Interplay between Tumor Mutational Burden and Mutational Profile and its effect on overall survival: A Post Hoc Analysis of Metastatic Patients Treated with Immune Checkpoint Inhibitors.

Camila B. Xavier, M.D.¹,¹,#, Carlos Diego H. Lopes, M.D.¹, Beatriz M. Awni, M.D.¹, Eduardo F. Campos, M.D.¹, João Pedro B. Alves², Anamaria A. Camargo, PhD³, Gabriela D. A. Guardia, Ph.D.³, Pedro A. F. Galante, Ph.D.³,# and Denis L. Jardim, M.D., Ph.D.¹,#

1- Oncology Center, Sirio-Libanês Hospital, Sao Paulo, Brazil
2- Falconi Consultants for Results, Sao Paulo, Brazil
3- Molecular Oncology Center - Instituto de Ensino e Pesquisa, Sirio-Libanês Hospital, Sao Paulo, Brazil

Keywords: Tumor mutation burden; immune Checkpoint inhibitors; immunotherapy

Corresponding authors:
Camila Bragança Xavier, M.D.
Sirio Libanês Hospital
115, Dona Adma Jafet, Second floor, building A
01308-050. São Paulo, SP, Brazil
Phone number: +55 11 972544896
Email: camilabragancamed@gmail.com

Denis L Jardim, MD, PhD
Sirio Libanês Hospital
115, Dona Adma Jafet, Second floor, building A
01308-050. São Paulo, SP, Brazil
Phone number: +55 11 997072594
Email: jardimde@gmail.com

Pedro A. F. Galante, Ph.D
Sirio Libanês Hospital
69, Daher Cutait.
01308-050. São Paulo, SP, Brazil
Phone number: +55 11 3394-4167

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
KEY POINTS

Question. Can we improve response prediction to ICI treatment by assessing tumor mutational burden (TMB) and other molecular or clinical variables from cancer patients?

Findings. In this study we found that somatic mutation profile can modify responses to ICIs in patients with TMB ≥ 10 mut/Mb. Conversely, other variables such as MSI status, age or gender were found to not be important in predicting response to ICI treatment.

Meaning. While prospective trials are still required, we found that combination of a high TMB and somatic mutational profile in key cancer genes can be used to better select patients for ICI treatment.

ABSTRACT

Importance: Tumor mutational burden (TMB) greater than or equal to 10 mutations per megabase (mut/Mb) has received agnostic FDA approval for pembrolizumab. However, this TMB cut-off alone is not a complete predictor of overall survival (OS) in patients treated with immune checkpoint inhibitors (ICIs).
Objective. To analyze the influence of the molecular profile in patients with TMB ≥ 10mut/Mb treated with ICIs.

Design, Setting, and Participants. This post-hoc analysis evaluated the clinical and molecular features of tumor-normal pairs from 1,661 patients with solid tumors sequenced using the MSK-IMPACT assay and treated with ICIs.

Main Outcomes and Measures. We performed OS analysis and compared the results for TMB thresholds of ≥ 10, ≥ 20, and < 10 mut/Mb. For a TMB ≥ 10mut/Mb, we assessed OS according to mutational status. For all genes exhibiting a correlation with OS (P < 0.05), we conducted a Cox multivariate analysis adjusted by median TMB, sex, median age, microsatellite instability (MSI) status, and histology.

Results. After a maximum follow-up of 80 months, a total of 1,661 patients were investigated, and survival to ICIs increased with higher TMB cut-offs. The median OS was 42 months for TMB ≥ 10 or 20mut/Mb, and 15 months for TMB < 10 mut/Mb (P < 0.005). Patients harboring a TMB ≥ 10 (N=488, 29%) were further stratified by their somatic mutation profile in key cancer genes. When only genes with n ≥ 5 patients were considered, mutations in E2F3 or STK11 were correlated with worse OS, and those with mutations in NTRK3, PTPRD, RNF43, TENT5C, TET1 or ZFHX3 were correlated with better OS in TMB-high patients.
receiving ICIs compared to wild-type patients. These associations were confirmed by univariate and multivariate analyses (P < 0.05). MSI status and clinical features, including age, sex, and histology (except for melanoma), failed to predict outcomes to ICIs in patients with high TMB.

Conclusion and relevance. The findings suggest that combining TMB information and mutation profiles in key cancer genes can be used to better qualify patients for ICI treatment and predict their OS.

