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Abstract  

White matter hyperintensities may be one of the earliest pathological changes in aging and may 

potentially accelerate cognitive decline. Whether race influences WMH burden has been 

conflicting. The goal of this study was to examine if race differences exist in WMH burden and 

whether these differences are influenced by vascular factors [i.e., diabetes, hypertension, body 

mass index (BMI)]. Participants from the Alzheimer’s Disease Neuroimaging Initiative were 

included if they had a baseline MRI, diagnosis, and WMH measurements. Ninety-one Black and 

1937 White individuals were included. Using bootstrap re-sampling, 91 Whites were randomly 

sampled and matched to Black participants based on age, sex, education, and diagnosis 1000 

times. Linear regression models examined the influence of race on baseline WMHs with and 

without vascular factors: WMH ~ Race + Age + Sex + Education + BMI + Hypertension + 

Diabetes and WMH ~ Race + Age + Sex + Education. The 95% confidence limits of the t-

statistics distributions for the 1000 samples were examined to determine statistical significance. 

All vascular risk factors had significantly higher prevalence in Black than White individuals. 

When not including vascular risk factors, Black individuals had greater WMH volume overall as 

well as in frontal and parietal regions, compared to White individuals. After controlling for 

vascular risk factors, no WMH group differences remained significant. These findings suggest 

that vascular risk factors are a major contributor to racial group differences observed in WMHs.  
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1 Introduction  

Cerebrovascular disease (CVD) is a known risk factor for cognitive decline and dementia and 

may result in pathological brain changes [1]. These pathological brain changes are often 

characterized by in vivo MRI measures of white matter hyperintensities (WMH). Although 

WMHs are observed in cognitively healthy older adults, increased WMH load is associated with 

cognitive decline in normal aging, mild cognitive impairment (MCI), and dementia [2–5]. WMH 

burden may be of the earliest pathological changes in aging [6] and may lower the threshold for 

pathological aging [7] and diagnosis of dementia [8]. Vascular risk factors such as hypertension, 

diabetes, and body mass index (BMI) are implicated in increased WMH load, and are also 

independent risk factors of dementia and cognitive decline  [8–10].  

When examining WMH in a racially diverse cohort, results have been conflicting as to 

whether racial differences in WMH burden exist. For example, some studies report that there are 

no significant differences in WMH burden because of racial group (when comparing African 

American/Black individuals [hereafter referred to as Black(s) to European 

American/Caucasian/White individuals [hereafter referred to as White(s)]) [11,12]. Conversely, 

other studies have reported increased WMH burden in Blacks compared to Whites [13,14]. 

Further, higher deep brain WMH volume has also been observed in Blacks compared to Whites, 

particularly in those at risk for coronary artery disease [15]. The observed group differences may 

be associated with the strong relationship between WMHs and vascular burden [16], and 

between racially diverse samples exhibiting higher vascular burden compared to Whites. For 

example, several studies have shown that Blacks have a higher cerebrovascular disease burden 

compared to Whites [4,14,17]. The higher proportion of vascular risk factors in this population 
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could be a contributing factor explicating why Black individuals are approximately twice as 

likely to develop dementia compared to White individuals [18–20].   

While some of the aforementioned studies examine vascular risk factors in WMH, the 

results are still conflicting and require more research to understand whether vascular risk factors 

explain race differences in WMH burden. Some studies have reported racial differences in aging 

research, including healthy aging and dementia. Nevertheless, most dementia and aging research 

have been disproportionately conducted on non-Hispanic Whites [18]. This lack of diversity in 

research introduces challenges for both clinical and research settings by reducing the 

generalizability of findings in non-White populations. To understand factors important to 

cognitive decline and dementia, more studies are needed on racially diverse cohorts. Therefore, 

this study was designed to examine whether race influences overall and regional WMH burden in 

a sample of Black and White older adults. The analyses were designed to be conducted with and 

without controlling for vascular factors [i.e., diabetes, hypertension, body mass index (BMI)]. 

This design was completed to determine whether there are racial group differences in WMH load 

and whether these differences are explained by vascular factors. These findings will help 

improve the current understanding of how vascular factors contribute to WMH in a racially 

diverse sample.  

