A Method to improve the Reliability of Saliency Scores applied to Graph Neural Network Models in Patient Populations
View ORCID ProfileJuan G. Diaz Ochoa, View ORCID ProfileFaizan E Mustafa
doi: https://doi.org/10.1101/2022.04.06.22273515
Juan G. Diaz Ochoa
1PMQD UG / Pelargusstr. 2, D-70180 Stuttgar Germany,
Faizan E Mustafa
2QUIBIQ GmbH / Heßbrühlstr. 11 D-70565 Stuttgart Germany,

Data Availability
All data produced in the present study are available upon reasonable request to the authors
Posted April 13, 2022.
A Method to improve the Reliability of Saliency Scores applied to Graph Neural Network Models in Patient Populations
Juan G. Diaz Ochoa, Faizan E Mustafa
medRxiv 2022.04.06.22273515; doi: https://doi.org/10.1101/2022.04.06.22273515
Subject Area
Subject Areas
- Addiction Medicine (407)
- Allergy and Immunology (718)
- Anesthesia (212)
- Cardiovascular Medicine (3027)
- Dermatology (256)
- Emergency Medicine (452)
- Epidemiology (12944)
- Forensic Medicine (12)
- Gastroenterology (844)
- Genetic and Genomic Medicine (4744)
- Geriatric Medicine (438)
- Health Economics (744)
- Health Informatics (3011)
- Health Policy (1090)
- Hematology (405)
- HIV/AIDS (950)
- Medical Education (448)
- Medical Ethics (117)
- Nephrology (487)
- Neurology (4523)
- Nursing (241)
- Nutrition (669)
- Oncology (2351)
- Ophthalmology (664)
- Orthopedics (262)
- Otolaryngology (332)
- Pain Medicine (294)
- Palliative Medicine (85)
- Pathology (511)
- Pediatrics (1224)
- Primary Care Research (513)
- Public and Global Health (7114)
- Radiology and Imaging (1579)
- Respiratory Medicine (937)
- Rheumatology (455)
- Sports Medicine (395)
- Surgery (501)
- Toxicology (63)
- Transplantation (216)
- Urology (187)