
A meta-epidemiological assessment of transparency 

indicators of infectious disease models 

 

Short title: Transparency in infectious disease models 

 

Emmanuel A. Zavalis1,2, John P.A. Ioannidis1,3 

 

1Meta-Research Innovation Center at Stanford (METRICS), Stanford University, Stanford, 

California, USA  

 

2 Department of Learning, Informatics, Management and Ethics, Karolinska Institutet, 

Stockholm, Sweden 

 

3Departments of Medicine, of Epidemiology and Population Health, of Biomedical Data Science, 

and of Statistics, Stanford University, California, USA 

 

Address correspondence to: John P.A. Ioannidis, MD, DSc, 1265 Welch Rd, SPRC, MSOB 

X306, Stanford, CA 94305, USA. E-mail: jioannid@stanford.edu 

 

  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 16, 2022. ; https://doi.org/10.1101/2022.04.11.22273744doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2022.04.11.22273744
http://creativecommons.org/licenses/by-nc-nd/4.0/


Abstract 

Mathematical models have become very influential, especially during the COVID-19 pandemic. 

Data and code sharing are indispensable for reproducing them, protocol registration may be 

useful sometimes, and declarations of conflicts of interest (COIs) and of funding are 

quintessential for transparency. Here, we evaluated these features in publications of infectious 

disease-related models and assessed whether there were differences before and during the 

COVID-19 pandemic and for COVID-19 models versus models for other diseases. We analysed 

all PubMed Central open access publications of infectious disease models published in 2019 and 

2021 using previously validated text mining algorithms of transparency indicators. We evaluated 

1338 articles: 216 from 2019 and 1122 from 2021 (of which 818 were on COVID-19); almost a 

six-fold increase in publications within the field. 511 (39.2%) were compartmental models, 337 

(25.2%) were time series, 279 (20.9%) were spatiotemporal, 186 (13.9%) were agent-based and 

25 (1.9%) contained multiple model types. 288 (21.5%) articles shared code, 332 (24.8%) shared 

data, 6 (0.4%) were registered, and 1197 (89.5%) and 1109 (82.9%) contained COI and funding 

statements, respectively. There was no major changes in transparency indicators between 2019 

and 2021. COVID-19 articles were less likely to have funding statements and more likely to 

share code. Manual assessment of 10% of the articles that were identified by the text mining 

algorithms as fulfilling transparency indicators showed that 24/29 (82.8%) actually shared code, 

29/33 (87.9%) actually shared data; and all had COI and funding statements, but 95.8% disclosed 

no conflict and 11.7% reported no funding. On manual assessment, 5/6 articles identified as 

registered had indeed been registered. Transparency in infectious disease modelling is relatively 

low, especially for data and code sharing. This is concerning, considering the nature of this 

research and the heightened influence it has acquired.  
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INTRODUCTION 

  A large number of infectious disease-related models are published in the scientific 

literature and their production and influence has rapidly increased during the COVID-19 

pandemic. Such models can inform and shape policy, and have also been the subject of much 

debate (1–4), surrounding a range of issues, including their questionable predictive accuracy and 

their transparency(5–7).  

Sharing of data and of code is totally indispensable for these models to be properly 

evaluated, used, reused, updated, integrated, or compared with other efforts. Without being able 

to rerun a model, it resembles a black box where blind trust is requested on its function and 

credibility. Moreover, other features of transparency, such as declaration of funding and of 

potential conflicts of interest (COI) are also important to have since many of these models may 

be very influential on deciding policy with major repercussions. Another feature of transparency 

that may aid reproducibility and trust in these models sometimes is the registration of their 

protocols, ideally in advance of their conduct. Registration is concept that receives increasing 

attention in many scientific fields (8–10) as a safeguard of trust. Registration may not be easy or 

relevant to have for many mathematical models, especially those that are exploratory and 

iterative(5). However, it may be feasible and desirable to register protocols about models in some 

circumstances(5).    

