences of misinformation or politics similar to those mentioned in Peeples 

(2020), and Bergstrom &West (2020). One may conceive that when the infection probability (m) 

and/or the strategic cost (c) (for nor honestly signaling) are dramatically raised, the equilibrium 

may be broken.  

 

Overall, the strategy pair F seems to mirror the behaviors of mask skeptics.  However, since F is 

an ESS, their belief may be changed when some of them “mutate” their behavior when the 

pandemic expands and ultimately they may be converted from skeptics to neutral or even 

believers.  

 

Strategy L is a pooling equilibrium. With the strategy pair L of (A3 vs. B4), Alice always wears 

a mask but Bob never wear a mask. The equilibrium is neutrally stable.  Perhaps Bob felt 

protected if Alice wore one and it is unnecessary for him to wear one too, and mostly likely Bob 

could simply be a mask skeptic (given this is a pooling equilibrium). 

 

Overall, the strategy pair L seems to mirror a divided world of mask believers and mask skeptics.  

The difference between the strategy L and previous described strategy F is that F is a world of 

mask skeptic (although they may be converted when the pandemic expands) and the L is a 

divided world of believers and skeptics (both populations may coexist).  Again, such strategies 

may indeed exist in real world, similar to the scenarios described in Peeples (2020). 

 

From a pure theoretic perspective, the equilibrium type L is more likely to become established 

because it has a larger basin of attraction, which measures the likelihood of evolving under 

standard evolutionary dynamics [Eqn. (1)-(2)]. 

 

Mixed Strategies of J and K are pooling strategies and both are behaviorally equivalent: When 

Alice adopted strategy A3 (always masking), and Bob adopted a mixed strategy of B2 (not 
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masking only if Alice does not mask) with probability (1−λ) and B3 (always masking) with 

probability λ, there is a pooling equilibrium that is neutrally stable.  The condition for the 

equilibrium to occur is 

€ 

d > k ma+ 1−m( )b[ ] .	 Bob’s	 mixed	 strategy	 is	

€ 

(1− λ)B2 + λB3 ,	 and	

€ 

λ ≥ [1− c /(a − kd)] determines the strategy of Bob. A scenario for achieving this equilibrium 

may be like this: Before dating, Bob was not aware of Alice’s healthy status. He either wore no 

mask when he spotted Alice did not wear a mask, or alternatively he always wore a mask (when 

he spotted Alice wore a mask, or he just took a fail-safe strategy).  

 

Theoretically, when he hesitates, he can resort to λ to make an optimal decision, i.e., choose B2 

when 

€ 

λ ≥ [1− c /(a − kd)], B3 when 

€ 

λ < [1− c /(a − kd)]. Since Alice always wears a mask, Bob 

would always wear a mask anyway, and the above rule for decision-making is moot in reality.  

Strategies J and K are behaviorally equivalent with each other.  

 

Overall, the mixed strategies J & K seem to be closest to the universal voluntarily masking in 

real world. Some citizens might hesitate, but ultimately they followed the crowd.    

 

Mixed strategies of I and L are pooling strategies and both are behaviorally equivalent: When 

Alice adopted strategy A3 (always masking) and Bob adopted a mixed strategy of B1 (not 

masking only if Alice masks) with probability (1−µ) and B4 (never masking) with probability µ, 

where 

€ 

µ =1− [c /(kd − b)], there is a pooling equilibrium that is neutrally stable. Similar to 

previous J & K strategies, there is a pooling equilibrium that is neutrally stable, but here µ 

determines the strategy of Bob. Intuitively, since Alice always wears a mask, Bob would not 

wear a mask since he may believe it is unnecessary for him to wear one. Strategies I and L are 

behaviorally equivalent with each other.  

 

Overall, the mixed strategies I & L appear to be closest to the voluntarily masking: people make 

rational decisions based on their own assessments of the risk they perceived.    

 

Polymorphic hybrid strategies: Alice adopted a mixed strategy of A2 (not masking only if 

infected) and A4 (never masking), and Bob also took a mixed strategy of B2 (not masking only if 

Alice does not mask) and B3 (always masking). With these options, there is a hybrid equilibrium 

that is polymorphic.  
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Overall, Alice seems to be a mask skeptic, and Bob appears to be variable. When he saw that 

Alice did not wear a mask, he chose to follow her to please her; but in other occasions, he 

ignored Alice’s message and chose to wear a mask. What’s interesting is that Bob might have a 

“split character” or bounded rationality: sometimes blindly following Alice, whereas being very 

cautious other times. This is obviously the most complex strategy interaction, and corresponding 

equilibriums heavily depend on the complex combinations of parameters as briefly discussed 

below.  Here we first discuss how Alice and Bob make their decisions and then use simulations 

to further demonstrate some of the important properties of this strategy in the next section.  

 

First, how would Alice make her decision? In fact, it is the parameter µ that determines her 

decision to choose either A2 or A4. Theoretically, when she hesitates, she can resort to µ to make 

an optimal decision, i.e., choose A2 when 

€ 

µ > c /(b − kd) , A4 when 

€ 

µ < c /(b − kd). When 

€ 

µ = c /(b − kd) , she tends to adopt mixed strategy	

€ 

λA2 + 1− λ( )A4 .  

 

For example, when 

€ 

µ > c /(b − kd), Alice would prefer to choose A2, she would not wear a mask 

(not worry of being infected) if she was already infected and wear a mask (worry of being 

infected) if she was not infected. This choice would suggest that Alice is a more selfish person. 

In contrast, when 

€ 

µ < c /(b − kd), Alice would never wear a mask anyway, perhaps worrying of 

being perceived as timid.  

 

Second, how would Bob make his decision of B2 or B3 in response to Alice’s signal or lack of 

signal at all? Bob’s decision would depend on parameter λ. When 

€ 

λ > {K[ma+ (1−m)b] − d}/[(1−m)(kb − d)], Bob would prefer to choose B2, or B3 when 

€ 

λ < {K[ma+ (1−m)b] − d}/[(1−m)(kb − d)]. When 

€ 

λ = {K[ma+ (1−m)b] − d}/[(1−m)(kb − d)] ,	

he tends to adopt mixed	strategy	

€ 

µB2 + 1− µ( )B3 .  

 

For example, when 

€ 

λ > {K[ma+ (1−m)b] − d}/[(1−m)(kb − d)], Bob would prefer B2, he would 

not wear a mask if Alice did not either. In this case, Bob seemed to trust Alice’s signal. When 

€ 

λ < {K[ma+ (1−m)b] − d}/[(1−m)(kb − d)], Bob would prefer B3, ignoring possible prejudice 

against masking and always wearing a mask to avoid infection or being infected. This hybrid 

equilibrium is Lyapunov stable, which implies that the actual stability may vary depending on 

the values of parameters. In other words, the stability of equilibriums may be broken when 

conditions such as infection probability and/or cost change dramatically. Fig 2 shows an example 
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of the decision-making in the phase space of the polymorphic hybrid equilibrium, obtained from 

the simulation study explained below. The polymorphic hybrid strategies, arguably, represent the 

most sophisticated options, which reflect the dynamic (evolutionary) nature of the masking-or-

not decision-making. 	