 

2 Methods 

2.1 Alzheimer’s Disease Neuroimaging Initiative 

Data used in the preparation of this article were obtained from the Alzheimer’s Disease 

Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). The ADNI was launched in 2003 as 

a public-private partnership, led by Principal Investigator Michael W. Weiner, MD. The primary 
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goal of ADNI has been to test whether serial magnetic resonance imaging (MRI), positron 

emission tomography (PET), other biological markers, and clinical and neuropsychological 

assessment can be combined to measure the progression of mild cognitive impairment (MCI) and 

early Alzheimer’s disease (AD). The study received ethical approval from the review boards of all 

participating institutions. Written informed consent was obtained from participants or their study 

partner. Participants were selected from all ADNI cohorts (ADNI-1, ADNI-2, ADNI-GO, and 

ADNI-3). 

 

2.2 Participants 

ADNI participant inclusion and exclusion criteria is available at www.adni-info.org. All 

participants were between the ages of 55 and 90 at the time of recruitment, exhibiting no evidence 

of depression. Healthy normal controls had no evidence of memory decline, as measured by the 

Wechsler Memory Scale and no evidence of impaired global cognition as measured by the Mini Mental 

Status Examination (MMSE) or Clinical Dementia Rating (CDR). MCI participants scored between 

24 and 30 on the MMSE, 0.5 on the CDR, and abnormal scores on the Wechsler Memory Scale. 

Dementia was defined as participants who had abnormal memory function on the Wechsler Memory 

Scale, an MMSE score between 20 and 26 and a CDR of 0.5 or 1.0.  

 Participants were selected from the ADNI dataset for this study if they identified their race as 

“Black” or “White” and had completed baseline MRI scans. There were 140 Black individuals, of 

which 91 had baseline MRIs available. Out of the 2121 White individuals, 1937 had baseline MRIs 

available.  

 

2.3 Structural MRI acquisition and processing  
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Baseline scans were downloaded from the ADNI public website. For the detailed MRI acquisition 

protocol and imaging parameters see http://adni.loni.usc.edu/methods/mri-tool/mri-analysis/. 

T1w scans for each participant were pre-processed through our standard pipeline including 

noise reduction  [21], intensity inhomogeneity correction (Sled, Zijdenbos, & Evans, 1998), and 

intensity normalization into range [0-100]. The pre-processed images were then linearly (9 

parameters: 3 translation, 3 rotation, and 3 scaling)  [22] registered to the MNI-ICBM152-2009c 

average  [23]. The quality of the linear registrations was visually verified by an experienced rater 

(author M.D.), blinded to group. Only seven scans did not pass this quality control step and were 

discarded. 

 

2.4 WMH measurements  

A previously validated WMH segmentation technique was employed to generate participant WMH 

volume measurements. This segmentation technique has been validated in multi-center studies such 

as the Parkinson’s Progression Markers Initiative  [24] and National Alzheimer’s Coordinating 

Center  [25] Importantly, this technique has also been validated in ADNI  [3] where a library of 

manual segmentations based on 50 ADNI participants (independent of those studied here) was 

created. WMHs were automatically segmented at baseline using the T1w contrasts, along with a set 

of location and intensity features obtained from a library of manually segmented scans in 

combination with a random forest classifier to detect the WMHs in new images  [26,27]. The 

volumes of the WMHs for frontal, parietal, temporal, and occipital lobes as well as the entire brain 

were calculated based on Hammers atlas  [26,28]. WMH load was defined as the volume of all 

voxels as WMH in the standard space (in mm3) and are thus normalized for head size. WMH 

volumes were log-transformed to achieve normal distribution.  
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2.5 Vascular Risk Factors 

Vascular risk factors were included using information also downloaded from the ADNI public 

website. To calculate BMI for each person, height and weight information provided by ADNI for the 

matching visit to the MRI scan were used. Hypertension was defined by ADNI with each person 

being assigned a ‘0’ for no hypertension and a ‘1’ for hypertension. Missing documentation on 

diabetic status was completed using medication information. Medication lists were downloaded from 

ADNI, an experienced medical professional (author A.M.) identified all medications prescribed to 

manage diabetes. This list was then used as a proxy to determine which participants had diabetes.  

 

 

2.6 Data availability statement  

The data used for this analysis are available on request from the ADNI database 

(ida.loni.usc.edu). 

 

2.7 Statistical Analysis 

Analyses were performed using MATLAB R2019b. Linear regression models were conducted to 

examine whether Race would influence WMH burden. WMHs were examined in both a regional 

approach (frontal, temporal, parietal, occipital, left and right sides averaged together) for the 

entire brain. Analyses were completed separately for WMHs for each of the four regions and for 

the average of all regions for the whole brain.  