There have previously been empirical evaluations of research practices, including 

documentation and transparency in subfields of mathematical modeling (11–13) that have shown 

that data and code/algorithm sharing has improved somewhat over time but that it still remains 

suboptimal. Yet, to our knowledge, in the field of infectious disease modelling there has been no 

comprehensive, large-scale analysis of such transparency and reproducibility indicators. It would 
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be of interest to explore the state of transparency in this highly popular field, especially in the 

context of the rapid and massive adoption of mathematical models during the COVID-19 

pandemic. Therefore, we decided to evaluate infectious disease modeling studies using large-

scale algorithmic extraction of information on several transparency and reproducibility indicators 

(code sharing, data sharing, registration, funding, conflicts of interest). We compared these 

features in articles published before and during the pandemic (in 2019 and 2021, respectively) 

and in articles on COVID-19-related models and models related to other infectious diseases.   

 

RESULTS 

Study sample  

We screened 2903 records in their titles and abstracts according to the eligibility criteria. 

1340 papers were excluded due to ineligibility in the primary survey leaving 1563 records for 

further scrutiny. 58 were excluded during the second round of screening, i.e., during retrieval of 

information on model type and disease and 167 were excluded for not being part of the PMC OA 

subset (Fig 1) 

Figure 1. Flow chart for study selection 

Characteristics of eligible papers 

Of the 1338 eligible papers (Table 1), 216 had been published in 2019 and 1122 in 2021. 

818 (61.1%) were COVID-19 papers and the second largest group contained 130 (9.7%) 

publications and was the group of General (theoretical models). More than 70 different diseases 

had altogether been modelled in the eligible publications. The model types were more evenly 
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distributed with the most common model type being compartmental models (N=511, 39.2%) and 

time series models (N=337, 25.2%). 

Table 1. Characteristics of the eligible studies 

Transparency indicators 

Table 2 shows the transparency indicators overall and in the three main categories based 

on year and COVID-19 focus. We found that based on the text mining algorithms 288 (21.5%) 

articles shared code, 332 (24.8%) shared data, 6 (0.4%) used registration, and 1197 (89.5%) and 

1109 (82.9%) contained a COI and funding statement, respectively. 919 (68.7%) of publications 

shared neither data nor code, while 199 (14.9%) of all papers shared both data and code.  

Table 2. Key transparency indicators overall and per year/COVID-19 focus 

We found no differences between years and between COVID-19 and non-COVID-19 

papers in terms of probability of sharing data, registration, or mentioning of COIs. COVID-19 

papers were more likely to share their code openly than the non-COVID-19 publications from 

the same year (14.1% v. 25.3%, p=5.1 � 10
��), and they were less likely to report on funding 

compared with non-COVID-19 papers in the same year (p= 3.5 � 10
��). This led to an overall 

lower percentage of papers reporting on funding in 2021 compared with 2019 (p= 1.0 � 10
��).  

Other correlates of transparency indicators 

As shown in Table 3, data sharing varied significantly across journals, e.g. it was 54.8% 

in PLoS One, but 12.7% in International Journal of Environmental Research and Public Health. 

Code sharing varied significantly across diseases, e.g. it was most common for dengue and least 

common for malaria (34.3% v 5.4%); and it varied significantly among types of models, (highest 

in agent-based models with 33.9% of publications sharing code). Registration was uncommon in 

all subgroups. COI disclosures were most common in dengue and least common in general 
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models and they also varied by type of model (least common in compartmental models). Funding 

information was most commonly disclosed in dengue models and least commonly disclosed in 

general models; it also varied by type of model (being lowest in compartmental models); and by 

journal.  

Table 3. Key transparency indicators per disease type, model type, and journal 

 Multivariable regressions (not shown) showed similar results. Code sharing was more 

common in COVID-19 models and in agent-based models. Data sharing was more common in 

spatiotemporal and agent-based models and also depended substantially on the journal. We did 

not perform multivariable regressions for the presence of COI and funding statements, since 

these depended almost entirely on the journal (several journals had 100% frequency of having a 

placeholder for such statements). Registration was too uncommon to subject to multivariable 

analysis.  

Manual validation 

We also checked a random sample of 29 (10%) of papers that were found to be sharing 

code, 33 (10%) of those sharing data, and all 6 that were registered. Of these, 24/29 (82.8%) 

actually shared code, 29/33 (87.9%) actually shared data and 5/6 (83.3%) were indeed registered. 