	
	

	
	

 
Fig	 2.	 An	 example	 output	 from	 the	 simulation	 program,	 i.e.,	 the	 phase	 portrait	 of	 the	
polymorphic	hybrid	equilibrium	with	the	hybrid	strategy	of	Alice	(A2,	A4)	vs.	Bob	(B2,	B3)	
under	 following	 parameter	 values:	a=0.7,	b=0.3,	 c=0.1,	d=0.3,	 k=0.5	 and	m=0.4.	 Bob	 and	
Alice	 make	 their	 decisions	 based	 on	 (𝜆,	 µ)=(0.778,	 0.666).	 If	 µ>0.666,	 Alice	 prefers	 to	
choose	A2	over	A4,	as	indicated	by	the	direction	of	portrait	arrow	(to	left).	If	µ<0.666,	Alice	
prefers	 to	 choose	 A4	 over	 A2,	 as	 indicated	 by	 the	 direction	 of	 portrait	 (to	 right).	 When	
µ=0.666,	 the	 mixed	 strategy	 of	 A2	 and	 A4	 is	 chosen.	 Similarly,	 Bob	 makes	 his	 strategic	
decisions	based	on	the	value	of	parameter	𝜆	>0.778,	<0.778	or	=0.778.			
 

Simulation Study  
Simulation Procedures and Illustrative Graphs  
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The online supplementary information (OSI) include the codes in Python for simulating the 

replicator dynamics of the ABD game [Eqns. (1) and (2)]. Table S1-S6 in the OSI contain 6 MS-

Excel sheets generated from the Python program. The sheets contain the ABD parameters and 

payoffs of the simulated equilibriums for each of the six equilibrium types. The lists of the 

equilibriums are obviously non-exhaustive, and were generated based on the necessary 

conditions (listed in Table 2) for those equilibriums. However, the full ranges of the parameters 

(all ranged between 0 and 1) with step length=0.1 were simulated, and therefore the simulated 

equilibriums can be considered as representative samples of the ABD equilibrium space.   

 

Although the analytical solutions for the ABD game are available (Tables 2 & 3), they are far 

from intuitive, which is the main reason we performed above-described simulation experiments. 

Indeed, given their complexity, even with numerical simulations, it is still difficult obtain the full 

spectrum of complex behaviors transpired by the game model. The strength with simulations is 

that it can be helpful to get more intuitive interpretations for the behaviors. Below, we briefly 

discuss three simulated results, as displayed in Figs 2-5, as well as Table S7. All of the figures 

were drawn based on the simulation results in Table S1-S7.  

 

Fig 2 shows an example for the dynamic properties of the equilibriums, i.e., the phase portrait of 

the polymorphic hybrid equilibrium with the hybrid strategy of Alice (A2, A4) vs. Bob (B2, B3) 

under following parameter values: a=0.7, b=0.3, c=0.1, d=0.3, k=0.5, and m=0.4. Bob and Alice 

make their decisions based on (𝜆, µ)=(0.778, 0.666), which is an equilibrium point as displayed 

as red spot in Fig 2. If µ>0.666, Alice prefers to choose A2 over A4, as indicated by the direction 

of portrait arrow (to left). If µ<0.666, Alice prefers to choose A4 over A2, as indicated by the 

direction of portrait (to right). When µ =0.666, the mixed strategy of A2 and A4 is chosen. 

Similarly, Bob makes his strategic decisions based on the value of parameter 𝜆 >0.778, <0.778 

or =0.778.  Similar phase portraits for other types of equilibriums could be drawn based on the 

results in Table S1-S6.   

 

Fig 3 exhibits an example demonstrating the influences of the infection probability (m) and 

strategic cost (c) of signaling on Alice’s or Bob’s payoff (fitness) in the case of polymorphic 

hybrid equilibriums. Higher infections and costs correspond to lower payoffs, and vice versa, 

lower infections and costs lead to higher payoff, which should be expected.  The effects of other 
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parameters such as relatedness (k) on the payoffs could also be plotted based on the simulated 

results in Table S1-S6.  

	
	

Fig	3.	Simulations	showing	the	influences	of	infection	probability	and	strategic	cost	on	the	
players’	 payoffs	 (top	 for	 Alice’s	 payoff	 and	 bottom	 for	 Bob’s	 payoff):	When	 the	 cost	 and	
infection	 are	 high,	 Alice’s	 payoff	 approximates	 to	 the	 floor,	 and	 vice	 versa	 Alice’s	 Payoff	
approximates	to	the	ceiling.	Bob’s	payoff	exhibited	similar	trend.	Indeed,	their	payoffs	are	
positively	correlated	as	further	illustrated	in	Figs	4	&	5.	
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Fig 4 displays the relationships between Alice’s payoff and Bob’s payoff. We fitted both linear 

and quadratic (parabolic) regression models to the payoff data in Table S1-S6, and the fitted 

model parameters were listed in Table S7 for all six equilibrium types listed in Table 2. Overall, 

the relationships follow the parabolic (quadratic) model for four of the six equilibrium types, 

including A, F, J-K and hybrid, follow the simple linear model for the remaining two equilibrium 

types (i.e., L, I-L). It seems that the linear relationship between Alice’s and Bob’s payoffs could 

be attributed to Alice’s straightforward “always masking” strategy, which might “smooth” their 

payoff relationship. Indeed, in the case of the two linear models, most data points straightly fall 

on the fitted straight lines, where the data points with the parabolic curve are more scattered and 

suggesting stronger fluctuations between Alice’s and Bob’s payoffs. The fluctuation is obvious 

in Fig 5 as explained below.  
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Fig	 4.	 Simulations	 illustrating	 the	 relationships	 between	 Alice’s	 and	 Bob’s	 payoffs:	
parabolic	 relationships	with	 equilibriums	 (A,	 F,	 JK,	 and	 hybrid:	 the	 top	 four),	 and	 linear	
relationships	with	equilibriums	(L	&	 IL:	 the	bottom	two).	Notice	 that	 the	N.E	at	 the	right	
corner	of	each	graph	shows	the	number	of	equilibriums	obtained	from	the	simulations	and	
was	used	to	draw	the	graph,	and	two	linear	graphs	appear	to	have	fewer	data	points	due	to	
points	overlaps.	We	postulate	that	the	two	simple	linear	relationships	may	be	attributed	to	
Alice’s	straightforward	strategy	(“always	masking”).		
 

In Fig 5, the relationship between Alice’s and Bob’s payoffs for the polymorphic hybrid 

equilibrium was redrawn with polar coordinate system. The polar coordinate more conspicuously 

illustrated the locally fluctuating payoff relationship, rather than globally stable parabolic 
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relationship as shown in Fig 4. In other words, the relationship on a coarse scale (macroscopic) 

can be parabolic or even linear (see Fig 4), but the relationship on a fine scale (microscopic) 

seem to be complex nonlinear fluctuations, suggesting subtle intricacies between Alice’s and 

Bob’s payoffs and mirroring the complex idiosyncratic behaviors surrounding the ABD game.  