INTRODUCTION

Tumor mutational burden (TMB) has been correlated with the response to immune checkpoint inhibitors (ICIs) in a retrospective cohort including 1,661 patients treated with ICIs. Among all patients, higher somatic TMB, defined as the highest (20%) in histology, was a predictor of better overall survival (OS). Subsequently, a prospective analysis from the phase II KEYNOTE-158 trial stated that a TMB of at least 10 somatic tumor mutations per megabase (mut/Mb) was associated with a higher proportion of objective response rates (ORR) to pembrolizumab monotherapy. These results led to the FDA agnostic approval of pembrolizumab for TMB-high (≥ 10mut/Mb) patients. Notably, 42% of patients presenting with high TMB do not respond to ICIs;
other clinical and molecular factors may have important roles in modulating the tumor response to ICIs. To better qualify patients with TMB ≥ 10 mut/mB for ICI treatment, we investigated their mutation profiles and correlated them with their survival outcomes.

METHODS

Study Design

We collected genomic and survival data from 1,661 patients and retrieved their mutation profiles (MSK-IMPACT). This assay identifies somatic exonic mutations in a predefined subset of 468 cancer-related genes (earlier versions included 341 or 410 genes), by using both tumor-derived and matched germline normal DNA. TMB was determined by the number of nonsynonymous somatic mutations.

Statistical Analysis

Overall survival (OS) for all patients who received at least one dose of ICIs was estimated using the Kaplan-Meier method. The Cox regression model was used to define the hazard ratios (HRs) for death, and a log-rank test was used to compare the results (95% confidence intervals for all analyses). The Python Lifelines package (version 0.26.4) was used for Kaplan-Meier and Cox analyses. A validation analysis correlated
predefined percentiles used in the original publication with absolute cut-off values. For a \(\geq 10 \) mut/Mb cutoff, we assessed OS regarding the mutational status of each gene mutation with \(n > 5 \) patients (\(N = 392 \)).

For all genes exhibiting a correlation with survival considering an alpha-error level (\(P < 0.05 \)), a Cox multivariate analysis was also conducted using Reboot. The adjustment variables included sex, median age, microsatellite instability (MSI) status, TMB under or above the median TMB of the cohort (20 mut/Mb), and histology (non-small cell lung cancer (NSCLC), melanoma, bladder cancer, and colorectal cancer). Since MSI status was not available in the current database, an individual assessment of somatic mutations in MLH1, MSH2, MSH6, PMS2, and SETD2 was used as a surrogate.

RESULTS

Patients characteristics

A total of 1,661 patients (11 cancer types) were included. The top three tumors were NSCLC (21.1%), melanoma (19.3%), and bladder cancer (12.9%), Figure 1A. Of all samples, 488 (29.4%) harbored a TMB of \(\geq 10 \) mut/Mb, Figure 1B. The ICI type received was anti-PD-(L)1 in 76.6% cases, anti-CTLA-4 in 8.6%, and ICI
Combination in 14.8% of the cases, Figure 1C. After a maximum follow-up of 80 months, the median OS was 42 months for both TMB ≥ 10 mut/Mb (95% CI 0.35 – 0.63) and TMB ≥ 20 mut/Mb (95% CI 0.42 – 0.56), and 15 months for TMB < 10 mut/Mb (95% CI 0.39 – 0.59), multivariate log-rank P < 0.005, Figure 1D. The HRs for death were HR 0.44 (95% CI 0.34 – 0.56) and 0.57 (95% CI 0.49 – 0.67) for TMB ≥ 20 mut/Mb and ≥ 10 mut/Mb, respectively (P < 0.005). No difference was observed in death risk between cohorts with TMB 10 mut/Mb or less and 1 mut/Mb or less (HR 0.96; 95% CI 0.74 – 1.24; P = 0.73).

Single gene alterations and implications for survival

Twenty-seven gene mutations with n > 5 patients exhibited a statistically significant correlation with OS after ICI treatment when only tumors with TMB ≥ 10 mut/Mb were analyzed. Among them, 5 showed reduced OS on ICI: STK11, KEAP1, CIC, E2F3, and TP53 (P < 0.05). In addition, 22 genes were associated with better OS: NTRK3, TERT, NOTCH3, RNF43, TET1, PTPRD, NCOA3, TENT5C, ZFHX3, RIT1, CCNE1, PPM1D, GATA2, ALK, DNMT1, PTPRT, MET, EPHA7, BCL6, SMO, CDK6, and MED12 (p < 0.05), Table 1.

Multivariate analysis of individual gene alterations in high TMB patients
Among the 27 genes exhibiting a correlation with OS (P < 0.05), multivariate analysis confirmed a correlation between mutations in STK11 (N=40, HR 1.84 (95% CI, 1.14 - 2.97) and E2F3 (N=14, HR 3.17 (95% CI, 1.58 - 6.38]) and worse survival (P < 0.05). Mutations in NTRK (N=57, HR 0.39 95% CI, 0.20 - 0.78), PTPRD (N=125, HR 0.67 95% CI, 0.45 - 0.99), RNF43 (N=52, HR 0.42 95% CI, 0.2015 - 0.89), TENT5C (N=15, HR 0.14 95% CI, 0.02 - 0.98), TET1 (N=55, HR 0.48 95% CI, 0.25 - 0.91), and ZFHX3 (N=91, HR 0.62 95% CI, 0.39 - 0.99) were associated with better OS. When evaluated concurrently with the mutational profile, histology did not play a relevant role in the ICI response, except for melanoma, which endowed patients with better OS (P < 0.05). In addition, MSI status, age, and gender did not have a statistically significant effect on OS, Figure 2.