The papers that used registration were two malaria models(14,15), one vector model (16) (which 

focused on malaria vectors) one polio (Sabin 2 virus (17)) model and one rotavirus model(18). 

The majority were from 2021(14,16,17) and  were also malaria models (two malaria and one 

vector that was essentially malaria (14–16)) the majority we also classified as spatiotemporal 

(14–16). Finally, of the 120 articles (10%) that text mining found that they contained a COI 

statements, there was indeed a placeholder for this ststement in all articles, but the vast majority 

of the statements (115 (95.8%)) disclosed no conflict at all. Of the 111 (10%) articles where text 
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mining found that they contained a funding statement, all of them had indeed such a statement, 

but 13 (11.7%) stated that they had no funding. 

DISCUSSION   

Analysing 1338 recent articles from the field of infectious disease modelling we found 

that less than a quarter of these publications shared code or data, and only 14% shared both. This 

is concerning since it does not allow other scientists to check the models in any depth and it also 

limits their further uses. Moreover, registration was almost nonexistent. On a positive note, the 

large majority of models did provide some information on funding and COIs. However, the vast 

majority of COI statements simply said that they was no conflict. Furthermore, we saw no major 

differences between 2019 and 2021. COVID-19 and non-COVID-19 papers showed largely 

similar patterns for these transparency indicators, although the former were modestly more likely 

to share code and modestly less likely to report on funding. There were some differences for 

some of the transparency indicators across journals, model types and diseases.  

Jalali et al. (11) analysed 29 articles on COVID-19 models in 2020 and found that 48% 

shared code, in 60% data was shared, whilst 80% contained a funding and  COI disclosure 

respectively. Our findings show much lower rates of code sharing and data sharing. The Jalali et 

al. sample was apparently highly selective as it focused on the most referenced models among a 

compilation of models by the US Centers for Disease Control (19). In another empirical 

assessment of the reproducibility of 100 papers in simulation modelling in public health and 

health policy published over half a century (until 2016) and covering all applications (not just 

infectious diseases), code was available for only 2% of publications(20). Finally, in an empirical 

evaluation in decision modelling by Emerson et al. (13), when the team tried to get authors of 

papers to share their code 7.3% of simulation modelling researchers responded and in the end 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 16, 2022. ; https://doi.org/10.1101/2022.04.11.22273744doi: medRxiv preprint 

https://doi.org/10.1101/2022.04.11.22273744
http://creativecommons.org/licenses/by-nc-nd/4.0/


only 1.6% agreed to share their code. This suggests that infectious disease models are not doing 

worse than other mathematical models, and may be doing even substantially better, but there is 

still plenty of room for improvement in sharing practices.    

There have been many initiatives for improving sharing code and better documentation in 

the modelling community (21–24) as well, repositories for COVID-19 models (25,26) . The 

modelling community including COVID-19 (27) modelling has had multiple calls for 

transparency and the debate of reproducibility has been ongoing for decades (28–30). Several 

journals have tried to take steps in enhancing reproducibility. For example, Science changed 

their policy for code and data sharing to make both essentially mandatory (31). However, 

Stodden et al. (32) found no clear improvement after such interventions. Models are published in 

a vast array of journals and sharing rate as well as reporting and documentation requirements 

tend to be highly journal specific.  

The frequency of code and data sharing in our sample was higher than what was 

documented for the general biomedical literature that was assessed in Serghiou et al. (33) using 

the same algorithm. COI and funding disclosures were almost equally common.  On the other 

hand, we observed a ten-fold lower registration rate in our sample compared with the overall 

biomedical literature, which may reflect the difficulty of registering models and the lack of 

sufficient sensitization of the field to this possibility (5). We found that essentially 5 of our 

studies were registered (after validating the initial 6 that we found). Realising that registration 

may be difficult and even impossible for a large portion of models (exploratory models for 

instance) (5), it would still be advisable to register confirmatory studies of models that are 

destined to be used for policy to reduce the “vibration of effects” (the range of possible results 

obtained with multiple analytical choices) (34,35). Otherwise, promising output or excellent fit 
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may in reality be due to bias alone. When the stakes are high and wrong decisions may have 

grave implications, more rigor is needed.  