	

	
	
	

Fig	5.		A	polar	coordinate	graph	showing	the	correlation	between	Alice’s	and	Bob’s	payoffs	
with	the	polymorphic	hybrid	strategies:	the	radial	coordinate	showing	the	payoffs	and	the	
angular	 simply	 showing	 the	 sequencing	numbers	of	 each	pair	 of	payoffs,	which	does	not	
actually	 have	 particular	 order	 (could	 be	 random)	 and	 is	 not	 really	 interesting.	 What	 is	
interesting	 is,	we	observed,	 that	 the	relationship	on	a	coarse	scale	 (macroscopic)	may	be	
parabolic	or	even	linear	(see	Fig	4),	but	the	relationship	on	a	fine	scale	(microscopic)	may	
be	 complex	nonlinear	 fluctuations,	 suggesting	 subtle	 intricacies	 between	 the	payoffs	 and	
mirroring	the	complex	idiosyncratic	behaviors	surrounding	the	ABD	game.		
 

Social efficiency deficit (SED) approach to the ABD Game Strategies  

During the peer-review process, both anonymous reviewers have suggested additional 

demonstrations of the ABD-game behaviors based on the social efficiency deficit (SED) 
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approach (Arefin et al 2020; Tanimoto 2015, 2021; Wang et al. 2015). The SED was defined as 

the difference between a play’s (maximal) payoff (fitness) achieved in a social optimum and an 

evolutionary equilibrium (averaged from neighboring equilibrium points) (Arefin et al. 2020, 

Tanimoto 2015, 2021, Wang et al. 2015). The concept was borrowed from the studies of social 

dilemma. The greater the SED is, the greater is the potential for the betterment of society while 

transitioning from the evolutionary equilibrium to the social optimum. In other words, a larger 

SED value implies smaller level of social dilemma or larger cooperative tendency (smaller 

rebellious tendency). In contrast, a smaller SED value implies larger level of social dilemma or 

smaller cooperative tendency (larger rebellious tendency) (Arefin et al. 2020, Tanimoto 2015, 

2021, Wang et al. 2015). We suggest using the relative SED, which can be defined as the 

original SED divided by the social optimum value (SOV). Obviously, the relative SED can be 

directly used to compare various equilibrium strategies. 

 

To apply the approach, we randomly picked one set of ABD (Alice and Bob’s dilemma) 

parameters for each of the equilibrium types, and then compared them from the perspective of 

social efficiency deficit (SED). From our simulations of the five equilibrium types (Table S1-

S6), we randomly selected five sets of ABD parameters, and computed their SED values (Table 

4).  It was found that most SED values are relatively small, suggesting that the level of social 

dilemma or rebellious tendency is rather high. This reflects the reality of split society on the 

masking behavior. The hybrid strategy has the highest SED, suggesting that the strategy is least 

controversial, which is consistent with the mixed nature of the strategies—compromising 

between players. It should be mentioned that the SED approach demonstrated with the parameter 

values exhibited in Table 4 can be applied to other simulated parameter values presented in 

online supplementary Tables S1-S6. Overall, the SED approach can act as an effective 

supplement to our ABD game model for obtaining further insights on the masking behaviors 

corresponding to various equilibriums.  
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Table	4.	Demonstrating	the	computation	of	the	social	efficiency	deficit	(SED)	for	the	
various	equilibrium	types	with	selected	parameter	(a,	b,	c,	d,	k,	m)	values	
Equilibriu

m	
Type	

Parameters		
(a,	b,	c,	d,	k,	m)	

Social	
Optimum	
Values	
(SOV)	

Evolutionar
y	

Equilibrium	
Values	

Social	
Efficiency	
Deficit	
(SED)	

SED/SOV	

A	 a=0.5,	b=0.1,	c=0.1,	d=0.3,	k=0.9,	m=0.2	 3.4960	 3.4453	 0.0507	 0.015	

F	 a=0.3,	b=c=d=0.1,	k=0.9,	m=0.3	 3.6100	 3.5245	 0.0855	 0.024	

I	and	L	 a=0.3,	b=c=0.1,	d=0.2,	k=0.9,	m=0.7	 3.4200	 3.3440	 0.0760	 0.022	
J	and	K	 a=0.2,	b=c=d=m=0.1,	k=0.9	 3.6100	 3.5910	 0.0190	 0.005	

Hybrid	 a=0.7,	b=0.3,	c=0.1,	d=0.2,	k=0.3,	m=0.7	 2.3400	 1.8460	 0.4940	 0.211	

	
Definitions	of	Social	Efficiency	Deficit	(SED)	(Arefin	et	al	2020;	Tanimoto	2021)	

 
Assume X & Y represent the relative frequencies of the four strategies of Alice and Bob respectively:  

	

€ 

X = (x1, x2, x3, x4 ), X
1

= x1 + x2 + x3 + x4 = 1, x1, x2, x3, x4 ∈ [0,  1] 	

€ 

Y = (y1, y2, y3, y4 ),   Y
1

= y1 + y2 + y3 + y4 = 1, y1, y2, y3, y4 ∈ [0,  1]	
	
π(x)	and	π(y)	are	the	payoff	of	Alice	and	Bob	respectively,	the	social	optimum	value	(SOV)	is	defined	as:	

€ 

SOV =
X ,Y∈[0,1]4
||X ||1 =1, ||Y ||1 =1

Max [π(X) +π(Y )]	

€ 

xi
•

=
dxi
dt

= xi (π i (X) − π (X))

yi
•

=
dyi
dt

= yi (π i (Y ) − π (Y ))

⎧ 

⎨ 
⎪ 

⎩ 
⎪ 

    (i = 1,  2,  3,  4)

	
 

€ 

Let (X j
* ,  Y j

*)( j = 1. 2. ... N ) 	be	the	stable	equilibrium	points	of	the	above	dynamical	system,	N	is	the	
number	of	stable	equilibrium	points,	then:	

Evolutionary	equilibrium	value	(EEV)	is	defined	as:

€ 

EEV =
1
N

[π (X j
*) +

j=1

N

∑ π (Y j
*)]
	
	

Social	efficiency	deficit (SED) is defined as:

€ 

SED = SOV − EEV .	
	
The relative SED is defined as:	R-SED=SED/SOV.

€ 

		
	
The	above	definition	for	EEV	is	adapted	from	Arefin	et	al	(2020)	to	overcome	a	computational	difficulty	in	
integration	and	is	slightly	different	from	its	original	definition.			

	
 

Basin of Attraction of the ABD Equilibriums  

A dynamical system such as the ABD evolutionary game may possess the so-termed attractors, 

which are portions or subsets of the phase space (e.g., the space illustrated in Fig 2).  An 

attractor's basin of attraction measures the size of the region in the phase space, over which the 

system states will asymptotically be iterated (evolved) into the attractor, regardless of the initial 

condition.  Further interpretation on the basin of attraction is referred to Huttegger & Zollman 

(2010).  We chose to estimate the basin of attraction for the polymorphic hybrid equilibrium of 
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the ABD game. Table 5 exhibited one set of the basin estimates for a randomly selected set of 

values of the ABD parameters.  

Table 5.  A demonstrative example illustrating the influence of strategic cost (c) on the evolution 
of polymorphic hybrid equilibrium based on estimation of basin of attraction: When 0<c<0.187, 
{the mixed strategies: (A2, A4); (B2, B3)} can achieve the hybrid equilibrium.   

