XGBoost, a novel explainable AI technique, in the prediction of myocardial infarction, a UK Biobank cohort study
Alexander Moore, View ORCID ProfileMax Bell
doi: https://doi.org/10.1101/2022.04.08.22273600
Alexander Moore
1MSC, Head of Data Science at Managed Self Limited, London, England
Max Bell
2Perioperative Medicine and Intensive Care, Karolinska University Hospital, Stockholm, Sweden
3Section of Anaesthesiology and Intensive Care Medicine, Department of Physiology, Karolinska Institutet, Stockholm, Sweden

Article usage
Posted April 12, 2022.
XGBoost, a novel explainable AI technique, in the prediction of myocardial infarction, a UK Biobank cohort study
Alexander Moore, Max Bell
medRxiv 2022.04.08.22273600; doi: https://doi.org/10.1101/2022.04.08.22273600
Subject Area
Subject Areas
- Addiction Medicine (280)
- Allergy and Immunology (579)
- Anesthesia (140)
- Cardiovascular Medicine (1950)
- Dermatology (185)
- Emergency Medicine (333)
- Epidemiology (11114)
- Gastroenterology (628)
- Genetic and Genomic Medicine (3189)
- Geriatric Medicine (309)
- Health Economics (563)
- Health Informatics (2046)
- Health Policy (864)
- Hematology (310)
- HIV/AIDS (682)
- Medical Education (317)
- Medical Ethics (92)
- Nephrology (336)
- Neurology (2996)
- Nursing (165)
- Nutrition (465)
- Oncology (1559)
- Ophthalmology (478)
- Orthopedics (185)
- Otolaryngology (266)
- Pain Medicine (202)
- Palliative Medicine (57)
- Pathology (403)
- Pediatrics (914)
- Primary Care Research (355)
- Public and Global Health (5604)
- Radiology and Imaging (1096)
- Respiratory Medicine (763)
- Rheumatology (340)
- Sports Medicine (289)
- Surgery (346)
- Toxicology (48)
- Transplantation (159)
- Urology (133)