The rates of COI and funding disclosures are satisfactory on face value, considering they 

both are above 80% both in our sample and across other empirical assessments (11,33,36). This 

may also be due to the fact that both these types of disclosures have been introduced into many 

journal’s routinely published items and there is a standard placeholder for them. Typically 

journals mandate a COI and funding statement. However, the fidelity and completeness of these 

statements is difficult to probe. We cannot exclude that undisclosed COIs may exist. Our random 

sample validation found that the COI disclosures almost never mentioned any conflict. Given the 

policy implications of many models, especially in the COVID-19 era, this pattern may represent 

under-reporting of conflicts. Funding disclosures were more informative with only 12% stating 

no funding, but even then unstated sources of funding cannot be excluded.   

Limitations 

There are limitations in our evaluation. Our sample focused on the PubMed Central Open 

Access subset and not all PubMed-indexed papers. It is unclear if non-open access papers may be 

less likely to adopt sharing practices. If so, the proportion of sharing in the total infectious 

disease modeling literature may be over-estimated.  

Second, we used a text-mining approach which has been extensively validated across the 

entire biomedical literature, but the algorithms may have different performance specifically in 

the infectious disease modeling field. Nevertheless, in-depth evaluation of a random sample of 

papers suggests that identification of these indicators is quite accurate and false positives are 

uncommon. We did not check manually for false negatives, because the algorithms have very 
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high negative predictive value, but it is possible that in a few articles some transparency 

indicators may have been missed.  

Third, the presence of a data sharing or code sharing statement doesn’t promise full 

functionality and the ability to fully reuse the data and code. This can only be decided after 

spending substantial effort to bring a paper to life based on the shared information. For COI and 

funding statements, we also only established their existence, but did not appraise in depth the 

content of these statements, let alone their veracity. Evaluations in other fields suggests that 

many COIs are undisclosed and funding information is often incomplete (37–39).  

Finally, we only assessed a sample that is drawn from two calendar years that are not 

very far apart, thus major changes might not have been anticipated at least for non-COVID-19 

models. Nevertheless, 2021 was a unique year with a pandemic which of course affected the 

field not merely through inflation of publications(40) but also through specific funder and 

governmental initiatives and incentives. Therefore, only time will tell if any of the COVID-19 

impact on the scientific literature will be long-lasting and if it may also affect the landscape of 

mathematical modeling in general after the pandemic phases out.   

Conclusions 

We found that in the highly influential field of infectious disease modeling that relies as 

much on its assumptions and underlying code and data, transparency and reproducibility have 

large potential for improvement. Yet, there is a growing literature of recommendations and 

tutorials for researchers and other stakeholders (41–44), plus the EPIFORGE guidelines (45) 

which are guidelines for the reporting of epidemic forecasting and prediction research. They all 

explicitly urge for code sharing, and data sharing and transparency in general. The current lack 

of transparency may cause problems in the use, reuse, interpretation, and adoption of these 
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models for scientific or policy activities. It also hinders evidence synthesis and attempts to build 

on previous research to facilitate progress within the field. Improved transparency and 

reproducibility may help reinforce the legacy of this important field.  

 

METHODS 

This study is a meta-epidemiological survey of transparency indicators present in four 

common types of infectious disease models (compartmental, spatiotemporal, agent-

based/individual based and time-series) indexed in the PubMed Central Open Access (PMC OA) 

Subset of PubMed. The study is reported using the STROBE guidelines (46). The code needed 

for the analysis of our data used R(47) and Python(48). 