Alice	and	Bob	Strategy*	
Proportion	
of	Mixed	

Strategies**	
Payoff	

Selection_Force	
=(Payoff–

Mixed_Payoff)	

Mixed_Payoff***	
=Weighted_	
Payoff	

A1: Not masking only if healthy  0.01 0.7918–0.3c -0.2845+0.3880c 

A2: Not masking only if infected 0.95 1.0850–0.7c 0.0088–0.0120c 

A3: Always masking  0.02 0.7356 -0.3406+0.6880c 

A4: Never masking  0.02 1.1412–c 0.0650–0.3120c 

 
                  
1.0762-0.6880c 

B1: Not masking only if Alice masks  0.02 1.0942–0.206c -0.0355 

B2: Not masking only if Alice does not mask 0.80 1.1318–0.206c 0.0021 

B3: Always masking  0.17 1.1260–0.206c -0.0037 

B4: Never masking  0.01 1.1–0.206c -0.0297 

 
 
1.1297-0.2064c 

 
* The values of parameters (other than c) used are: a=0.7, b=0.3, d=0.2, k=0.3, m=0.7, λ=0.98, µ=0.83, 
which were selected from Table S6. Note that the payoff (Column #3) is negatively correlated with c, 
which suggests that a larger strategic cost (c) may discourage the evolution of the hybrid strategy 
equilibrium. 
 
** The proportion was set randomly with a constraint of the total proportion equal to unit (1 or 100%) for 
each player.  For example, Alice takes a mixed strategy of A1, A2, A3, and A4 with probability of 0.01, 
0.95, 0.02, and 0.02 respectively, and the total is equal to 1. In terms of evolutionary game, Alice and Bob 
represent two respective populations with mixed strategies as specified by the Proportion (Column #2) in 
Table 5. As an individual, Alice (Bob) takes mixed strategy with probability specified by the probability 
(=Proportion).   
 
*** Mixed_Payoff=Weighted_Payoff weighted by the Proportion, i.e., the payoff of each strategy is 
weighted by the strategy’s proportion and then summed up.    
	

The selection force, which is defined as the difference between a strategy’s Payoff and the 

Mixed_payoff (from the mixture of all his or her strategies), represent the tendency (driving 

force) for a player to select a particular strategy, which is a simple linear function of strategic 

cost (c) (when other parameters are fixed) as displayed in Table 5.  

 

From Table 5, one can infer the following insights: When 0<c<0.187, the payoff that Alice 

should select A2 (Not masking only if infected with payoff>0.9541) is slightly lower than 

selecting A4 (Never masking with payoff>0.9542), but significantly higher than selecting the 

other two strategies (A1 or A3). This means that when the cost of infection is low (c<0.187), 

Alice would tend to select behavior of “not masking” even if the infection risk is high (m=0.7 in 
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this case).  Second, the payoff that Bob should select B2 (Not masking only if Alice does not 

mask with payoff>1.092) is the highest, and his next favorable strategy is B3 (Always masking 

with payoff>1.0837), but their payoff difference is insignificant. This means that when the 

strategic cost (c) of infection is low, Bob would still select masking.   

 

In real world, the above interpretations of Alice and Bob’s behaviors appear counter-intuitive. 

However, one possible explanation for their apparently contradictory behaviors could be related 

to the politics of COVID-pandemic, for example, the ‘left’ (always masking, like Bob in this 

case) vs. ‘right’ (never masking, like Alice). Nevertheless, beyond the pandemic politics, as 

humans, we have certain level of cooperative tendency. For Alice and Bob, their romantic 

relationship (which is represented by relatedness parameter k) should also play a role in their 

decision-making. 

 

CONCLUSIONS, DISCUSSION AND PERSPECTIVE  

Conclusions and Discussion 
It has been argued that one of the most important reasons why we humans have come to 

dominate the earth is attributed to our exceptional evolutionary capacity for decision-making 

(Samson 2020). Although on macroscopic scale, we have been enormously successful from 

selecting the right food and shelter, to devising complex economic strategies and effective public 

health policies, it is fair to say, we occasionally make expensive and painful mistakes on both an 

individual and a group level (Samson 2020). The COVID-19 pandemic has been one of the 

biggest challenges to the health and well-beings of humans in recent decades. It is obviously in 

the best interests of whole society and each individual to make right decisions to minimize the 

pandemic impacts. The challenging decision-making in facing the COVID-19 pandemic crisis 

involves both groups and individuals, and history tells us groups are not necessarily more likely 

to make right decisions, especially when the communication and interactions between 

individuals could not be controlled (Sunstein & Hastie 2015, Samson 2020). The bounded 

rationality and lack of full honesty may be inherent with Homo sapiens, which makes some 

apparently simple decision-making such as masking disproportionally complex. The challenge 

seems particularly real in the era of disinformation (e.g., Bergstrom & West 2020). It was these 

properties that prompted us to apply the SPS game and underlying handicap principle, which has 

achieved enormous success in analyzing the evolution of animal communications, to study the 

ABD problem. Since we are only interested in strategic decision-making on masking, it is natural 
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for us to focus on the stable equilibriums and corresponding payoffs under variously possible 

strategies. Tactical or operational level analyses are obviously beyond the scope of this article. 

 

In previous sections, we formulated the ABD as an evolutionary game, specifically as a SPS 

game. There are 16 possible options or strategy combinations given that SPS game is an 

asymmetric four-by-four strategic-form game. We summarized a total of six types of 

equilibriums (Table 2) from the 16 possible strategic combinations and their payoffs (inclusive 

fitness) (Table 3). Those equilibriums can be distinguished as separating (signaling), pooling, 

and polymorphic hybrid equilibriums, and they may have different behavioral and payoff 

properties (see Box 3, Box 4 and Table 3). Furthermore, their stabilities can be dramatically 

different (Table 2), which may have different theoretical and practical ramifications. 

Theoretically, those ramifications have been extensively studied and well documented in the 

existing literatures (e.g., Maynard-Smith & Harper 2003, Huttegger & Zollman 2001, Bergstrom 

& Lachmann 1997, 1998, Biernaskie et al 2018, Madgwick & Wolf 2020, Whitmeyer 2020). 

However, their practical ramifications are much more complex, which we briefly discuss below.  

 

In our opinion, the ABD provides a powerful abstraction for analyzing the masking behavior in 

the COVID-19 pandemic. However, the ABD can only reveal possible behavior types (game 

strategies). To fully understand various masking (or not masking) behavior decisions, we must 

also consider the cultural and humanity dimensions of the problem. While medical science 

studies have generally support the masking or even universal masking strategies (e.g., Klompas	

et	al.	2020,	Gandhi	et	al.	2020,	Peeples	2020), in reality, from the very beginning of COVID-

19 pandemic until today, protests have never stopped in some regions of the world. Indeed, 

masking still seems to be one of few most controversial issues in public health policy 

surrounding COVID-19	(Peeples	2020).	 In the remainder of this article, we try to shed light on 

the ABD of masking from the perspective of behavior economics.  