WMH ~ Race + Age + Sex + Education + Diagnosis      (1) 

The categorical variable of interest was Race, indicated by either Black or White status 

based on participant self-identification. The model also included age, sex, years of education and 

diagnosis (categorical variable contrasting MCI and AD against the controls) as covariates. The 
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analyses were also completed controlling for the vascular risk factors of diabetes, hypertension, 

and BMI.   

WMH ~ Race + Age + Sex + Education + Diagnosis      (2)  

 + Diabetes + Hypertension + BMI 

Again, the categorical variable of interest was Race, indicated by either Black or White 

status based on participant self-identification. The model also included age, sex, education, 

diagnosis, diabetes (categorical variable), hypertension (categorical variable), and BMI 

(continuous variable) as covariates.  

To deal with the imbalance of data between groups, we opted to apply a bootstrapping 

procedure. This procedure subsamples the larger dataset multiple times and estimates the indirect effect 

in each resampled set [29]. We resampled 91 White participants from the original dataset of 1937 with 

replacement to get 1000 new datasets with the same size as the Black participant dataset. White 

participants were selected to match Black participants in sex, education, diagnosis, and age (age and 

education difference must have been less than 1 year). These analyses were completed with the 1000 

bootstrapped samples. The 95% confidence limits of the t-statistics distributions for the 1000 

samples were examined to determine whether the differences were statistically significant. To 

correct for multiple comparisons (N=10), we also examined the 99.5% confidence limits of t-

statistics distributions for the 1000 samples. 

 To examine whether vascular risk factors differed between the groups, independent 

samples t-test and chi-square tests were completed. T-tests were completed to compare mean 

BMI, systolic blood pressure, and diastolic blood pressure between the groups. To examine 

differences in the number of people with diabetes and hypertension in each group, two chi-
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square tests were completed. A chi-square was also completed to examine Hachinski scores 

between the two groups.  

 

3 Results 

3.1 Descriptive Information of Vascular Factors 

Table 1 presents the demographic and descriptive information for vascular factors for the two 

groups. White participants had higher education (t= 2.76, p=.006) and a higher ratio of males 

(x2=15.13, p=.003) than Black participants.  Blacks had higher BMIs (t=3.21, p=.002), systolic 

blood pressure (t=2.34, p=.02), and diastolic blood pressure (t=2.19, p=.03) than Whites. The 

chi-square analyses found racial group differences for diabetes (x2=5.84, p=.016) and 

hypertension (x2=37.04, p<.001), with Blacks showing higher rates of both conditions than 

Whites. A chi-square analysis also revealed race differences for the Hachinski score (x2=38.00, 

p<.001) and diagnostic status (x2=8.75, p=.01). The significant effect in diagnostic status was 

because of the differences in the percentage of cognitively healthy older adults and those with 

MCI between the groups. There was a higher percentage of cognitive healthy older adult 

participants in the Black participant sample and a higher percentage of MCI participants in the 

White participant sample. Descriptive information for fasting glucose and cholesterol levels are 

also provided in Table 1. However, most participants were missing these values and therefore 

these vascular factors were not included in the regression models.  
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Table 1: Descriptive information regarding vascular risk factors  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Notes: BP = blood pressure. BMI = body mass index. Male sex, APOE4 status, diabetes, 

hypertension, diagnostic status are presented as total number of participants and percentage of 

the sample. Age, education, systolic BP, diastolic BP, and BMI is reported as the mean ± the 

standard deviation. * Represents statistically significant racial group differences. Blacks had 

lower education, lower ratio of males in the sample, higher rates of diabetes, hypertension, and 

higher BMI than Whites. a = missing data on 6 Blacks and 22 Whites.  

 Blacks (n=91) Whites (n=1937) 

Age  77.39 ± 7.85 78.91 ± 7.59 

Education 15.13 ± 3.13 16.06 ± 2.75 *  

Male Sex (n / %) 35 (38%) 1055 (54%) * 

APOE 4 (n / %)a   

           0 

           1 

           2 

45 (49%) 

32 (35%) 

8 (9%) 

1032 (53%) 

703 (36%)  

180 (9%) 

Diagnosis (n/ %)*  

           NC 

           MCI 

           Dementia 

 

46 (51%) 

31 (34%) 

14 (15%) 

 

687 (35%) 

902 (47%) 

348 (18%) 

Diabetes (n / %) 13 (14%) 135 (7%) * 

Hypertension (n / %) 72 (79%) 890 (46%) * 

Systolic BP  138.31 ± 16.19 134.24 ± 17.51* 

Diastolic BP  76.66 ± 9.80 74.34 ± 9.94* 

BMI 28.72 ± 5.13 26.83 ± 4.73 * 

Hachinski Score * 

(n / %) 