Search and screening 

We developed a search strategy to identify papers published from 2019 and 2021 in 

English in PMC OA subset that included models of infectious diseases: model*[tiab] OR 

forecast*[tiab] OR predict*[tiab] ) AND (SIR-models[tiab] OR SIR[tiab] OR SIRS[tiab] OR 

SEIR[tiab] OR SEIR-model[tiab] OR SIRS-model[tiab] OR agent-based[tiab] OR 

spatiotemporal[tiab] OR nowcast[tiab] OR backprojection[tiab] OR "traveling waves"[tiab] OR 

(time series[tiab] OR time-series[tiab]) ) NOT (rat model*[ti] OR murine model*[ti] OR animal 

model*[ti] OR mouse model*[ti] OR primate model*[ti]) AND (infect* OR transmi* OR 

epidem*. The model types that were included were compartmental models, spatiotemporal 

models, agent-based/ individual-based models and time series models. They were defined as 

follows: 

(i) Compartmental models assign subsets of the population to different classes according 

to their infection status (e.g., susceptible exposed, recovered etc.) and models the 
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population parameters of the disease according to assumed transmission rates 

between these subsets [1].   

(ii) Spatiotemporal models explore and predict the temporal and geographical spread of 

infectious diseases (usually using geographic time series data).  

(iii) Agent-based/ individual based models are computer simulations of the interaction of 

agents with unique attributes regarding spatial location, physiological traits and/or 

social behavior(50,51). Finally, 

(iv) Time-series models other than spatiotemporal were also included that use trends in 

number of infected or deaths or any other parameter of interest to predict future trends 

and numbers of spread (52) .  

We excluded clinical predictive, prognostic, and diagnostic models and included only 

models of infectious agents that can infect humans (i.e. both zoonotic diseases as well as diseases 

exclusive to humans). All screening and analysis was conducted by EAZ in two eligibility 

assessment rounds. In the first round, eligibility was assessed based on the title and abstract; in 

the second where the model type and disease type was extracted, eligibility was also assessed by 

perusing the article in more depth. After this round, in unclear cases EAZ consulted JPAI and 

these cases were settled with discussion. 

Data extraction 

For each eligible study, we extracted information on the model type and disease type 

manually. For model type, whenever cases came up that were not clear-cut EAZ and JPAI 

conferred as to what category was sensible. Some phylogenetic models were included and 

classified as spatiotemporal if they had spatiotemporal aspects. When there were multiple model 

types in a single paper it was classified as ‘Multiple’.  For disease, we used categories defined 
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based on the infectious agent of interest that was studied. The “Unspecified” category included 

studies not mentioning a specific infectious agent but a clinical syndrome (i.e. urinary tract 

infection or pneumonia etc.), the “General (theoretical models)” category included studies that 

didn’t model a specific disease (i.e. a theoretic pandemic). Finally, where multiple diseases were 

mentioned, the papers were categorised in a separate category as ‘Multiple different agents’ (i.e. 

HIV and tuberculosis). Where vectors of diseases such as mosquitos were modelled to predict 

spread of multiple diseases, we classified the disease as ‘Vector’. 

For each eligible article we used PubMed to extract information on metadata that 

included PMID, PMCID, publication year, journal name and the R package rtransparent(33) to 

extract the following transparency indicators: (i) code sharing (ii) data sharing (iii)  

(pre-)registration, (iv) COI and (v) funding statements.  

rtransparent searches through the full text of the papers for specific words or phrases that 

strongly suggest that the aforementioned transparency indicators are present in that particular 

paper. The program uses regular expressions to adjust for variations in expressions. For example, 

to identify code sharing, rtransparent looks for “code” and “available” as well as the repository 

“GitHub” and its variations, and in a paper selected (53) from our dataset it finds the following: 

“the model and code for reproducing all figures in this manuscript from model output are 

publicly available online (https://github.com/bdi-pathogens/openabm-covid19-model-paper)” 

The approach has been previously validated and tested in Serghiou et al. (33) across the 

entire biomedical literature and has a positive predictive value (PPV) of 88.2% (81.7%-93.8%) 

and negative predictive value (NPV) of 98.6% (96.2-99.9%) for code sharing; 93.0% (88.0%-

97.0%) and 94.4% (89.1%-97.0%) for data sharing, 92.1% (88.3-98.6%) and 99.8% (99.7%-
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99.9%) for registration, 99.9% (99.7%-100.0%) and 96.8% (94.4%-99.1%) for COI disclosure 

and 99.7% (99.3%-99.9%) and 98.1% (96.2%-99.5%) for funding disclosures.  