 

According to behavior economics (Samson 2014, 2020), it is not always true than humans are 

self-interested, benefits maximizing, and costs minimizing with stable preferences. Our minds 

may only possess bounded rationality, which suggests that human rationality is limited by 

brain’s information processing capability, insufficient knowledge feedback, and time constraint. 

For example, our thinking and decisions may be strongly influenced by readily available 

information in memory, automatically produced affection, and salient information in the 

environment. Humans live in the moment, often resist to changing and may be bad in predicting 
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future behavior. Last but not the least important, humans are social animals with social 

preferences, including those embedded in trust, reciprocity and fairness. We are also emotional 

animals and are subject to social norms, caring reputation and self-consistency (Ma 2015a, 

2015b, Samson 2014, 2020). 

 

An obviously different attitude has emerged between the Eastern and Western towards the using 

of facial mask at the very beginning of the COVID outbreaks. We postulate that the difference 

might be related to holistic verse analytic thinking styles. It has been argued that the differences 

in thinking styles may have a profound influence on the tensions between the psychology of 

Homo economicus and Homo sapiens, being relatively weaker in Eastern-Asian cultures (Nisbett 

et al. 2001). The holistic reasoning is more likely context-dependent, in which people tend to use 

their intuition more if it is in conflict with formal rationality and tend to accept variations across 

scenarios (Nisbett et al. 2001, Samson 2014). This may explains relatively less resistance to the 

advocacy of using masks in public places in the Eastern Asian.  

 

It might be disappointing that we can produce few concrete recommendations to the general 

public from the present study regarding the masking dilemma, other than highlighting its 

complexity and its multidimensional nature (including science, culture, information availability, 

and etc), for which existing studies have presented confirmative recommendations in general 

(e.g., Peeples 2020). Instead, our contribution, hopefully being intellectual, lies in the formal 

abstraction of the problem and presented formal strategic options as well as their stabilities and 

payoffs in 16 possible strategic options (scenarios) and 6 types of equilibriums. Whereas the 

number of scenarios (16), equilibrium types (6) with various stability features may vary with 

other alternative abstract models, we believe our ABD game model is sufficiently general for 

further scientific investigation of the dilemma from a multi-dimensional perspective. As to the 

reason why we cannot generate tangible recommendations at this stage, it becomes clear if one 

notices how the society has been dealing with the impact of cigarette smoking, even after the 

hazards of second-hand smoking have been revealed by many scientific studies (Samson 2014, 

2020).  If we choose to make one recommendation, our suggestion would be that nudging could 

be a more effective strategy in advocating masking. In recent years, nudging or nudge 

philosophy has been used in many public-policy devising such as consumer welfare (Thaler & 

Sunstein 2008). The nudge philosophy treat people as Homo behaviouralis, shifted from Homo 

economicus, in which policy or advocacy is designed to modify the context in which decisions 

are made without changing the constraints faced while the freedom of choice is preserved 
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(Samson 2020). For example, rather than posting “no mask, no service”, perhaps an alternative 

post with “please keep 2 meters of distance if you forget to bring mask” could be equally 

effective.  

 

In conclusion, despite the demonstrated complexities from our ABD game model, it seems that 

the six types of equilibriums theoretically derived from the game model adequately explain the 

diverse “norms of masking” evolved in much of the world with the progression of COVID-19 

pandemic. Those norms represent diverse behaviors of mask believers, skeptics, converted, 

universal masking, voluntarily masking, coexisted and/or divided world of believers and 

skeptics, and their evolutions (formations) have obviously influenced by various scientific, social 

and other complex factors, and most importantly the severity of the pandemic. They are of 

different level of stabilities (resilience) at present and they are expected to continue evolve with 

the progression of the pandemic. As a science paper, we stick to the validity of mathematic logic 

underlying the ABD game model. Nevertheless, we do not pronounce a position for the right or 

wrong of those norms (including those that may be counterintuitive, unnatural or irrational ones) 

since we believe mutual respects and accommodations are part of the humanity. We are hoping 

that the breakthroughs in medical sciences such as vaccines or new treatments will ultimately 

make the issue of masking moot. The only regret (in our opinion) might be that Alice and Bob 

are likely to stick to working at home even after their dilemmas disappear!  Of course, we wish 

them a lifetime of love and happiness!   

Perspective  
It is the summer of 2021 already when we are revising this manuscript, while the COVID-19 

pandemic has been going on wave after wave for near two years, despite the expanding 

vaccination efforts worldwide. The emergence and spreading of significantly more vicious δ- 

variant and somewhat disappointing protective efficacy of vaccines have prompted some 

countries (regions) to reenact some level of mask mandates, together with vaccination 

promotions and even mandates, while uncertainties surrounding the pandemic refuse to fade 

away. Public attitudes to masks have gone through about-face changes in many parts of the 

world, and mostly turned to accepting it as an effective personal protection equipment. From the 

perspective of ABD game modeling, the rising infection risk (m) should have shaped the 

evolution of masking behaviors since the start of the pandemic; yet we believe other social, 

cultural, economic and political factors have certainly played significant roles too.   
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Through this article, we have minimized the discussion on the politics surrounding masking 

behaviors/policies and COVID-19 at large. Nevertheless, in reality, politics are hardly avoidable 

in making public health policies. We realize that some of the peculiar, idiosyncratic behaviors 

simulated by the ABD game might be rightly explained by science denialism, politics or political 

economy of pandemics. In fact, during the submission processes of this manuscript, we were 

advised by an anonymous expert reviewer in another journal to formulate the ABD game as “one 

in which the signaler’s state is instead her political leaning (left or right, say), …” We do believe 

that was an excellent idea and may pursue it in future.  

 

While avoiding or minimizing politics in the science of anti-pandemic is crucial for making 

sound public health policies such as masking, vaccination, quarantines, and/or lockdown, it is 

equally important to avoid the “counter-revolution of science” (Hayek 1955). The “counter-

revolution” of science refers to the attempt to remove the human factor in order to obtain 

objective, strictly controlled results by using the so-termed hard science approaches, or the 

attempt to measure human action itself with the soft science approaches. The limitations of such 

attempts can be particularly serious when the scientific reasoning is based on incomplete 

information or knowledge. It is for this reason, we caution that the results of ABD modeling such 

as the equilibriums should only be used as explanatory/exploratory purposes at strategic level, 

rather than used for advising public at tactic levels.  

 

We argue that the methodology we used to model masking behaviors with the ABD game should 

also be inspirational for exploring other public health policies (measures) such as social distance, 

lockdown/reopen and quarantines (abbreviated as DLQ hereafter). These measures are designed 

to physically contain the spreading of pathogens by isolation (distancing or containment) and can 

be characterized as either “open vs. closed”, i.e., without vs. with enforcing isolation 

(containment) measures such as DLQ.  Obviously, masking also belongs to isolation. According 

to the metapopulation (i.e., population of local populations) theory (Citron et al. 2021, Ma 2020), 

infectious diseases such as COVID-19 can be modeled as a metapopulation of infectious 

pathogens, i.e., consisting of many local (regional) populations of pathogens (carried by human 

hosts) such as the local or regional outbreaks of COVID-19 (e.g., outbreaks in different 

countries). Also according to classic ecological theories (Hilker et al. 2009, Friedman et al. 