0  

1  

2 

3 

4 

6 

 

 

 

16 (17.6%) 

66 (72.5%) 

6 (6.6%) 

3 (3.3) 

0 

0 

 

 

970 (50%) 

849 (43.8%) 

66 (3.4%) 

44 (2.3%) 

7 (0.4%) 

1 (0.05%) 

 

 Blacks (n=67) Whites (n=1385) 

Cholesterol 

(RCT20) 

193.39 ± 37.79 195.00 ± 39.80 

 Blacks (n=49) Whites (n=1360) 

Fasting Glucose 60.67 ± 17.34  58.83 ± 11.36 
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3.2 WMH not controlling for vascular factors  

Table 2 presents the median and lower and upper t-statistic confidence intervals obtained from 

the 1000 samples. T-statistics confidence intervals that do not include “0” indicate that WMH 

group differences due to race are statistically significant. Figure 1 shows the t-statistic and p-

value for total WMH load both not controlling and controlling for vascular risk factors.  

Table 2: Confidence intervals of the t-statistic for the 1000 iterations of Model 1 (i.e., not 

controlling for vascular risk factors). 

 

 

 

 

 

Notes: CI = confidence interval. WMH = white matter hyperintensity. * = t-statistic is significant 

for group differences. n.s. = t-statistic is not significant for group differences. 

 

For total WMH, the lower and upper limits of the t-statistic CIs were -2.98 and -0.73, 

respectively. This finding indicates that total WMH burden was influenced by race. Black 

individuals had higher total WMH load compared to White individuals when controlling for age, 

sex, education, and diagnostic status. The frontal WMH CIs were -2.74 and -0.63, indicating 

significance and higher WMH burden in Black than White individuals. Parietal WMH load was 

also influenced by race (CIs = -3.90 and -1.52), with Black individuals exhibiting higher WMH 

load compared to White individuals. Neither temporal WMH (CIs = -0.59 and 1.69) or occipital 

WMH load (CIs = -1.81 and 0.06) significantly differed as a function of race. When examining 

the 99.5% confidence intervals (i.e., correcting for multiple comparisons) all results remained the 

same with total, frontal, and parietal WMH load remaining statistically different between the 

groups. 

 Median 

Effect Size 

Lower 

95% CI 

Upper 

95% CI 

Lower 

99.5% CI 

Upper 

99.5% CI 

Total WMH -1.84 -2.98 -0.73* -3.43 -0.74* 

Frontal WMH  -1.65 -2.74 -0.63* -3.47 -0.13* 

Temporal WMH  0.57 -0.59 1.69 -1.17 1.95 

Parietal WMH -2.69 -3.90 -1.52* -4.31 -1.45* 

Occipital WMH  -0.85 -1.81 0.06 -2.09 0.36 
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3.3 WMH controlling for vascular factors 

Table 3 presents the median and lower and upper t-statistic confidence intervals obtained from 

the 1000 samples. T-statistics confidence intervals that do not include “0” indicate that WMH 

group differences due to race are statistically significant.  

Table 3: Confidence intervals of the t-statistic for the 1000 iterations of Model 2 (i.e., controlling 

for vascular risk factors). 

 

 

 

 

 

Notes: CI = confidence interval. WMH = white matter hyperintensity. * = t-statistic is significant 

for group differences. n.s. = t-statistic is not significant for group differences. 

 

When controlling for vascular risk factors, only the racial group differences in WMH 

load remained significant in the parietal region (CIs = -2.83 and -0.43). That is, Black individuals 

had higher parietal WMH load compared to White individuals. This finding indicates that age, 

sex, education, and diagnosis do not account for differences in WMH between groups but that 

vascular risk factors drive most of the WMH group differences. Total (CIs = -1.85 and 0.43), 

frontal (CIs = -1.81 and 0.48), temporal (CIs = -0.29 and 2.22), and occipital WMH (CIs = -0.69 

and 1.22), did not differ as a function of race. When examining the 99.5% confidence intervals 

(i.e., correcting for multiple comparisons) the parietal region was no longer statistically 

significant between the groups (CIs = -3.46 and 0.17). 