  To further validate the performance of the algorithms in detecting code sharing and data 

sharing reliably,  a random sample of 10% of publications that the algorithm identified as sharing 

code and 10% of those that the algorithm identified as sharing data were manually assessed 

looking into whether the statements indeed represented true sharing. All papers that were 

identified by the algorithm to have registration were assessed manually to verify whether 

registration had been performed. Moreover, arandom sample of 10% of papers that were found to 

contain a COI statement and 10% of those found to include a funding statement were assessed 

manually to see not only whether such statements were indeed present, but also to assess how 

many of them contain actual disclosures of specific conflicts or funding sources, respectively, 

and not just a statement that there are no COIs/funding, e.g. ‘There is no conflict of interest’, No 

funding was received’ or ‘Funding disclosure is not applicable’. 

Statistical analysis 

The primary outcome studied was the percentage of papers that include each of the 

transparency indicators. We considered three primary comparisons that were conducted using 

Fisher’s exact tests.  

- All publications in 2019 to all in 2021 (to assess if there is improvement over time)  

- All non-COVID-19 publications in 2019 to the non-COVID-19 publications in 2021 (to 

assess if there is improvement over time for non-COVID-19 publications) 

- 2021 COVID-19 publications to 2021 non-COVID-19 ones (to assess if COVID-19 

papers differ in transparency indicators versus non-COVID-19 papers).  
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Subsequently we also explored whether other factors may have correlated with the 

transparency indicators using Fisher’s exact tests to see whether there was any statistically 

significant association (significance level set at 0.005 (54)) when comparing model types, year, 

disease modelled, as well as journal separately. We had pre-specified that whenever any 

statistically significant results were found, we would conduct multivariable logistic regressions 

as well. 

Deviations from the protocol 

We deviated from the protocol in that we didn’t perform chi-square tests due to too low 

counts in some variables rendering it unreliable, therefore we decided to conduct these analyses 

using Fisher’s exact tests instead of chi-square tests. The 10% manual assessment of a random 

sample of articles with COI and funding statements was added post hoc, when we realized that 

many articles could have such statements but they might simply state that there was no COI 

and/or no funding.  
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Code and data availability 

The protocol for this study can be found at doi:10.17605/OSF.IO/JGWVK and the code 

and data will also be made available upon publication on the same site. 
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Table 1. Characteristics of eligible studies 

 

  

  

 
 
 

 2019  
N (%) 

216 articles 

2021 non-COVID-19  
N (%) 

304 articles 

2021 COVID-19  
N (%) 

818 articles 

All publications 
N (%) 

1338 articles 

Type of model 

Compartmental 26 (12.0) 91 (29.9) 394 (48.0) 511 (39.2) 
Time series 80 (37.0) 82 (27.0) 175 (21.4) 337 (25.2) 
Spatiotemporal 78 (36.1) 90 (29.6) 111 (13.6) 279 (20.9) 
Agent-based 31 (14.4) 37 (12.2) 118 (14.4) 186 (13.9) 
Multiple 1 (0.5) 4 (1.3) 20 (2.4) 25 (1.9) 

Type of disease 

COVID-19 0 (0) 0 (0) 818 (100) 818 (61.1) 

General  33 (15.3) 97 (31.9) 0 (0) 130 (9.7) 

Influenza illnesses 20 (9.3) 20 (6.6) 0 (0) 40 (3.0) 
Malaria 15 (6.9) 22 (7.2) 0 (0) 37 (2.8) 
Dengue 15 (6.9) 20 (6.6) 0 (0) 35 (2.6) 

Others 133 (61.6) 145 (48) 0 (0) 278 (20.8) 

Journal 

PLoS One 26 (12.0) 27 (8.9) 62 (7.6) 115 (8.6) 
Sci Rep 20 (9.3) 19 (6.3) 52 (6.4) 91 (6.8) 
Int J Environ 
Res Public 
Health 

15 (6.9) 21 (6.9) 27 (3.3) 63 (4.7) 

BMC Infect Dis 16 (7.4) 12 (3.9) 10 (1.2) 38 (2.8) 
PLoS Negl Trop 
Dis 

11 (5.1) 22 (7.2) 0 (0) 33 (2.5) 