2012, Ma 2020), the extinctions of local populations can be common events, although the global 

metapopulation is usually stable and resilient against global (total) extinction. Hilker et al. 

(2009) demonstrated theoretically that the disease dynamics could be rather sensitive to 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted April 16, 2022. ; https://doi.org/10.1101/2022.04.14.22273886doi: medRxiv preprint 

https://doi.org/10.1101/2022.04.14.22273886


	 30	

perturbations such as disease control methods even when the basic reproductive number (R0) 

exceeds 1 significantly (R0>>1). R0 is often used to evaluate the potential for disease invasion 

and persistence, to forecast the extent of an epidemic, and to infer the impact of interventions and 

of relaxing control measures (Shaw & Kennedy 2021). 

 

The Allee effect is named after animal ecologist W. C Allee, and it refers to a theoretic threshold 

of population size, above which population growth may accelerate and below which population 

may go extinct (Kramer et al. 2017). Friedman et al. (2012) investigated the interaction 

(relationship) between the Allee effect of disease pathogens and the Allee effect of hosts (e.g., 

humans); their theoretic analysis was aimed to answer a question of fundamental importance in 

epidemiology: Can a small number of infected individual hosts with a fatal disease drive the host 

population to go extinct (assuming the host population is subject to the Allee effect)? Ma (2020) 

estimated the fundamental migration (dispersal) number (migration rate) of COVID-19 and 

different countries (regions) may have different numbers. He also estimated the population 

aggregation critical density, the threshold for aggregated infections to occur (Ma 2020). These 

studies suggest that there could be thresholds (tipping points) at which local pathogen 

populations may go extinct, depending on the dynamics of host-pathogen system, impacted by 

disease control measures such as the previous defined open/closed polices. Of course, it should 

be a goal of public health policies to possibly drive the pathogen populations (such as SARS-

COV-2), at least locally, to go extinct, while keep the host population absolutely safe from the 

risk associated with the Allee effect of the hosts. As demonstrated by Citron et al. (2021) with 

their metapopulation dynamics modeling, the human movement has a critical impact on the 

global spreading of infectious diseases across large geographical distances.  Therefore, 

containment or distancing measures that can regulate human movement behaviors should be able 

to play a critical role in containing the pandemics such as COVID-19.  

 

Now imagine that there are two neighboring countries A and B, who may adopt different anti-

pandemic strategies, open (without adopting DLQ measures) or closed (with DLP measures). 

They may or not cooperate with each other by adopting the same or different strategies. Similar 

to previously discussed ABD game for masking behaviors, their tendency to cooperate can be 

measured by parameter k, indicating their shared interests. The strategic cost (c) in the ABD 

game can be used to characterize the consequence (such as the fatality and/or economic loss) of 

failure in controlling local outbreaks. The parameter (m) can be treated as a probability function 

of R0 (basic reproductive number) of the pathogen. Parameters a, b, and d could be treated as 
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probability functions that may lower the resilience (survivability) of society. With such an 

evolutionary game model inspired by the ABD game (let us call it “open or close dilemma”: 

OCD), we can expect that the complex behaviors of two countries similar to Alice and Bob be 

generated from the OCD model.  Both countries can, in fact, represent two “metapopulations” of 

countries (local populations), and within each metapopulation, different countries (local 

populations) may actually adopt different strategies (similar to Alice and Bob each has four 

different strategies). With the above conceptualization, the suggested OCD model can be used to 

analyze the interactions of two countries (metapopulations); and the effects of the key 

epidemiological and ecological parameters such as the thresholds of Allee effects and R0 can be 

investigated at regional/global scales.  

 

Within the context of the suggested OCD game scheme, many countries may adopt coexistence 

(between humans and the pathogen) strategy, some may pursue zero-infection goal dynamically, 

and still others may adopt laissez-faire strategy (e.g., passive herd immunity). Intuitively, zero-

infection strategy is apparently unrealistic, but it should be possible locally at the minimum, if 

Allee effects of the pathogen can be exploited effectively. In fact, the eradication of smallpox is a 

successful example of zero infection strategy. Each of the strategies may possess some unique 

merits, and some of which could be exclusive. There may not be a simple criterion (or even a set 

of criteria) to evaluate various strategies objectively given the enormous complexities of the 

scientific and technological, geographic, cultural, economical and political factors underlying the 

host-pathogen dynamic system. For example, Sy et al (2021) estimated the R0 of 1,151 US 

counties with the medium of R0=1.66, ranged from 0.38 to 12.44. One particularly important 

point we would like to emphasize from their findings is that the range of [0.38, 12.44] was 

largely dependent on local (county) population densities Their R0 numbers were estimated before 

more contagious SARS-CoV-2 variants emerged. With the recent δ-variant, the upper limit of 

the range might be one order of magnitude higher, i.e., possibly >100 in some of the counties 

with highest population densities in the US, according to some recent reports on the R0 of δ-

variant.  Of countries, there are many countries in the world that have higher population densities 

than the US. For example, while the inter-residence distances in rural USA are usually hundred 

of meters away, and the distance can be as few as a few meters in the apartment settings in super 

big cities or in countries with higher population densities. The distance differences could easily 

exceed 2-3 orders of magnitude.  If this assumption of the difference in residence distances 

holds, and if the “amplification” effects of population density (especially the residence settings) 

discovered by Se et al. (2021) is also applicable outside the US, then the R0 of SARS-CoV-2 
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(including δ-variant) in some densely populated countries may be raised by another 1-2 orders of 

magnitudes. The higher R0 also implies that the occurrences of super-spreading can be more 

frequent and severer.   

 

Given potentially 2-3 orders of differences in R0, the same or similar co-existence (tolerance) 

policy in different countries can produce dramatically different consequences. While co-

existence policy in a sparsely populated country may be a rational and even advantageous policy, 

the same policy may lead to disastrous outcomes in a densely populated country. Obviously, 

population density is certainly not the only major factor that influences R0, and of course R0 is 

not the only critical parameter of pandemics. For example, the threshold of Allee effects is 

another critical parameter for suppressing pandemic or eradicating a pathogen. Therefore, 

exploring the policies and strategies for fighting pandemics should sufficiently consider complex 

scientific, technological, and socioeconomic factors that shape the pathogen-host dynamic 

systems. Game-theoretic models such as ABD game can offer important cognitive tools for the 

decision-making in fighting pandemics.  
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Box	1.	Three	Key	Elements	(Who,	What	and	How)	to	Formulate	SPS/ABD	Games	and	the	
Exposition	of	the	Transformation	from	SPS	to	ABD	game	

	
	

(i) Who 

Who are the game players? message sender (=signaler, or bottle requester) vs. responder 
(=message receiver, or donor of water bottle). Sender was Sir Philip’s comrade, and 
responder was Sir Philip Sydney in Maynard-Smith (1991) original SPS game. In the ABD 
game, Alice is the sender, and Bob is the responder. The essentiality of the role assignment 
lies in that who initiates the action and who responds to the message.   