DISCUSSION

Despite prior data demonstrating that higher TMB correlates with responses to ICIs, the use of TMB as a predictive biomarker for OS still has limitations\(^3\). Only a non-significant difference in 3-year OS was noted between the TMB-high/low groups from Marabelle et al.\(^2\), and more than half of the patients died regardless of TMB status at the 3-months landmark. Here, we show that not only high TMB but also its combination with somatic
mutational profile in some specific genes can be a predictor of survival benefit from ICI treatment.

The complexity of antitumor immune response reflexes in the absence of a universal biomarker to predict survival benefit from ICI8 and an integrative analysis of clinical and molecular variables may guide better patient selection for ICI treatment9,10. Notably, we identified two mutated genes related to poor survival: \textit{STK11} and \textit{E2F3}. Interestingly, there is stronger evidence supporting the \textit{STK11}-related ICI resistance11. In accordance, the cell-cycle promoter \textit{E2F3} is a well described tumoral poor prognosis factor, and associated with a low immune signature score when amplified12.

The multivariate analysis with the genes correlated to OS benefit did not find any clinical feature, except for melanoma histology (19.3\% of samples studied) that could interfere with survival outcomes after ICI. This melanoma enrichment could justify a lack of correlation to MSI status as previous data shows the opposite13.

LIMITATIONS

Our study has limitations, including its retrospective nature based on clinical and molecular data available in a public online database and a bias toward hypermutated tumors (NSCLC, melanoma, and urothelial carcinoma)13, which could
explain the higher proportion of samples with TMB ≥ 10 (N 488, 29.4%). In addition, we used mutation in DNA repair genes to define MSI, not being able to state that all these patients have microsatellite instability phenotypes.

CONCLUSION

With this pan-cancer analysis, we: i) demonstrated that not only high TMB, but also its combination with somatic mutational profile in some specific genes can be a predictor of survival benefit from ICI treatment; ii) confirmed the 10 mut/Mb TMB cutoff as a positive predictive biomarker for ICI treatment. Although prospective trials are still needed, combining information of TMB and mutation profiles in some cancer genes can be decisive in better qualify patients for ICI treatment.

FIGURE LEGENDS

Figure 1. Patients’ characteristics (n=1,661) and survival on ICIs according to TMB cut-offs A) Cancer types included. B) Number of samples per TMB cut-offs (<10 or ≥10) and TMB (violin and boxplot) distribution. C) Type of ICI treatments used by patients. D) Effect of mutational load on overall survival after ICI treatment. Kaplan-Meier (KM) curves for patients with tumors within each TMB predefined cutoff. Overall survival is from the first dose of ICI. Median OS was 42 months for both TMB ≥
20mut/Mb (95% CI 0.35 – 0.63) and TMB ≥ 10 mut/Mb (95% CI 0.42 – 0.56), and 15 months for TMB < 10 mut/Mb (95% CI 0.39 – 0.59), multivariate log-rank P < 0.005.

Table 1. Single gene alterations and implications for survival.

Figure 2. Patients treated with ICI and with tumors presenting TMB ≥ 10 mut/Mb can be further stratified by their somatic mutation profile. A) Overall survival (OS) according to STK11 mutational status. B) OS according to TET1 mutational status. C) Forest plot for OS in multivariate analysis for 8 genes with N of at least 5 patients exhibiting a possible correlation with survival considering a standard alfa-error level (P < 0.05). Stratification variables included TMB under or above the median of 20 mut/Mb, sex, median age, microsatellite instability (MSI) status, and tumor types (non-small cell lung cancer (NSCLC), melanoma, bladder cancer, and colorectal cancer).

REFERENCES

Table 1. Single gene alterations and implications for survival.

<table>
<thead>
<tr>
<th>TMB ≥ 10 mut/Mb (P < 0.05)</th>
<th>Better overall survival-related mutated genes</th>
<th>Worse overall survival-related mutated genes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NTRK3, TERT, NOTCH3, RNF43, TET1, PTPRD, NCOA3, TENT5C, ZFHX3, RIT1, CCNE1, PPM1D, GATA2, ALK, DNMT1, PTPRT, MET, EPHA7, BCL6, SMO, CDK6, MED12</td>
<td>STK11, KEAP1, CIC, E2F3, TP53</td>
</tr>
</tbody>
</table>