PLoS Comput 
Biol 

10 (4.6) 10 (3.3) 9 (1.1) 29 (2.2) 

BMC Public 
Health 

6 (2.8) 9 (3.0) 13 (1.6) 28 (2.1) 

Chaos Solitons 
Fractals 

0 (0) 5 (1.6) 20 (2.4) 25 (1.9) 

Others 112 (52.0) 179 (58.9) 625 (76.4) 916 (68.5) 
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Table 2. Key transparency indicators overall and per year/COVID-19 focus 

COI: conflicts of interest 

 

 

N=1338 

Code 

sharing 

N (%) 

Data 

sharing 

N (%) 

Registration 

N (%) 

COI 

N (%) 

Funding 

N (%) 

Overall 288 (21.5) 332 (24.8) 6 (0.4) 1197 (89.5) 1109 (82.9) 
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2019 38 (17.6) 59 (27.3) 3 (1.4) 197 (91.2) 202 (93.5) 

2021 250 (22.3) 273 (24.3) 3 (0.3) 1000 (89.2) 907 (80.8) 

    COVID-19 207 (25.3) 199 (24.3) 0 730 (89.2) 635 (77.6) 

   non-COVID-19 43 (14.1) 74 (24.3) 3 (1) 270 (88.8) 272 (89.5) 

Fisher’s exact test (p-values) 

2019 vs 2021 0.15 0.35 0.06 0.45 1.0 � 10
�� 

2019 vs 2021 non-

COVID-19 
0.33 0.48 0.70 0.46 0.12 

2021 non-COVID-

19 vs. COVID-19 
5.1 � 10

�� 1 0.02 0.83 3.5 � 10
�� 
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Table 3. Key transparency indicators per disease type, model type, and journal 

COI: conflicts of interest 

 

 Code sharing 
N (%) 

Data sharing  
N (%) 

Registration  
N (%) 

COI 
N (%)  

Funding  
N (%) 

Disease modelled 
p (Fisher’s exact test) 7.4 � 10

�� 
  

0.47 
 
0.001 

 
0.01 2.8 � 10

��� 
 

COVID-19 207 (25.3) 199 (24.3) 0 (0) 730 (89.2) 635 (77.6) 
General (theoretical model) 31 (23.8) 34 (26.2) 0 (0) 94 (72.3) 108 (83.1) 
Influenza illnesses 6 (15) 10 (25) 0 (0) 38 (95) 39 (97.5) 
Malaria 2 (5.4) 7 (18.9) 2 (5.4) 37 (100) 35 (94.6) 
Dengue 12 (34.3) 13 (37.1) 0 (0) 35 (100) 35 (100) 
Other diseases 30 (10.8) 69 (24.8) 4 (1.4) 263 (94.6) 257 (92.4) 

Type of model      
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p (Fisher’s exact test) 0.001 0.006 0.15 � 1 � 10
�� 0.008 

Compartmental 104 (20.4) 103 (20.2) 0 (0) 419 (82) 405 (79.3) 
Time Series 65 (19.3) 81 (24) 2 (0.6) 319 (94.7) 276 (81.9) 
Spatiotemporal 52 (18.6) 84 (30.1) 3 (1.1) 263 (94.3) 247 (88.5) 

Agent-based 63 (33.9) 58 (31.2) 1 (0.5) 173 (93) 161 (86.6) 

Multiple 4 (16) 6 (24) 0 (0) 23 (92) 20 (80) 
Journal 
p (Fisher exact) 

 
0.15 1.7 � 10

��� 
  

0.11 2.5 � 10
��� 

 
3.4 � 10

��� 
 

PLoS One 30 (26.1) 63 (54.8) 1 (0.9) 115 (100) 100 
Sci Rep 23 (25.3) 21 (23.1) 1 (1.1) 91 (100) 76.9 
Int J Environ Res Public 
Health 

8 (12.7) 7 (11.1) 1 (1.6) 63 (100) 100 

Other journals 227 (21.2) 241 (22.5) 3 (0.3) 928 (86.8) 80.5 
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