(ii) What 

What is the “content of message (request)”? It is apparently the “request for water bottle” 
for the message sender, and the responder could either honor or ignore the request (water 
bottle) in the classic SPS game. The essentiality here is the message of “unhealthy state” 
(injured in SPS or infected in ABD) with probability of m (see Box 2 for explanation). 	

(iii) How 

How is the message sent (signaled)? Through shouting or whispering in the original SPS 
game. In the ABD game, it is through masking or not during their dating.  However, the 
‘How’ point does not matter much in the sense that it does not influence the mathematical 
logic of the game, although it is important for the narrative of the ‘story’ (Sir Philip 
Sydney’s selfless heroism or Alice and Bob’s romance). However, the heroism or romance 
is not necessarily reliable (honest), and dishonest carries a huge strategic cost (c: the 
handicap) in the classic SPS game, but this is not necessarily true in the ABD game. 	

4(2x2)—
Strategy 

Set in 
Classic 

SPS Game 

There were only four (2x2) strategies in the classic (Maynard-Smith 1991) SPS game since 
it was considered sufficient for its initial motivation for devising the SPS game, i.e., to 
demonstrate the handicap principle or the reliability (honesty) of animal communications 
(but, we are not sure if Maynard-Smith was aware of the other possible strategy options). 
The initial hypothesis of the handicap principle was that to communicate honestly, there 
must be a handicap in the communication system that enforces the honesty. With the 
handicap principle, there were only four strategies that make sense. We use the term “make 
sense” to imply that the strategies are broader than being “rational” since evolutionary 
game theory does not enforce “rationality.” Instead, as long as there are ESS (evolutionary 
stable strategy) equilibriums, the strategies make sense. Actually, the strategies in the 
original SPS game not only make sense, but also are rational, including sending dishonest 
signal (selfish behavior) since payoff was high for doing so.  

16(4x4)-
Strategy 
Set in the 

ABD Game 

It was Huttegger & Zollman (2010), Whitmeyer (2020) (and several other groups of 
scholars), approximately a decade later after Maynard-Smith (1991) seminal work, which 
significantly expanded the classic SPS game, most notably, expanding the strategies from 4 
to 16. With the expansion (extensions), those strategies that do not make sense (senseless) 
in the classic SPS game were brought back. To formulate the ABD game, we adopt those 
extensions. The extended SPS allow us to capture various kinds of idiosyncratic masking 
behaviors: some are rational; some are not only irrational, but also senseless (without 
discernible meaning or purpose).  

Table 1 and Fig 1 listed the 16 possible strategies of the ABD game. The strategy 
matrix (Table 1) starts with (A1, B1) strategy: Alice signals that she is healthy by “not 
masking only if healthy;” Bob responds with “Not masking only if Alice masks”.  Once the 
first strategy cell (A1, B1) is specified, the remaining 15 strategies should keep consistent 
with the first element in the matrix. Our consideration for selecting (A1, B1) as the first 
element (cell) was to choose a strategy pair that seems most rational.  That is, Alice does 
not mask, which sends signal of her healthy status; Bob does not mask when Alice masks 
since Bob feels unnecessary for him to wear one when Alice is protected (wearing mask).   

Potentially 
Alternative 

Strategy 
 Sets for 

ABD Game 

Before finalizing the ABD strategy matrix as exhibited by Table 1 & Fig 1, we tried 
several alternatives. We realized that, after elements (i: Who) & (ii: What) are specified, 
the setting of (iii: How) does not matter in the sense that the setting only affects the order 
of the 16 combinatorial (interaction) strategies. It influences neither the validity of various 
strategy equilibriums (Table 3) nor the completeness (Table 1 or Fig 1) of the strategy set 
(options). That is, whatever order is specified, all possible strategy options (behaviors) are 
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covered by the game (i.e., completeness). Therefore, the setting of element (iii), which in 
ABD game is “mask” or “not mask”, does not influence the validity of mathematical logic 
underlying the ABD game (also see the following discussion on asymmetric vs. symmetric.  

(1) In the classic SPS game of Maynard-Smith (1991), the terminology used was 
“honest communication,” which is often used interchangeably with “cooperation” in the 
later literatures. However, communication is not necessarily honest (cooperative), 
particularly in the extended SPS game. In the ABD game, we use “communication” as 
alternative to “cooperation”. In the meantime, we use “interaction” and “dating” 
interchangeably with “communication” in various contexts.   

(2) Although the classic SPS (with 4 strategy pairs) is asymmetrical, in the extended 
SPS game, when the 12 ignored strategy pairs (due to the non-reciprocal or asymmetrical 
nature of SPS) were brought back (e.g., Huttegger & Zollman 2010, Whitmeyer 2020), the 
asymmetrical nature changed. In effects, the extended SPS and ABD games cover all 
possible strategy options (completeness, as explained previously), becoming somewhat 
equivalent to a symmetrical game given the completeness of the strategy set.    
       (3) The primary reason why the first strategy pair (A1, B1) was specified as it is was 
its rationality or naturalness. However, given the equivalently symmetrical nature of the 
ABD game, approximately ½ of the 16 strategies could be or close to irrational or 
senseless, mirroring the various idiosyncratic behaviors of masking in the current 
pandemic. For example, the case of lowered payoff due to masking may occur, if his or her 
lover’s masking behavior is senseless, or their “romantic” relationship (captured by the 
relatedness parameter k) may lead to shared loss or gain in their payoffs.    
        Once the first strategy pair (A1, B1) is specified, the remaining 15 pairs are set to 
keep logic consistence. The logic consistency refers to the validity of mathematic logic 
(truth table of a predicate statement), which determines the rigorous inferences of the 
various equilibriums listed in Table 3. The equilibriums indicate that the corresponding 
strategies (masking behaviors) may become established in populations. Nevertheless, the 
validity of the mathematic logic of those strategies does not guarantee the rationality or 
naturalness of strategies. That is, valid strategies can be senseless, mirroring various 
idiosyncratic masking attitudes or behaviors during the pandemic.  

Additional 
Expositions 
to Clarify 
the Logic 

Underlying 
the ABD 

Strategies 
 
Table 1 & 
Fig 1 expose 
the ABD 
strategy set; 
this Box 1 
exposes the 
ABD-game 
formulation, 
and Box 2 
explains the 
game 
parameters.      (4) Although the ABD game appears to be a two-player game, it is in fact a game of 

populations due to the nature of evolutionary game model, which uses replicator dynamics 
(described in differential equations) rather than algebraic payoff matrix. In fact, the ABD 
not only can represent for two populations of replicators (Alice and Bob) and her or his 
own “fans or followers” (offspring of the replicators), but also represent for the 16 sub-
populations corresponding to 16 different strategy pairs.  Therefore, the ABD model is 
sufficient general to study the complex, full spectrum of the masking behavior at 
population or societal level. Actually, the method is also applicable to other decision-
making problems beyond masking, such as lockdowns vs. open.   
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Box	2.	Interpretations	of	the	parameters	(a,	b,	c,	d,	m	&	k)	in	the	SPS/ABD	Games	

a, b, c 

Parameters a, b, and c are “conditional cost” parameters directly associated with Alice 
(sender of signal in the original SPS game) since they may affect the payoff (fitness) of 
Alice. The reason we term them “conditional cost” parameters is because of the following 
mechanism: whether or not their values affect (“kick in”) the payoff of Alice depends on 
two factors, i.e., her infection status and the response behavior of Bob (receiver of signal 
in the original SPS game). If Bob choose to cooperate with Alice, the parameter a and b 
would be equal to zero (accruing no cost to Alice). However, if Bob does not cooperate, 
then the values of a and b would be non-zero (accruing cost to Alice). Furthermore, if 
Alice is infected, her survival probability would be (1−a), otherwise (1−b), with a 
condition a>b. Therefore, parameter a and b can be considered as conditional probabilities 
(costs) that may lower the survivability of Alice, but whether or not they “kick in” depend 
on Bob’s behavior and Alice’s infection status. Parameter c is the strategic cost that Alice 
may need to pay if she lied (conceal her infection status), and it can also be considered as 
another conditional probability (cost) that may lower her survival probability. 