 

 Median 

Effect Size 

Lower 

95% CI 

Upper 

95% CI 

Lower 

99.5% CI 

Upper 

99.5% CI 

Total WMH -0.70 -1.85 0.43 -2.33 0.80 

Frontal WMH  -0.63 -1.81 0.48 -2.42 1.00 

Temporal WMH  0.91 -0.29 2.22 -0.57 2.54 

Parietal WMH -1.62 -2.83 -0.43* -3.46 0.17 

Occipital WMH   0.27 -0.69 1.22 1.17 1.46 
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Figure 1: Image showing the t-statistic and p-value for each of the 1000 linear regressions 

examining effect of race on total WMH load.   

 

Notes: A) T-statistic and p-value for total WMH load controlling for age, sex, education, and 

diagnostic status. B) T-statistic and p-value for total WMH load controlling for age, sex, 

education, diagnostic status, BMI, hypertension, diabetes. CI = confidence intervals. Red lines 

represent the 95% CIs.  

 

4 Discussion 

White matter hyperintensities (WMH) are known to develop with increased age and are strongly 

associated with cognitive decline and dementia [3]. These WMHs may occur as a result of 

cerebrovascular risk factors such as hypertension, diabetes, and increased BMI. Several studies 
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have observed that Black individuals have increased cerebrovascular disease compared to White 

individuals [14]. As a result, one could predict that Black individuals would have a higher WMH 

load compared to Whites. However, whether racial differences exist in WMH burden has been 

conflicting. This study was designed to address limitations in current research by examining 

whether racial differences exist in WMH burden and whether they are influenced by vascular 

risk factors. The current findings suggest that Black individuals exhibit higher frontal, parietal, 

and total WMH load compared to Whites when vascular risk factors are not controlled for. On 

the other hand, when BMI, diabetes, and hypertension were included in the model, and 

correction for multiple comparisons was completed, significant group differences in total, 

frontal, and parietal WMH were no longer significant. The findings of the current study highlight 

important racial differences in aging research that have both research and clinical applications. 

From a research perspective, these findings show that racial differences in aging, 

cognitive decline, and dementia may be accounted for by other underlying factors. In this study, 

racial group differences in WMH load were largely associated with the vascular risk factors 

examined. This finding is consistent with other studies that observed vascular disease is 

associated with higher WMH burden in Blacks, [11] and when controlling for vascular risk 

factors no racial group differences in WMH load are observed [16]. More research on 

racially/ethnically diverse populations is needed to fully understand neurodegeneration changes 

in aging and cognitive decline. Increasing research in multi-racial and multi-ethnic samples will 

make health research more generalizable and improve a doctors’ ability to treat and provide care 

to diverse populations.  

From a clinical standpoint, previous research has shown that some ethnic groups report 

discrimination which leads to delays in medical testing, treatment, and receiving prescription 
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medications [30] suggesting that there are racial and ethnic access disparities to health care [31]. 

Their conditions are thus more likely to be left untreated or undermanaged. Taken together with 

our current findings of higher WMH load in Blacks (than Whites), vascular risk factors may be 

undermanaged in this group leading to greater WMH load relative to White individuals. WMH 

may lower ones’ threshold for dementia and cognitive decline [7,8]. Thus, the higher WMH 

burden in Black compared to White individuals, may contribute to Blacks exhibiting an 

increased risk for and incidence of dementia compared to Whites [32]. Improved treatment and 

management of vascular risk factors in Black populations may reduce WMH burden and 

subsequent cognitive decline and dementia and should be studied in the future.  

There are a few limitations in the current study that should be examined in future 

research. Other risk factors for cerebrovascular disease such as waist circumference, cholesterol, 

and fasting glucose were not included in the current study. ADNI did not conduct participant 

waist circumference measurements, while the fasting glucose and cholesterol participant data 

were missing for many participants limiting its applicability in the current sample. Future 

research should also examine healthcare and environmental exposure differences (e.g., social-

economic status), which has been observed to be an important factor in racial differences in both 

vascular risk factors and WMH development [13]. Finally, the ADNI sample is comprised of 

well-educated participants which may limit the generalizability of the current findings to the 

general population.  

Conclusion  

 This study was novel in that it examined the influence of racial differences on WMHs 

while both controlling for and not controlling for vascular risk factors in the same sample of 

participants. We revealed that Blacks have more WMHs than Whites, which is influenced by 
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them having increased BMI, more diabetes, and more hypertension than Whites. These findings 

suggest that racial differences in WMH burden are largely influenced by underlying vascular risk 

factors. Future research needs to determine the longitudinal implications of increased vascular 

risk factors in Blacks on WMH and both cognitive change and diagnostic status change over 

time.  
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