d 
Parameter d is a “conditional cost” parameter associated with Bob. It reduces Bob’s 
survival probability to (1−d) if Bob chooses to cooperate (honor the request of Alice), and 
d=0 if he refuses to cooperate. 

m & k 

Parameter m and k are different from the previous previously defined parameters a, b, c, 
and d in the sense that they may influence ‘cost’, but they are not ‘cost’ per se.  The ‘cost’ 
(a, b, c, d) can be considered as the reduction of survival probability of Alice or Bob.    
Parameter m is the infection probability of Alice, and parameter k is the relatedness or 
closeness of Alice and Bob’s relationship. Parameter k represents their shared interests 
(shared genes in evolutionary biology) and it has a direct impact on their inclusive fitness 
(=k times the fitness of the other player plus his or her own fitness). 

It should be pointed out that the above interpretations are primarily based on the design of the original 
SPS game by Maynard-Smith (1991). In the ABD, which is based on the latest extensions of SPS 
game by Huttegger & Zollman (2010), Whitmeyer (2020) and others, all 16 possible combinatorial 
strategies are considered. The 16 possible strategies cover some of the strategies that were initially 
considered as ‘inapplicable’ or ‘useless’ in the original SPS game. Consequently, although the same 
parameters (a, b, c, d, m, k) are used in the original SPS, extended SPS as well as ABD games, their 
interpretations could sound ‘awkward’ for some of the strategies initially ignored. The reason that 
some of the strategies were considered as ‘inapplicable’ and apparently ignored in the original SPD 
game at Maynard-Smith (1991) era might be to do with his motivation to conceive the SPS game—a 
simple game-theoretic model to illustrate the feasibility of the handicap principle in evolutionary 
biology. In the ABD game, we actually take advantages of the rich strategy interactions extended 
from the classic SPS game by Huttegger & Zollman (2010), Whitmeyer (2020) and others.   
As a side note, in the evolutionary game setting, Alice (similarly Bob) as a ‘player’ actually represents 
a population of ‘players’ with possibly different strategies, for example, Alice=(Alice-1, Alice-2, 
Alice-3, Alice-4) with corresponding strategy vector (A1, A2, A3, A4). This further complicates the 
interpretations of the ABD parameters when extending the interpretations from the classic SPS game.  
In summary, the previous basic interpretations of the ABD game parameters based on the classic SPS 
game could become counter-intuitive for some of the strategy interactions in the extended SPS games. 
Nevertheless, the controversies, peculiarities and idiosyncrasies surrounding masking behaviors in the 
COVID pandemic era, some of which may be explained only by science-denialism, do deserve a 
game-theoretic model that can describe such rich behaviors beyond rationality and/or scientific 
understanding. Finally, all of the ABD parameters described above fall within the interval of [0, 1].  
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Box	3.	Definitions	for	the	Equilibrium	Types	in	the	SPS/ABD	Games	
Nash equilibrium A Nash equilibrium (i.e., “no-regret” strategies) is a solution to a non-

cooperative game involving two or more players, in which each player is 
supposed to be aware of the equilibrium strategies of the other players, and 
no player is better off by unilaterally changing own strategy. In other 
words, when each player has selected a strategy and no player may benefit 
from changing strategies whereas the other payers keep theirs fixed, then 
the current set of strategies and the consequent payoffs (fitness) constitute  
a Nash equilibrium. 

ESS (evolutionarily 
stable strategy) 

An evolutionarily stable strategy (ESS) is a strategy that, if adopted by a 
population of players in a given environment, cannot be invaded by any 
mutational (alternative) strategy, which is usually scarce initially. It is a 
Nash equilibrium that is “evolutionarily stable or resilient.” In other words, 
an ESS is a strong version of the Nash equilibrium, and the Nash 
equilibrium is a weak version of ESS. 

Pooling equilibrium A pooling equilibrium is an equilibrium in which, regardless of the types of 
sender with differing characteristic signals, the receiver shall choose the 
same response. In the case of the ABD game, Bob does not care whether or 
not Alice wears a mask when he makes his own decision. 

Separating 
equilibrium 

A separating equilibrium is opposite to pooling equilibrium: a receiver’s 
response can be different depending on the type of sender’s signal. In the 
case of ABD game, Alice’s signal influences Bob’s decision. 

Hybrid equilibrium A hybrid equilibrium is some combination of separating equilibrium and 
pooling equilibrium. 

Polymorphism A polymorphism is a mixed Nash equilibrium where sender mixes between 
being honest and dishonest signaling, and responder may also adopt a 
mixed strategy accordingly. Polymorphisms, which were ignored in 
biological signally until Huttegger & Zollman (2010) extensions of the 
original SPS game, correspond to hybrid equilibriums in this study. 
Polymorphic equilibrium allows for partially meaningful (honest) 
communication, and therefore grants the SPS much realism. 
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Box	4.	Definitions	for	the	Stability	Properties	in	the	SPS/ABD	Games	
Lyapunov Stable Assume a dynamical system which is described with 

€ 

x
.

= f (x), x ∈ Rn , 
there is an equilibrium solution

€ 

x ∈ Rn , such that

€ 

f (x) = 0 . The equilibrium 
solution

€ 

x  is stable in the sense of Lyapunov stable, if for given

€ 

ε > 0 , there 
exists 

€ 

δ = δ(ε) > 0 such that, for any other solution

€ 

y(t) , 

€ 

y(t0) − x < δ (t0 ∈ R) , then 

€ 

y(t) − x < ε  for 

€ 

t > t0 . 
Lyapunov stability is a rather weak requirement on equilibrium points.  
Especially, it does not require that trajectories starting close to the origin 
approach to the origin asymptotically. In a simplified interpretation, if the 
solutions that start out near an equilibrium point x forever, then x is Lyapunov 
stable. 

Asymptotically 
Stable 
 

A time-invariant system is asymptotically stable if all the eigen-values of its 
system matrix (A) possess negative real parts. In the case of asymptotic stability, 
there is a sphere S, centered around 𝛿 = 0 with the radius r, such that the 
response, once entered the sphere, converges to the origin. 

Neutrally Stable An equilibrium that is Lyapunov stable but not asymptotically stable is 
sometimes termed as neutrally stable. 
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